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1. Introduction 

The mammalian immune system is a complex network of many cell types and proteins that 

collectively coordinate a protective response against foreign entities. The immune system 

can be divided into two broad categories: innate and adaptive immunity. Adaptive 

immunity, which is primarily mediated by T and B lymphocytes, first arose in jawed 

vertebrates and has several distinct features from the more ancient innate immune system 

(Pancer and Cooper 2006). While innate immunity is characterized by non-specific 

recognition of conserved molecular patterns leading to a rapid effector response, the 

adaptive immune response is delayed by the required expansion of lymphocytes bearing 

receptors specific for a particular antigen. After the primary immune response, a small 

fraction of activated lymphocytes remain as memory cells, which respond to subsequent 

encounters with the same antigen in a more rapid and robust manner. 

Due to the enormous diversity of antigens to which the adaptive immune system must 

respond, generation of antigen receptors cannot occur on a one gene-one protein basis. 

Instead, diversity is achieved through recombination of genetic segments, nucleotide 

additions and deletions, and pairing of different chains to form the complete antigen 

receptor. For example, of a theoretical 1015 T cell receptor (TCR) specificities in humans, 

only a small fraction is represented by circulating T cells (Arstila et al. 1999). Most 

lymphocytes do not complete development and are eliminated by programmed cell death. 

This can occur at several checkpoints both independent and dependent of the antigen 

receptor specificity. T and B cell development are analogous; both ultimately require the 

generation of an antigen receptor that can bind self-antigen with an affinity just high 

enough to enable survival and maturation. Lymphocytes bearing receptors with 

excessively high affinity for self-antigen are eliminated. This chapter focuses on the role of 

programmed cell death during T cell development in the thymus. Recent advances in the 

field reveal a complex and elegant system designed to select for immunocompetent and 

self-tolerant T cells. 
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2. TCR-independent T cell development 

T cell development occurs in the thymus, a bilobed organ composed of an outer capsule, a 

peripheral cortex, and a central medulla. T cell progenitors from the bone marrow or fetal 

liver seed the thymic cortex as double negative (DN) thymocytes, so called because they lack 

expression of CD4 and CD8 co-receptors. Murine DN thymocytes progress through four 

stages of development defined by differential expression of the proteins CD44 and CD25 

(Godfrey et al. 1993) (Figure 1). The earliest progenitors that seed the thymus are termed 

DN1 (CD44+CD25-). T cell lineage commitment initiates rearrangement of the TCR chain by 

recombination activating gene-1 and -2 (Rag-1 and Rag-2) enzymes at the DN2 stage 

(CD44+CD25-), which continues into the DN3 stage (CD44-CD25+) (Livak et al. 1999). 

Rearrangement of the TCRγ and δ loci are also evident in DN3 thymocytes and it is at this 

stage that the γδ T cell lineage diverges from conventional αβ T cells (MacDonald et al. 

2001). In this chapter, we focus on the role of apoptosis in αβ T cell development.  

 

Figure 1. Conventional T cell development in the thymus. 

T cell progenitors enter the thymus on the cortical side of the cortico-medullary junction as 

DN thymocytes, lacking expression of CD4 and CD8 co-receptors. DN thymocytes progress 

through four stages of development defined by differential expression of CD44 and CD25. 

Only thymocytes expressing a functional TCR chain survive the β-selection checkpoint at 

the DN3 to DN4 transition and are permitted to continue development into CD4+CD8+ DP 

thymocytes. DP thymocytes have three fates depending on the affinity of its TCR for self-
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pMHC: death by neglect, negative selection, or positive selection. Positively selected 

thymocytes differentiate into CD4+CD8- or CD4-CD8+ SP cells and migrate to the medulla, 

where negative selection against tissue-restricted antigens occurs. SP thymocytes that 

survive this process enter the peripheral T cell repertoire. 

While the mature αβTCR is composed of one α and β chain each, the TCR chain is initially 

paired with an invariant pre-TCRα chain, together forming the pre-TCR (Saint-Ruf et al. 

1994). Signaling through the pre-TCR or mature TCR is mediated by an associated protein 

complex that contains a CD3γ/CD3ε heterodimer, CD3δ/CD3ε heterodimer, and CD3ζ 
homodimer (Figure 2). The TCR only recognizes peptide antigen when presented on major 

histocompatibility complex (MHC) molecules. A common method of artificially stimulating 

thymocytes in vitro is using agonist antibodies against CD3ε and the co-stimulatory 

molecule CD28. In contrast to the mature TCR, interaction between the pre-TCR and 

peptide-MHC (pMHC) is not required for signaling (Irving et al. 1998). Rather, translocation 

of pre-TCR complexes to lipid rafts in the plasma membrane has been proposed to provide a 

platform for association with signaling proteins (Saint-Ruf et al. 2000). Pre-TCR signaling is 

required for allelic exclusion at the TCRβ locus, survival, differentiation into DN4 (CD44-

CD25-) thymocytes, proliferation and subsequent differentiation into CD4+CD8+ (DP) 

thymocytes, and initiation of TCRα rearrangement (Michie and Zuniga-Pflucker 2002). This 

has been demonstrated by genetic ablation of Rag-2, pre-TCRα, and numerous downstream 

signaling components (review of pre-TCR and TCR signaling pathways in thymocytes in 

references (Michie and Zuniga-Pflucker 2002; Starr et al. 2003)). Since this process selects for 

thymocytes with functional TCRβ rearrangements, it is referred to as the β-selection 

checkpoint.  

Rearrangement of the TCRα locus occurs at low levels in DN4 thymocytes but does not 

occur at full scale until the DP stage (Hernandez-Munain et al. 1999). DP thymocytes have a 

lifespan of 3-4 days (Egerton et al. 1990), during which time multiple recombination events 

can occur at each TCRα allele until the generation of an αβTCR that engages self-pMHC 

expressed on cortical thymic epithelial cells. The majority of DP thymocytes do not express a 

functional αβTCR or do not engage self-pMHC within this time window. Thymocytes that 

fail this self-MHC restriction checkpoint undergo “death by neglect” to maximize the utility 

of the T cell repertoire. 

2.1. Apoptosis in pre-β-selection thymocytes 

The thymic microenvironment provides signals to developing thymocytes through cell-cell 

interactions and cytokines. Two key cell surface receptors important for survival of pre-β-

selection thymocytes are the IL-7 receptor and Notch.  

IL-7 is a cytokine produced by thymic epithelial cells that signals through a receptor 

consisting of an IL-7Rα chain and a γc chain, resulting in the activation of a variety of 

signaling pathways. IL-7 is known to promote survival and proliferation but this chapter 

will focus only on the role of IL-7 signaling in thymocyte survival. Early studies showed that 
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IL-7 increases the viability of DN1, DN2, and DN3 thymocytes cultured in vitro (Godfrey et 

al. 1993; Kim et al. 1998). In vivo studies using IL-7Rα-/- mice revealed a deficit of CD25+ DN 

(i.e. DN2 and DN3) thymocytes, suggesting that IL-7 is needed for the transition to and/or at 

these stages (Peschon et al. 1994; Maraskovsky et al. 1997). Later studies that examined 

sorted DN populations confirm that the DN2 and DN3 subsets have the highest expression 

of IL-7Rα (Yu et al. 2004) and responsiveness to IL-7 stimulation (Van De Wiele et al. 2004). 

IL-7 promotes thymocyte survival through both positive regulation of anti-apoptotic 

members and negative regulation of pro-apoptotic members of the B cell lymphoma (Bcl) 2 

family (for a summary of the role of Bcl-2 family members in T cell development, refer to 

Table 1). For example, IL-7 stimulation of CD3ε- DN thymocytes induces expression of the 

anti-apoptotic protein Bcl-2 (von Freeden-Jeffry et al. 1997; Kim et al. 1998) and 

overexpression of Bcl-2 in IL-7Rα-/- (Maraskovsky et al. 1997; Khaled et al. 2002) or γc-/- 

(Kondo et al. 1997) mice is sufficient to rescue development. Additionally, myeloid cell 

leukemia sequence 1 (Mcl-1), another anti-apoptotic Bcl-2 family member, is induced by IL-7 

and can promote DN2 survival (Opferman et al. 2003). While a role for the pro-apoptotic 

protein Bcl-2 homologous antagonist/killer (Bak) is controversial (Khaled et al. 2002; Dunkle 

et al. 2010), a role for Bcl-2-associated X protein (Bax) in death by IL-7 starvation is more 

established. IL-7 stimulation of DN thymocytes reduces Bax expression, while IL-7 

withdrawal causes mitochondrial translocation of Bax in a DN2-derived cell line called D1 

(Kim et al. 1998; Khaled et al. 1999). Furthermore, Bax deficiency partially rescues DN 

thymocyte death in IL-7Rα-/- mice (Khaled et al. 2002). IL-7 signaling is thought to promote 

DN thymocyte survival in part due to activation of the phosphoinositide 3-kinase 

(PI3K)/Akt pathway. Akt is activated following recruitment to the plasma membrane 

molecule phosphatidylinositol (3,4,5)-triphosphate (PIP3), whose production is mediated by 

PI3K and inhibited by phosphatase and tensin homolog (PTEN) (Song et al. 2005). 

Consistent with high IL-7 responsiveness, DN2 thymocytes are especially sensitive to death 

when treated with PI3K inhibitor (Khaled et al. 2002). One substrate of Akt is the pro-

apoptotic protein Bcl-2-associated death promoter (Bad), which is sequestered in the cytosol 

when phosphorylated by Akt. IL-7 stimulation of DN2 and DN3 thymocytes increases Bad 

phosphorylation, which in D1 cells was shown to be Akt-dependent (Khaled et al. 2002; Li et 

al. 2004). In contrast, IL-7 withdrawal results in translocation of Bad to mitochondria, where 

it inhibits Bcl-2 to promote Bax activation. While the pro-apoptotic Bcl-2 member Bcl-2-

interacting mediator of cell death (Bim) is another known target of Akt, Bim expression in 

DN thymocytes is not regulated by IL-7 and Bim deficiency cannot rescue the DN2 and DN3 

blocks in adult IL-7Rα-/- mice (Khaled et al. 2002; Pellegrini et al. 2004). Additionally, IL-7 

has been shown to promote survival of immature (CD34+) human thymocytes through 

activation of the PI3K/Akt pathway, though this marker does not distinguish between pre- 

and post-β-selection DN cells (Pallard et al. 1999). Taken together, these results indicate that 

IL-7 is critical for pre-β-selection thymocyte survival largely through regulation of Bcl-2 

family members and the intrinsic apoptosis pathway. Consistent with this, DN death in the 

absence of IL-7 is characterized by DNA fragmentation and annexin V binding (Kim et al. 

1998). However, the caspase inhibitors z-VAD and z-DEVD abrogate DNA fragmentation 

but do not prevent death, indicating the contribution of a non-apoptotic cell death pathway. 
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In addition to producing cytokines, thymic epithelial cells regulate thymocyte development 

through direct interactions. Interactions between Notch proteins and ligands of the Delta-

like and Jagged families are critical at several stages of T cell development. In mice, ligand 

binding induces proteolytic release of the Notch intracellular domain, which translocates to 

the nucleus and activates the transcriptional regulator recombination signal binding protein 

for immunoglobulin kappa J region (RBP-J), leading to transcription of target genes. 

Inducible deletion of Notch1 or RBP-J in bone marrow precursors results in loss of 

thymocytes as early as the DN1 stage and development of thymic precursors into B cells 

(Wilson et al. 2001; Han et al. 2002). While Notch1 is critical for early T cell lineage 

commitment, little is known about the role of Notch1 in survival of pre-β-selection 

thymocytes. Delta-like4 is the non-redundant Notch1 ligand required for T cell development 

in vivo (Hozumi et al. 2008; Koch et al. 2008) but ectopic expression of either Delta-like1 or 

Delta-like4 on OP9 bone marrow-derived stromal cells can support T cell development in 

vitro (Schmitt and Zuniga-Pflucker 2002; Hozumi et al. 2004). Culture of pre-β-selection 

murine (Rag2-/-) or human (CD3ε-) DN thymocytes in the presence of Delta-like1 or Delta-

like4 results in a decreased frequency of cell death (Ciofani et al. 2004; Magri et al. 2009). 

Notch1 promotes survival of Rag2-/- DN3 thymocytes by maintaining glucose metabolism in 

an Akt-dependent manner (Ciofani and Zuniga-Pflucker 2005). Thus, it is hypothesized that 

Notch1 signaling generates a metabolic environment permissive for β-selection. More work 

is needed to characterize the anti-apoptotic aspect of Notch1 signaling during early T cell 

development in vivo.  

2.2. Life and death at the β-selection checkpoint 

While IL-7 is critical for T cell development up to the DN3 stage, several studies have found 

little to no role for IL-7 signaling in thymocyte survival during β-selection. This is due to the 

fact that post-β-selection DN3 and DN4 thymocytes have decreased expression of IL-7Rα 

and subsequently reduced responsiveness to IL-7 compared to pre-β-selection stages (Van 

De Wiele et al. 2004; Yu et al. 2004; Van de Wiele et al. 2007; Teague et al. 2010). 

Interestingly, transgenic IL-7Rα expression ultimately impairs differentiation into DP 

thymocytes, suggesting that progression through β-selection is impeded by IL-7 signaling 

(Yu et al. 2004).  

Thymocyte survival during β-selection critically depends on signals downstream of the pre-

TCR. Consistent with this, activation of caspase-3 is apparent in Rag1-/- DN3 thymocytes and 

is abrogated upon anti-CD3ε stimulation (Mandal et al. 2005). In contrast to its role in 

promoting survival of pre-β-selection DN3 thymocytes, Notch1 signaling has been proposed 

to eliminate cells that fail to rearrange the TCRβ chain (Wolfer et al. 2002). Interestingly, 

Notch1 expression is induced by the transcription factor E2A, which is also implicated in 

elimination of TCRβ- thymocytes (Michie and Zuniga-Pflucker 2002). In support of this, 

E2A-/- mice develop lymphoma and ectopic expression of E2A induces death but not cell 

cycle arrest in lymphoma cells (Engel and Murre 1999). Pre-TCR signaling negatively 

regulates E2A activity and Notch1 expression, which may be one mechanism of promoting 

survival of thymocytes that express functional TCRβ chains (Yashiro-Ohtani et al. 2009). 
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Contrary to these reports, constitutive Notch1 activity in Rag2-/- mice does not increase 

thymocyte apoptosis before or after anti-CD3ε stimulation, arguing against the idea that 

Notch1 promotes death of TCRβ- cells during β-selection (Huang et al. 2003). Thus, the role 

of Notch1 in thymocyte survival at the β-selection checkpoint requires further clarification. 

As in pre-β-selection thymocytes, the PI3K/Akt pathway plays an important role in 

thymocyte survival during β-selection. Pre-TCR signaling during β-selection induces Akt 

activation in a Notch1-independent manner (Ciofani and Zuniga-Pflucker 2005; Mao et al. 

2007). Mice deficient in PI3K or Akt show a partial block at the DN3 to DN4 transition, while 

deletion of PTEN or expression of constitutively active Akt rescues β-selection in Rag2-/- 

mice (Rodriguez-Borlado et al. 2003; Hagenbeek et al. 2004; Mao et al. 2007). In PTEN-

deficient Rag2-/- mice, unchecked Akt activation allows the survival and expansion of 

abnormal TCRβ- cells (Hagenbeek et al. 2004). Conversely, deletion of Akt results in 

increased DN thymocyte death (Juntilla et al. 2007; Mao et al. 2007). Activated Akt controls 

the expression of several downstream apoptotic proteins. For example, through 

phosphorylation and nuclear exclusion of the transcription factor forkhead box O3a 

(FoxO3a), pre-TCR-induced Akt promotes transcriptional downregulation of Bim (Mandal 

et al. 2008). Survival during β-selection critically depends on pre-TCR-induced inactivation 

of the tumour suppressor p53, which would normally induce apoptosis in response to 

double-stranded DNA breaks such as those caused by TCRβ recombination (Jiang et al. 

1996; Haks et al. 1999). Using pre-TCRα-/- DN3 thymocytes, which can undergo TCRβ 

recombination but not pre-TCR signaling, it was found that p53 expression remains high 

and directly activates transcription of the pro-apoptotic protein Bcl-2 homology 3 

interacting-domain death agonist (Bid) (Mandal et al. 2008). As demonstrated in other cell 

types, Akt may promote murine double minute 2 (Mdm2)-mediated ubiquitination of p53 

during β-selection (Ogawara et al. 2002). In support of Bim and Bid as executioners of 

apoptosis during β-selection, deletion of either Bim or Bid in pre-TCRα-/- mice significantly 

reduces the percentage of apoptotic DN3 thymocytes. However, in contrast to constitutive 

Akt activity, Bim or Bid deficiency does not allow further development to the DP stage 

(Hagenbeek et al. 2004; Mao et al. 2007; Mandal et al. 2008). Thus, downregulation of Bim 

and Bid are important for survival at the β-selection checkpoint, but additional signals from 

the pre-TCR are needed for differentiation and proliferation. 

In addition to pre-TCR-mediated regulation of Bim and Bid through Akt activation, pre-

TCR signaling also upregulates the anti-apoptotic protein Bcl2A1 but not Bcl-2, Mcl-1, or 

Bcl-xL (Mandal et al. 2005; Trampont et al. 2010). Pre-TCR induction of Bcl2A1 appears to be 

mediated by the protein kinase C (PKC) pathway and is independent of Akt (Mandal et al. 

2005). Retroviral expression of Bcl2A1 in Rag1-/- thymocytes promotes their survival and 

differentiation in vivo, whereas knockdown of Bcl2A1 increases apoptosis of pre-TCR+ but 

not pre-TCR- cell lines (Mandal et al. 2005). More recently, signaling through the chemokine 

receptor C-X-C motif receptor 4 (CXCR4) has been reported to provide co-stimulatory 

signals to the pre-TCR, converging on activation of extracellular signal-regulated kinase 

(ERK) 1/2 (Trampont et al. 2010). A role for ERK1/2 signaling in β-selection is established but 

its contribution to survival is not well understood (Michie and Zuniga-Pflucker 2002). 
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Deletion of CXCR4 impaired thymocyte survival during β-selection and this was at least 

due to decreased Bcl2A1 expression, implicating the ERK1/2 pathway as another regulator 

of its expression (Trampont et al. 2010). 

The extrinsic apoptosis pathway initiated by death receptor signaling may also play a role at 

the β-selection checkpoint. Transgenic expression of a dominant-negative form of Fas-

associated death domain (FADD), an adaptor molecule required for apoptosis induction 

downstream of multiple death receptors, partially rescued thymocyte development in Rag1-

/- mice (Newton et al. 2000). Though Fas has been ruled out, it remains unclear which death 

receptors are involved. 

Collectively, both inactivation of pro-apoptotic factors and induction of anti-apoptotic 

factors contribute to thymocyte survival during β-selection. Regulation of the Bcl-2 family 

by the PI3K/Akt, PKC, and ERK1/2 pathways are important mechanisms utilized by the pre-

TCR to mediate survival of thymocytes at the β-selection checkpoint. 

2.3. Death by neglect 

Successful β-selection initiates rearrangement of the TCRα locus and differentiation into DP 

thymocytes (Figure 1). The number of recombination events correlates with the lifespan of 

the cell. Long-lived DP thymocytes exhaust the TCRα locus, thereby maximizing the chance 

of producing a functional TCR and engaging a positively selecting pMHC (Guo et al. 2002). 

Yet this is a relatively rare fate; most DP thymocytes undergo death by neglect upon failure 

to receive survival signals. This section discusses the factors that control DP survival in the 

absence of signaling through Notch1, IL-7 receptor, and the TCR (Huang et al. 2003; Yu et al. 

2004). A prominent theory in the past was that glucocorticoids produced by thymic 

epithelial cells induce death by neglect in DP thymocytes that have not received TCR-

induced resistance (Cohen 1992; Vacchio et al. 1994). However, studies in mice with 

hematopoietic-specific glucocorticoid receptor deficiency suggest that glucocorticoids do not 

have a significant role in death by neglect (Brewer et al. 2002; Purton et al. 2002).  

Though it has its limitations, measuring spontaneous thymocyte death in vitro is a common 

way to study death by neglect. The extrinsic apoptosis pathway does not appear to play a 

significant role as blocking Fas/Fas ligand interactions or expression of dominant-negative 

FADD in thymocytes does not impair spontaneous death (Newton et al. 1998; Zhang et al. 

2000). In contrast, many factors involved in the intrinsic apoptosis pathway are implicated 

in death by neglect. For example, DP thymocytes deficient for the pro-apoptotic proteins 

Bim or p53-upregulated modulator of apoptosis (Puma) have increased viability in vitro 

compared to wildtype DP, and deletion of both Bim and Puma further improves survival 

(Bouillet et al. 1999; Erlacher et al. 2006). In addition, Bax-/- Bak-/- thymocytes are resistant to 

spontaneous death (Rathmell et al. 2002). Of the anti-apoptotic Bcl-2 family members, 

numerous studies have shown that Bcl-xL plays a critical role in counteracting death by 

neglect. For one, the expression pattern of Bcl-xL strongly suggests that it promotes survival 

during the TCR-independent DP phase since spontaneous death over time correlates with 
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decreased Bcl-xL levels (Zhang et al. 2000), and Bcl-xL expression is mostly restricted to DP 

thymocytes in vivo (Ma et al. 1995). Furthermore, deletion of the Bcl-x gene renders DP 

thymocytes more susceptible to apoptosis in vitro (Ma et al. 1995; Zhang and He 2005). 

Deletion of Mcl-1 also impairs DP thymocyte survival in vitro (Dzhagalov et al. 2008). While 

Mcl-1 deficiency results in a more modest loss of DP thymocytes in vivo compared to Bcl-xL 

deficiency, combined deletion of Mcl-1 and Bcl-xL results in a severe reduction in DP 

numbers, suggesting that both factors are important in preventing death by neglect. 

The transcription factor retinoic acid-related orphan receptor (ROR) γt is a key activator of 

Bcl-xL expression in DP cells. Similar to Bcl-xL deficiency, deletion of RORγt results in 

increased DP apoptosis in vivo and reduced DP viability in vitro (Sun et al. 2000). Impaired 

DP survival in the absence of RORγt is likely due to reduced Bcl-xL expression as 

complementation of RORγt-/- mice with transgenic Bcl-xL rescues survival (Sun et al. 2000). 

Furthermore, decreased processivity of the TCRα locus is found in RORγt-/- mice, while the 

opposite is true for Bcl-xL transgenic mice, highlighting the importance of these survival 

factors to the generation of a functional and self-restricted TCR (Guo et al. 2002). Pre-TCR 

signaling upregulates RORγt expression; however, RORγt activity is temporarily inhibited 

to allow generation of a large DP pool following β-selection. Active RORγt inhibits the cell 

cycle and promotes survival of resting DP thymocytes (Xi and Kersh 2004; Xi et al. 2006). 

Consistent with the importance of RORγt and Bcl-xL in preventing death by neglect, 

multiple pathways have been reported to regulate their expression. For example, pre-TCR 

signaling induces expression of the transcription factor T cell factor 1 (TCF-1), which 

associates with β-catenin to execute Wnt signaling (Goux et al. 2005). TCF-1-/- thymocytes 

have reduced expression of RORγt and Bcl-xL (Yuan et al. 2010); only TCF-1 isoforms that 

can interact with β-catenin are able to induce Bcl-xL expression and rescue survival of TCF-1-

/- DP thymocytes (Ioannidis et al. 2001). These data suggest that pre-TCR signaling and Wnt 

signaling cooperate to promote DP survival. Contrary to these reports, stabilization of β-

catenin has been shown to impair DP survival (Gounari et al. 2001). Since β-catenin provides 

the transactivation domain and is thus the limiting factor in β-catenin/TCF-1-mediated 

transcription, a possible explanation is that physiological TCF-1 and β-catenin interactions 

promote survival while constitutively active signaling triggers tumour suppressors to 

induce apoptosis. The PI3K/Akt pathway reprises its role as a key mediator of thymocyte 

survival by also opposing death by neglect. Expression of constitutively active Akt enhances 

DP thymocyte survival in media and in fetal thymic organ cultures, while ablation of Akt or 

PI3K results in increased DP apoptosis (Jones et al. 2000; Swat et al. 2006; Mao et al. 2007). 

Specifically, the isoforms Akt1, Akt2, and PI3Kδ are implicated in DP survival, with the role 

of PI3Kγ-/- being more controversial (Sasaki et al. 2000; Swat et al. 2006; Mao et al. 2007). Bcl-

xL induction is at least part of the mechanism by which Akt promotes DP survival (Jones et 

al. 2000). Interestingly, Akt is a negative regulator of glycogen synthase kinase 3 (GSK3), a 

kinase that inhibits Wnt signaling through destabilization of β-catenin (Gounari et al. 2001; 

Song et al. 2005). Thus, in addition to upregulation of TCF-1, pre-TCR signaling may 

synergize with the Wnt pathway through Akt-mediated stabilization of β-catenin.  
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Promotion of glucose uptake and glycolysis by Akt in pre-β-selection DN3 thymocytes was 

previously mentioned (Ciofani and Zuniga-Pflucker 2005). Unlike DN thymocytes, only a 

small fraction of DP express glucose transporter 1 and it is unknown whether Akt regulates 

its expression (Swainson et al. 2005). However, conservation of energy and enhancement of 

energy production do appear to play an important role in extending the lifespan of DP 

thymocytes. It was recently reported that liver kinase B1, which activates ADP-activated 

protein kinase (AMPK) in response to ATP depletion, promotes DP survival in vivo and in 

vitro (Cao et al. 2010). Activated AMPK enacts metabolic changes to promote cell survival, 

and in DP thymocytes, its mechanism appears to include RORγt and Bcl-xL expression (Cao 

et al. 2010). Aside from TCF-1 and RORγt, the transcription factor c-myb is also thought to 

induce Bcl-xL expression in DP thymocytes in a TCF-1 and RORγt-independent manner 

(Yuan et al. 2010).  

Taken together, these studies show that Mcl-1 and Bcl-xL play critical roles in preventing 

death by neglect of DP thymocytes, in part due to antagonism of pro-apoptotic Bcl-2 family 

members. Despite involvement of the intrinsic apoptosis pathway in death by neglect, 

components of the apoptosome, caspase-9 and apoptotic protease-activating factor 1 (Apaf-

1), have been found to be mostly dispensable in spontaneous thymocyte death (Marsden et 

al. 2002). It was proposed that spontaneous death in the absence of caspase-9 and Apaf-1 is 

mediated by a low level of active caspase-7. However, another study found that z-DEVD, an 

inhibitor with preference for caspases-3 and -7, does not inhibit spontaneous thymocyte 

apoptosis (Zhang et al. 2000). Both studies reported that pan-caspase inhibitors such as z-

VAD and IDN-1965 partially block spontaneous death. While pharmacological inhibitors 

have limitations, these data suggest the possible involvement of other caspases and/or 

caspase-independent cell death mechanisms. 

3. TCR-dependent T cell development 

The vast majority of DP thymocytes die by neglect due to failure of their TCRs to interact 

with self-pMHC; the fate of the remainder is determined by the affinity of this interaction. 

DP thymocytes that experience low affinity TCR stimulation undergo positive selection, 

receiving cues for survival, migration from the cortex to the medulla, and differentiation 

into CD4 or CD8 single positive (SP) thymocytes (Figure 1). In contrast, high affinity TCR-

pMHC interactions result in negative selection, which is primarily mediated by clonal 

deletion of thymocytes expressing the high affinity TCR. Low affinity TCR ligands are 

thought to be non-cognate self-peptides, whereas cognate antigen provides high affinity 

stimulation (Starr et al. 2003). During migration through the thymic cortex, DP 

thymocytes may receive both low and high affinity TCR signals, but negative selection is 

dominant over positive selection. These processes are strictly controlled and 

dysregulation can lead to the development of immunodeficiency and autoimmune 

disorders. The remainder of this chapter discusses TCR-induced signaling pathways 

during negative and positive selection and subsequent regulation of pro- and anti-

apoptotic factors. 
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3.1. TCR signaling pathways in positive and negative selection 

An important unresolved question in T cell development is how high and low affinity TCR 

stimulation is translated into negative and positive selection outcomes. The current model is 

centered on differential activation of the mitogen-activated protein kinases (MAPKs) 

ERK1/2, ERK5, p38, and c-Jun N-terminal kinase (JNK) (Figure 2). MAPK signaling 

cascades, which involve activation of a series of kinases (MEKKMEKMAPK), mediate 

responses to extracellular stimuli including TCR stimulation. ERK1/2 is known to promote 

survival and differentiation while JNK and p38 are linked to apoptosis in other systems (Xia 

et al. 1995). Several lines of evidence suggest that they have similar functions during 

thymocyte development. For example, deletion of JNK1 or JNK2 renders thymocytes more 

resistant to death upon anti-CD3ε stimulation (Sabapathy et al. 1999; Sabapathy et al. 2001). 

Consistent with this, inhibition of JNK activity by a dominant-negative mutant inhibits 

peptide-induced negative selection in vivo (Rincon et al. 1998). Likewise, addition of a p38 

inhibitor to a TCR transgenic fetal thymic organ culture impairs peptide-induced deletion 

(Sugawara et al. 1998). Characterization of the MEK5-ERK5 pathway is relatively recent 

compared to other MAPK signaling cascades. Dominant-negative ERK5 and MEK5 inhibit 

thymocyte apoptosis in vitro and peptide-induced deletion in some models of negative 

selection, respectively (Fujii et al. 2008; Sohn et al. 2008). While JNK, p38, and ERK5 have 

been implicated in negative selection, they are not required for positive selection of 

thymocytes (Rincon et al. 1998; Sugawara et al. 1998; Sohn et al. 2008). Conversely, inhibition 

of ERK1/2 or their activator MEK blocks positive selection but does not affect negative 

selection (Alberola-Ila et al. 1995; Alberola-Ila et al. 1996; Sugawara et al. 1998; Pages et al. 

1999). 

The upstream molecules that link high and low affinity TCR stimulation to differential 

MAPK activation are not well understood. Whereas premature TCRα expression inhibits β-

selection, the TCRα chain is essential for positive selection of DP thymocytes (Mombaerts et 

al. 1992; Takahama et al. 1992; Lacorazza et al. 2001). This is because pMHC-induced signals 

impair development at the DN stage, whereas selection of DP thymocytes is dependent on 

pMHC ligands. It has been shown that CD3δ is required to transduce positive selection but 

not β-selection signals (Dave et al. 1997). Interestingly, the TCRα chain contains a motif 

important for both peptide contact and retention of CD3δ in the TCR complex, suggesting 

that CD3δ is a critical link between ligand binding and signal transduction (Backstrom et al. 

1998). Mutating this motif in the TCRα chain abrogates CD3δ association with the TCR and 

ERK1/2 activation, resulting in defective peptide-induced positive selection (Werlen et al. 

2000). This mutation has no effect on p38 and JNK activation or negative selection in the 

same system. During negative selection, JNK activation may be connected to the TCR 

complex through an upstream kinase called misshapen/NIKs-related kinase (MINK). This is 

evidenced by an association between CD3ε, MINK, and the adaptor protein non-catalytic 

region of tyrosine kinase (Nck) after stimulation of TCR transgenic thymocytes with cognate 

peptide (McCarty et al. 2005) (Figure 2). Consistent with its role in activating JNK, inhibition 

of MINK activity impairs negative selection in vivo. Involvement of different CD3 chains 

may result in differential phosphorylation of linker for activation of T cells (LAT), the 
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central adaptor protein that links TCR proximal and distal signaling pathways (Starr et al. 

2003). For example, regulation of different MAPK pathways through the adaptor protein 

growth factor receptor-bound protein 2 (Grb2) and the Ras activating protein Ras guanyl-

releasing protein 1 (RasGRP1) in TCR signaling is thought to result from phosphorylation of 

different LAT residues (Wange 2000). Grb2 was shown to be important for p38 and JNK 

activation and negative selection, whereas RasGRP1 is essential for ERK1/2 activation and 

positive selection (Dower et al. 2000; Gong et al. 2001). However, a recent study reported 

that Grb2-/- mice are impaired in both negative and positive selection (Jang et al. 2010). 

Though much remains unknown about the discrimination of positive and negative selection 

signals, these findings shed light on how DP thymocyte fate is determined by TCR-pMHC 

interactions. 

 

Figure 2. Signaling pathways in positive and negative selection. 

Selection of DP thymocytes depends on the affinity of the TCR for self-pMHC in the 

thymus. Low affinity TCR-pMHC interactions result in positive selection and high affinity 

interactions in negative selection. The TCR is composed of one α and β chain each and 

transduces signals through a complex consisting of CD3 chains (γ, δ, ε, ζ). TCR proximal 
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signaling events involve activation of kinases Lck and Zap70. Differential phosphorylation 

of the adaptor protein LAT is thought to result in activation of different MAPK pathways. 

The MAPKs JNK and p38 are important for negative selection and ERK1/2 for positive 

selection. JNK activation has also been linked to the TCR complex through the adaptor 

protein Nck and kinase MINK. ERK5 is another, relatively uncharacterized MAPK that may 

contribute to negative selection (not depicted). Active MAPK pathways are thought to lead 

to induction of pro-survival and pro-death factors that mediate positive or negative 

selection. (Lck - lymphocyte-specific protein tyrosine kinase; Zap70 - zeta chain-associated 

protein kinase 70.) 

3.2. Induction of survival factors during positive selection 

TCR signaling during positive selection results in reacquisition of IL-7 responsiveness in 

post-selection DP and SP thymocytes (Van De Wiele et al. 2004; Marino et al. 2010). 

Neutralizing IL-7Rα has been shown to inhibit SP development upon transfer of thymocytes 

from a non-selection (MHC-/-) to a positive selection (MHC+/+) background (Akashi et al. 

1997). However, IL-7Rα-/- mice have a normal frequency of SP thymocytes (Peschon et al. 

1994). Characterization of the role of IL-7 in positive selection may be confounded by the 

requirement for IL-7 in DN survival and proliferation. While IL-7 may not be required for 

positive selection, it is thought that IL-7 signaling provides important survival cues in SP 

thymocytes. Along with IL-7 responsiveness, Bcl-2 and Mcl-1 expression are upregulated in 

SP thymocytes (Linette et al. 1994; Akashi et al. 1997; Marino et al. 2010). Since Mcl-1 

regulates early DN survival, a CD4-cre recombinase system was used to conditionally delete 

Mcl-1 at the DP stage. Positive selection is impaired in the absence of Mcl-1, as indicated by 

a reduced number of SP thymocytes (Dzhagalov et al. 2008; Dunkle et al. 2010). Mcl-1 

deficiency is partially rescued by transgenic Bcl-2 expression, suggesting that Mcl-1 and Bcl-

2 act on overlapping and distinct targets (Dunkle et al. 2010). Likewise, Bcl-2-/- mice exhibit a 

partial decrease in SP numbers, consistent with the idea of other proteins providing 

redundant and non-redundant functions during positive selection (Wojciechowski et al. 

2007). Bcl-2-/- thymi are marked by a high frequency of DNA fragmentation, as indicated by 

positive staining in the terminal deoxynucleotidyl transferase-mediated dUTP nick end 

labeling (TUNEL) assay, as well as loss of thymocytes in the medulla, where SP cells 

normally reside (Veis et al. 1993). Conversely, transgenic Bcl-2 expression enhances positive 

selection and even allows SP development in the absence of MHC, though additional 

pMHC-induced signals are required for full maturation (Linette et al. 1994; Williams et al. 

1998). The transcription factor c-Fos has been identified as an activator of Bcl-2 expression 

and also promotes positive selection on polyclonal and transgenic TCR backgrounds (Wang 

et al. 2009). Interestingly, c-Fos is implicated as a sensor for ERK1/2 signal duration (Murphy 

et al. 2002). Therefore, sustained ERK1/2 signaling during positive selection may be 

translated into c-Fos stabilization and Bcl-2 induction. Despite promoting thymocyte 

survival during positive selection, Bcl-2 is limited in its ability to inhibit clonal deletion of 

autoreactive thymocytes during negative selection (Sentman et al. 1991; Strasser et al. 1991).  
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3.3. The role of intrinsic and extrinsic apoptosis pathways in clonal deletion 

Clonal deletion is widely held to occur through apoptosis, which can be mediated by 

extrinsic and intrinsic pathways. Many studies have examined the role of death receptors in 

negative selection. Mice defective for Fas or Fas ligand have been shown to have normal 

deletion of autoreactive thymocytes in multiple TCR transgenic models (Sidman et al. 1992; 

Singer and Abbas 1994; Sytwu et al. 1996). Similarly, tumour necrosis factor-related 

apoptosis-inducing ligand (TRAIL) has been shown to have no effect on peptide- or 

superantigen-induced clonal deletion (Simon et al. 2001; Cretney et al. 2003; Cretney et al. 

2008). However, other studies report that Fas and TRAIL signaling do contribute to negative 

selection under some conditions (Kishimoto et al. 1998; Lamhamedi-Cherradi et al. 2003). 

Many of these studies utilize models of negative selection in which exogenous antigen is 

injected in vivo. This can cause non-specific thymocyte deletion by the secreted products of 

activated peripheral T cells (Martin and Bevan 1997). Because activation-induced cell death 

of peripheral T cells is impaired in the absence of death receptors, results derived from these 

model systems may be complicated by involvement of extrathymic factors (Singer and 

Abbas 1994; Sytwu et al. 1996). Importantly, transgenic expression of dominant-negative 

FADD or the viral caspase-8 inhibitor cytokine response modifier A (CrmA) does not impair 

negative selection, strongly suggesting that the extrinsic apoptosis pathway is dispensable 

(Smith et al. 1996; Walsh et al. 1998; Newton et al. 2000).  

As discussed in detail in the following section, there is strong evidence that the intrinsic 

apoptosis pathway is involved in negative selection. Caspase-3 is widely held to be the main 

executioner caspase in mammals since both death receptor and mitochondrial-initiated 

pathways converge on its activation. Activation of caspase-3 is observed in thymocytes 

stimulated in vitro and from TCR transgenic models of negative selection (Alam et al. 1997; 

Hu et al. 2009). In contrast, the active forms of executioner caspases-6 and -7 are not detected 

after stimulation of TCR transgenic thymocytes with cognate peptide but can be induced by 

non-specific stimulation with staurosporine (Hara et al. 2002). Furthermore, comparison of 

caspase-3-/-, caspase-7-/-, and double knockout thymocytes indicates that caspase-3 is mainly 

responsible for DNA fragmentation in response to anti-CD3ε and anti-CD28 stimulation 

(Lakhani et al. 2006). Taken together, these data suggest that caspase-3 is the primary 

executioner caspase in clonal deletion. Though it normally plays a major role in clonal 

deletion, caspase-3 activation is not strictly required for negative selection in vivo (Hu et al. 

2009; Murakami et al. 2010). While a role for other executioner caspases in negative selection 

has not been excluded, numerous studies using pan-caspase inhibitors in vitro and in vivo 

have shown that TCR-induced thymocyte death can occur in the absence of caspase activity, 

albeit to reduced levels in some systems (Alam et al. 1997; Izquierdo et al. 1999; Doerfler et 

al. 2000; Hara et al. 2002). These data highlight the existence of multiple mechanisms that 

have evolved to mediate negative selection and self-tolerance.  

3.4. Initiators of the intrinsic apoptosis pathway 

Mitochondria are central to the initiation of caspase-dependent and caspase-independent 

cell death (Jaattela and Tschopp 2003). Of the Bcl-2 family that controls the mitochondrial 
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gateway to cell death, the pro-apoptotic protein Bim has a critical role in TCR-induced 

thymocyte death. Bim induction has been demonstrated after TCR stimulation of 

thymocytes in vitro and in numerous models of negative selection in vivo (Bouillet et al. 2002; 

Schmitz et al. 2003; Huang et al. 2004; Zucchelli et al. 2005; Baldwin and Hogquist 2007; 

Liston et al. 2007). The JNK pathway positively regulates Bim expression and function in 

other cell types (Whitfield et al. 2001; Putcha et al. 2003). Post-translational modification 

does not seem to be a major mechanism by which the TCR regulates Bim in thymocytes 

(Bunin et al. 2005). In thymocytes, MINK activity is linked to JNK activation and Bim 

induction, though it was not shown that Bim induction is JNK-dependent (McCarty et al. 

2005). Another study found that PKC inhibitors, but not JNK, p38, or MEK inhibitors, block 

Bim induction in thymocytes stimulated with anti-CD3ε and anti-CD28 (Cante-Barrett et al. 

2006). However, unlike JNK and p38, PKC activity is not required for negative selection 

(Anderson et al. 1995; Sun et al. 2000). More work is required to clarify the pathways 

activated during negative selection that lead to regulation of Bim. 

Bim is thought to have a critical role in clonal deletion as Bim deficiency results in resistance to 

TCR-induced thymocyte apoptosis in vitro (Bouillet et al. 2002) and abrogation of caspase-3 

activation in DP thymocytes undergoing negative selection in vivo (Hu et al. 2009). Consistent 

with its essential role in thymocyte apoptosis, deletion of DP thymocytes by superantigen and 

cognate peptide is impaired in the absence of Bim (Bouillet et al. 2002). Though deletion of DP 

thymocytes is indicative of clonal deletion, the number of autoreactive SP thymocytes is the 

most accurate measure of negative selection. In the physiological HYcd4 model of negative 

selection, Bim deficiency delays deletion of DP thymocytes but the number of autoreactive SP 

thymocytes is ultimately comparable in the presence and absence of Bim (Hu et al. 2009). 

Because Bim is required for caspase-3 activation in this model, these data support the idea of a 

redundant non-apoptotic cell death mechanism of negative selection. In addition, 

superantigen-mediated negative selection, as measured by autoreactive SP numbers, has also 

been reported to be Bim-independent (Jorgensen et al. 2007).  

Another factor to consider when evaluating the role of a protein in negative selection is the 

model system utilized. The molecular events involved in superantigen-induced deletion 

may be different from those initiated from pMHC interactions. Mice expressing transgenic 

TCRs against endogenous or neo self-antigens (thus avoiding the issues associated with 

peripheral T cell activation) have been the most powerful tools available for studying 

negative selection. However, there are key differences between TCR transgenic models. For 

example, in the classical HY model where HY is a male-specific antigen, the transgenic HY 

TCR is prematurely expressed on DN thymocytes such that deletion occurs during the DN 

to DP transition (Takahama et al. 1992; Baldwin et al. 2005). Thus, while Bim deficiency 

impairs negative selection in the HY model, this may in part reflect a role for Bim in DN 

thymocyte death (Bouillet et al. 2002). The HYcd4 model utilizes a CD4-cre recombinase 

system to conditionally express the transgenic HY TCRα chain at the DP stage, allowing 

selection to occur during the DP to SP transition as in wildtype mice (Baldwin et al. 2005). 

When the timing of TCR expression has been corrected, Bim appears to be dispensable for 

deletion of HY TCR+ thymocytes (Hu et al. 2009; Kovalovsky et al. 2010).  
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The stage of development at which deletion occurs has considerable implications on the 

molecular mechanism involved due to each thymocyte subset having differential gene 

expression, signaling threshold, and localization. For example, positive selection induces 

differentiation of DP into SP and migration to the medulla. Localization affects antigen 

presentation because the thymic cortex and medulla contain different types of antigen 

presenting cells. Importantly, ectopic expression of tissue-restricted antigens such as insulin 

is restricted to medullary thymic epithelial cells (Derbinski et al. 2001; Anderson et al. 2002). 

Because HY is a ubiquitous antigen, clonal deletion of HYcd4 thymocytes occurs at the DP 

stage in the cortex, a process that does not require Bim (McCaughtry et al. 2008; Hu et al. 

2009). While past studies have cited defective Bim induction and clonal deletion in type I 

diabetes-prone non-obese diabetic (NOD) mice (Zucchelli et al. 2005; Liston et al. 2007), a 

recent study clarified that NOD mice do not have a cell-intrinsic impairment in clonal 

deletion (Mingueneau et al. 2012). Negative selection against tissue-restricted antigens was 

also recently examined by transfer of OT-I or OT-I Bim-/- TCR transgenic bone marrow, 

which specifically recognizes ovalbumin peptide, into recipients in which the cognate 

antigen is driven by the ubiquitously active actin promoter or the tissue-restricted rat insulin 

promoter (Suen and Baldwin 2012). In agreement with results from the HYcd4 model, Bim is 

not required for negative selection against ubiquitous antigen, but is required for negative 

selection against tissue-restricted antigen in a cell-intrinsic way (Table 1). Because DP 

thymocytes are more sensitive to TCR-induced death than SP thymocytes (Davey et al. 

1998), one explanation is that either a Bim-dependent or independent mechanism is 

sufficient to kill DP cells, while both are required for SP deletion. Alternatively, interactions 

with medullary thymic epithelial cells may not induce factors that mediate Bim-independent 

cell death.  

The Bcl-2 family are critical regulators of mitochondrial integrity. The balance of pro-

apoptotic and anti-apoptotic members controls the activation of Bax and Bak, which leads to 

cytochrome c release and caspase activation. Programmed cell death plays an important role 

in the elimination of dysfunctional and autoreactive thymocytes. This table summarizes 

some of the proteins known to play a role in thymocyte survival. Different Bcl-2 members 

are important at different stages of thymocyte development.  

One candidate for mediating Bim-independent clonal deletion is the NR4A nuclear receptor 

Nur77. The NR4A nuclear receptor family is comprised of three proteins closely related in 

structure and function: Nur77, Nor-1, and Nurr1, though only Nur77 and Nor-1 are induced 

in stimulated thymocytes (Cheng et al. 1997). Nur77 is induced by TCR stimulation of 

thymocytes and DO11.10 T cell hybridoma cells in vitro (Liu et al. 1994; Woronicz et al. 1994) 

and is consistently among the list of genes upregulated during negative selection in vivo 

(Schmitz et al. 2003; Huang et al. 2004; Zucchelli et al. 2005; Baldwin and Hogquist 2007; 

Liston et al. 2007). Deletion of the transactivation domain of Nur77 creates a dominant-

negative mutant that interferes with the transcriptional activity of all NR4A family members 

(Cheng et al. 1997). Expression of dominant-negative Nur77 partially impairs clonal deletion 

in some TCR transgenic models but not others (Calnan et al. 1995; Zhou et al. 1996). Past 

studies with Nur77-/- mice reported normal negative selection in vivo, suggesting that Nor-1 
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provides redundant functions in thymocytes (Lee et al. 1995). Nevertheless, little is known 

about Nor-1 compared to Nur77. Recently, Nur77 deficiency alone has also been shown to 

impair negative selection (Fassett et al. 2012). The MEK5-ERK5 pathway has been reported 

to induce Nur77 expression in thymocytes and DO11.10 cells (Kasler et al. 2000; Sohn et al. 

2008). However, MEK5 and ERK5 have not been shown to be required for Nur77 induction 

in response to TCR stimulation. Indeed, ERK5 is not necessary for Nur77 induction upon 

activation of peripheral T cells (Ananieva et al. 2008). Consistent with dominant-negative 

Nur77 studies, expression of dominant-negative MEK5 inhibits clonal deletion in certain 

TCR transgenic models (Sohn et al. 2008). Dominant-negative ERK5 has been shown to 

inhibit apoptosis in DO11.10 cells in vitro but characterization of ERK5 in negative selection 

in vivo is presently limited. Because pharmacological inhibitors can act on both MEK1/2 

(upstream of ERK1/2) and MEK5 at high doses (Mody et al. 2001), it is possible that MEK5 

can act on additional targets other than ERK5. Taken together, these data support a role for 

Nur77 in some types of negative selection.  

 

Table 1. Regulation of survival by the Bcl-2 family during thymocyte development. 

The mechanism of Nur77-induced thymocyte death is controversial. Nur77 was initially 

thought to upregulate factors that mediate apoptosis since the transcriptional activity of 

Nur77 correlates with its ability to induce thymocyte death (Kuang et al. 1999). Furthermore, 

Nur77 has been shown to remain in the nucleus of stimulated thymocytes, while nuclear 

export of Nur77 in mature T cells is thought to protect them from apoptosis (Cunningham et 

al. 2006). However, the only target genes of Nur77 with known apoptotic function are those 
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involved in the extrinsic apoptosis pathway (Rajpal et al. 2003). Thus, the role of Nur77-

mediated transcription in negative selection has been questioned. Studies of Nur77 function 

in cancer cells have identified a mitochondrial, transcription-independent cell death 

mechanism whereby Nur77 converts Bcl-2 into a pro-apoptotic protein by exposing its Bcl-2 

homology 3 (BH3) domain (Lin et al. 2004). By utilizing a subcellular fractionation protocol 

not used in previous studies, Nur77 was reported to translocate to mitochondria and 

associate with Bcl-2 upon TCR stimulation of thymocytes (Thompson and Winoto 2008). 

While other groups also report mitochondrial translocation of Nur77 following stimulation 

(Stasik et al. 2007; Wang et al. 2009), whether Nur77 mediates thymocyte death through Bcl-

2 conversion is controversial. In stimulated DO11.10 cells, Bcl-2 and Nur77 do not interact 

and Bcl-2 expression protects against Nur77-mediated death (Wang et al. 2009). 

Furthermore, Bcl-xL, not Bcl-2, is the predominant survival factor expressed in DP 

thymocytes; transgenic overexpression of Bcl-2 was required to detect interaction with 

Nur77 (Ma et al. 1995; Thompson and Winoto 2008). Studies also differ on regulation of 

Nur77 nuclear export. In DO11.10 cells, phosphorylation of serine 354 by the ERK1/2-

ribosomal S6 kinase (RSK) pathway is necessary for nuclear export (Wang et al. 2009). This 

is contested by another study that found PKC but not ERK1/2 to be required for 

mitochondrial translocation (Thompson et al. 2010). Since ERK1/2 (Alberola-Ila et al. 1995; 

Alberola-Ila et al. 1996; Sugawara et al. 1998; Pages et al. 1999) and PKC (Anderson et al. 

1995; Sun et al. 2000) are not required for negative selection, the contribution of the 

transcription-independent mechanism of Nur77 to clonal deletion is also questionable. 

Mice that express transgenic Nur77 or transgenic Nor-1 have severely reduced thymic 

cellularity and an increased frequency of TUNEL+ thymocytes (Calnan et al. 1995; Cheng et 

al. 1997). Conversely, thymocytes from DN-Nur77 mice are more resistant to DNA 

fragmentation following anti-CD3ε stimulation (Zhou et al. 1996). Surprisingly, transgenic 

Nur77 expression does not appear to be sufficient to induce cytochrome c release (Rajpal et 

al. 2003). A caveat of using these transgenic mice to study negative selection is that Nur77 

transgene expression is driven by promoters that are active in DN thymocytes 

independently of TCR signaling. Thus, transgenic Nur77 may induce thymocyte death 

through transcription of extrinsic apoptosis genes, while physiological regulation of Nur77 

by TCR signaling may favor a transcription-independent mechanism. Studies using T cell 

hybridomas generally support activation of the intrinsic apoptosis pathway by Nur77. For 

example, nuclear export of Nur77 in DO11.10 cells leads to cytochrome c release, caspase-9 

cleavage, and poly(ADP-ribose) polymerase (PARP) cleavage (Wang et al. 2009). Though T 

cell hybridomas are more amenable to manipulation than thymocytes, it is important to 

keep in mind that the mechanism of Nur77-mediated death may differ between cell types. 

Despite induction of apoptosis, z-VAD treatment and Bcl-2 or Bcl-XL expression only 

partially rescues Nur77-induced cell death, suggesting contribution of a caspase-

independent mechanism. Interestingly, Nur77 has been shown to mediate caspase-

independent death in other cell types (Kim et al. 2003; Castro-Obregon et al. 2004; Lucattelli 

et al. 2006). Furthermore, it is unknown whether the DNA fragmentation induced by Nur77 

in thymocytes is caspase-dependent oligonucleosomal fragmentation or caspase-

independent large scale DNA fragmentation since the TUNEL assay does not discriminate 

between the two types (Ribeiro et al. 2006). 
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Abbreviation Full name Description

AIF Apoptosis-inducing factor Protein released from mitochondria that 

mediates cell death 

AMPK ADP-activated protein 

kinase 

Regulates cellular energy metabolism in 

response to ATP depletion 

Apaf-1 Apoptotic protease-

activating factor 1 

Activates caspase-9 when bound to 

cytochrome c and dATP 

Bcl-2 B cell lymphoma 2 Founding, anti-apoptotic member of the 

Bcl-2 family of proteins, initially described 

in B cell lymphomas. Bcl-xL and Bcl2A1 

are similarly named. 

Bad Bcl-2-associated death 

promoter 

Pro-apoptotic member of the Bcl-2 family 

Bak Bcl-2 homologous 

antagonist/killer 

Pro-apoptotic member of the Bcl-2 family 

that forms channels in the mitochondrial 

outer membrane 

Bax Bcl-2-associated X protein Pro-apoptotic member of the Bcl-2 family 

that forms channels in the mitochondrial 

outer membrane 

Bid Bcl-2 homology 3 

interacting-domain death 

agonist 

Pro-apoptotic member of the Bcl-2 family 

Bim Bcl-2-interacting mediator 

of cell death 

Pro-apoptotic member of the Bcl-2 family 

CXCR4 C-X-C motif receptor 4 Chemokine receptor  

DN Double negative CD4-CD8- thymocyte subset 

DP Double positive CD4+CD8+ thymocyte subset 

ERK Extracellular signal-

regulated kinase 

A subfamily of mitogen-activated protein 

kinases 

FADD Fas-associated death 

domain 

Adaptor protein involved in signaling 

through death receptors 

Grb2 Growth factor receptor-

bound protein 2 

Adaptor protein involved in T cell 

receptor signaling  

JNK c-Jun N-terminal kinase A subfamily of mitogen-activated protein 

kinases 

MAPK Mitogen activated protein 

kinase 

A class of kinases that respond to 

extracellular stimuli 

Mcl-1 Myeloid leukemia 

sequence 1 

Anti-apoptotic member of the Bcl-2 family 

MHC Major histocompatibility 

complex 

Protein that presents peptide antigen to T 

cell receptor 
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MINK Misshapen/NIKs-related 

kinase 

Kinase involved in T cell receptor 

signaling that promotes JNK activation 

Nck Non-catalytic region of 

tyrosine kinase 

Adaptor protein involved in T cell 

receptor signaling  

NOD Non-obese diabetic Mouse strain genetically predisposed to 

developing type I diabetes 

PI3K Phosphoinositide 3-kinase Phosphorylates phosphatidylinositol (4,5)-

biphosphate to generate 

phosphatidylinositol (3,4,5)-triphosphate, 

leading to Akt activation 

PKC Protein kinase C Kinase involved in T cell receptor 

signaling  

pMHC Peptide-MHC Peptide presented on an MHC molecule 

PTEN Phosphatase and tensin 

homolog  

Dephosphorylates phosphatidylinositol 

(3,4,5)-triphosphate to generate 

phosphatidylinositol (4,5)-biphosphate, 

negatively regulating Akt activation 

Puma p53-upregulated 

modulator of apoptosis 

Pro-apoptotic member of the Bcl-2 family 

Rag Recombination activating 

gene  

Enzyme that mediates genetic 

recombination of T cell receptor loci 

RasGRP1 Ras-guanyl releasing 

protein 1 

Activates Ras through the exchange of 

bound GDP for GTP  

RBP-J Recombination signal 

binding protein for 

immunoglobulin kappa J 

region 

Transcriptional regulator that activates 

transcription when bound to intracellular 

domain of Notch proteins 

RORγt Retinoic acid-related 

orphan receptor γt 

Transcription factor that induces Bcl-xL 

expression in thymocytes 

SP Single positive CD4+CD8- or CD4-CD8+ thymocyte subsets 

TCR T cell receptor Antigen receptor expressed by T cells 

TRAIL Tumour necrosis factor-

related apoptosis-inducing 

ligand 

Protein that induces apoptosis by binding 

to death receptors  

TUNEL Terminal 

deoxynucleotidyl 

transferase-mediated 

dUTP nick end labeling 

Method of detecting DNA fragmentation 

by labeling the terminal end of fragments 

Table 2. Abbreviations used multiple times throughout this chapter. 
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The molecular mechanisms of negative selection remain unclear despite intense 

investigation into the matter. Though Bim and Nur77 are implicated as key mediators of 

TCR-induced thymocyte death, many questions surround their role in physiological 

negative selection. Consideration of the model system and readout to be used will greatly 

assist future endeavors to clarify the molecular mechanisms of negative selection. 

4. Conclusion 

The highly regulated struggle between survival and death during thymocyte development 

underscores the need to generate functional yet self-tolerant T cells. At multiple checkpoints 

during development in the thymus, the balance must be tipped in favour of pro-death 

factors to allow elimination of dysfunctional and autoreactive cells. It is becoming 

increasingly apparent that programmed cell death is not restricted to apoptosis but also 

involves caspase-independent processes such as autophagy and necroptosis. While non-

apoptotic programmed cell death is better characterized in peripheral T cells (Jaattela and 

Tschopp 2003), many studies have provided evidence that caspase-independent death can 

occur at multiple stages of thymocyte development. Two proteins implicated in caspase-

independent death are apoptosis-inducing factor (AIF) and endonuclease G. Both have been 

shown to mediate cell death following translocation from mitochondria to the nucleus, 

where they execute caspase-independent DNA fragmentation (Jaattela and Tschopp 2003). It 

will be of great interest to determine if AIF and endonuclease G contribute to caspase-

independent thymocyte death, and if their translocation is induced by Nur77, which has 

been linked to mitochondrial localization and caspase-independent cell death. One thing is 

clear: mitochondria are a key gateway to cell death. The Bcl-2 family of proteins control 

mitochondrial integrity through regulating formation of Bax/Bak channels and opening of 

the mitochondrial permeability transition pore (Tsujimoto and Shimizu 2000). Therefore, 

they may be poised to control different mechanisms of programmed cell death. Though 

genetic manipulation of mice has accelerated our understanding of thymocyte survival and 

death, much remains to be characterized about the molecular mechanisms involved. These 

complex, interwoven, and tightly regulated mechanisms are necessary to balance the need 

for a competent and self-tolerant immune system. 
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