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1. Introduction 

A wide variety of optical fiber sensors are available and can be divided into three categories: 
the external or extrinsic ones (Beard P. C. et al., 1996) where the fiber is only used to drive 
the measured information to and from the transducer at a distant location, the intrinsic 
category (Boerkamp M. et al., 2007) where the optical properties are sensitive to an external 
stimulus (Grattan S. K. T. et al., 2009; Gu X. et al., 2006), and the hybrid category where the 
light is transferred over the optical fiber for conversion into electricity on a distant optical 
receiver (Yao S.-K. et al., 2003). 

From the previously mentioned categories, the intrinsic sensors, where FBGs are included, 
have been studied and applied intensively during the past 20 years (Lee B., 2003). The Bragg 
grating structure is the intrinsic element to the fiber responsible for the sensor behavior. The 
gratings can be inscribed by ultraviolet (UV) light beams, taking advantage of the optical 
fiber photosensitivity (doped with germanium) to this radiation. In addition to the standard 
advantages attributed to the optical fiber sensors, FBGs have an inherent self-referencing 
and multiplexing capability. Essentially, the FBG is a periodic variation of the refraction 
index along the fiber axis. As illustrated in the Figure 1, this structure works as a reject-band 
filter, reflecting back the spectral component, λB [nm], which satisfies the Bragg condition 
(given by equation (1)) and transmitting the remaining components. The Bragg wavelength 
is given by (Hill K. O. et al., 1997): 

 2B effn    (1) 

where Λ [nm] is the grating pitch and neff is the effective refraction index of the fiber core. 
The wavelength shift, ΔλB [nm], of a FBG sensor subject to a physical disturbance is given by 
(Wei C.-L. et al., 2010 ): 
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where ρe, Δε, α, ξ, and ΔT are the effective photoelastic constant, the axial strain, the thermal 
expansion, the thermal optic coefficient and the temperature shifts, respectively. The ratio in 
the first term of equation (2) expresses the strain effect on an optical fiber. It corresponds to a 
change in the grating spacing and the strain-optic induced change in the refractive index. The 
temperature sensing is mainly related with the second term of the expression. As the FBG is 
subjected to temperature variation, it dilates or contracts, modifying the grating pitch. 

 
Figure 1. Illustration of working principle of FBGs. 

One main advantage of this system is the measurements made on the wavelength instead of 
optical power. This enables a system that is not sensitive to external factors as fluctuations of 
the optical source. The stability is also extended to the bond between the polymer matrix 
and the optical fiber in which it is wrapped. Therefore, these features make the FBGs 
suitable sensing elements for doing physical measurements, where a kind of displacement is 
available. Examples of such applications found in the literature include the measurements of 
strain (Grattan S. K. T. et al., 2009; Ling H. Y. et al., 2006), pressure (Peng B. J. et al., 2005; 
Zhang W. et al., 2009), force (Rajan G. et al., 2010; Zhao Y. et al., 2005), tilt rotation by an angle 
(Peng B. J. et al., 2006; Xie F. et al., 2009), acceleration (Antunes P. et al., 2011; Fender A. et al., 
2008), temperature (Bao H. et al., 2010; Gu X. et al., 2006), humidity (Arregui F. J. et al., 2002; 
Yeo T. L. et al., 2005), magnetic fields (Orr P. et al., 2010), cardiorespiratory function (Silva A. F. 
et al., 2011a), hand posture analysis (Silva A. F. et al., 2011b), gait function analysis (Rocha R. P. 
et al., 2011) and integration on wearable garments (Carmo J. P. et al., 2012). 

This chapter focuses on biomedical applications of FBGs embedded into flexible carriers for 
enhancing the sensitivity and protection to the optical fiber, and to provide interference-free 
instrumentation. The same FBG system was used in all experiments presented in this 
chapter. In terms of construction, this FBG system is composed by a sensing and a 
monitoring module. Figure 2 shows photographs of the light source and the hardware used 
in the interrogation system for monitoring the received light which is then seen on a 
computer screen. The Fiber-Bragg Grating used in these experiments was produced by the 
FiberSensing company (FiberSensing, 2012). The grating is 8 mm long with a resonance 
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wavelength in the 1550 nm range, which corresponds to a refraction index modulation 
period of the core in the half-micrometer range. The interrogation monitor (I-MON 80D 
from Ibsen Photonics company (Ibsen, 2012) allows real-time spectrum monitoring of FBG 
sensors interrogation systems. Along with the interrogation monitor, software is supplied 
by the manufacturer that permits real-time visualization of the waveforms while the sensor 
is being actuated. This system has a resolution of 10 pm. 

 
(a) 

 
(b) 

Figure 2. Proposed system's non-sensing parts composed by (a) broadband light source (Denselight, 
2012) and in (b) the optical circulator (Oplink, 2012) and interrogation monitor hardware (Ibsen, 2012). 

A carrier material made of polychloroethanediyl (polyvinyl chloride, or simply PVC) was 
used in the FBG embedment for increasing their sensitivity to strains and at the same time to 
improve the adhesion to the surface under measurement (Silva A. F. et al., 2012). The PVC 
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material was selected as FBG carrier due to its excellent performance/cost ratio and easy 
handling during the manufacturing process. Moreover, the PVC presents many other 
advantages when compared with its direct competitors (e.g., either the polyurethane or the 
polyolefin) such as low production cost, making this material highly competitive. On the 
practical side, it offers high resistance to aging, high versatility and simplicity of maintenance 
(Silva A. F. et al., 2012). The cross-sections of the Figure 3 show the configuration of the layers 
within the carrier (few photographs was taken under different directions and illuminations for 
better illustrating the FBGs and layers that constitute the carrier). 

 
Figure 3. Few photographs showing views with the cross-section of the three layers that constitutes the 
carrier. The supported FBGs are also showed. 

2. Knee’s kinematic monitoring 

2.1. Introduction 

In this section of the chapter is presented a sensing electronic-free wearable solution for 
monitoring the knee-referenced gait process as a biomedical application example using Fiber 
Bragg Grating (FBGs) sensors. This sensing system is based on a single optical FBG, with a 
resonance wavelength of 1547.76 nm, which shifts to lower or higher wavelengths when 
subjected to strain variations, with a resolution of 10 pm. The measuring of the knee 
movements, flexion and extension with the corresponding joint acting as the rotation axis, is 
shown for a healthy individual. The optical fiber with the FBG is placed inside a polymeric foil 
(composed by three flexible layers), attached to an elastic knee band, which facilitates its 
placement in the knee (centered in the patella) while maintaining full sensing capabilities. 
Although the knee is used here as the example, the way the device is placed on the specific 
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body part to be measured enables the clear detection of the movements in respect to the 
corresponding joint. The proposed prototype was evaluated under different condition tests 
and also to assess its consistency and flexibility of use. The designed sensor demonstrates 
advantages in biomedical fields such as physical therapy and athletic assessment applications 
because of the system’s resolution and easiness of applying it onto the body part under 
investigation. Another advantage is the possibility to measure, record and evaluate specific 
mechanical parameters of the limbs’ motion. Patients with bone, muscular and joint related 
health conditions, as well as athletes, are within the most important end-user applications. 
Moreover, this system can be used simultaneously with, for example, inertial and magnetic 
sensors enabling the correlation between the measured wavelengths with angular degrees. 

During the past years, body kinematics monitoring in human beings is a growing area 
within the field of engineering applied to medicine. Universities, high-performance sport 
centers and health-care institutions have been developing ways to accurately measure and 
evaluate the way the human body moves for endless purposes. The main objectives for such 
attention in measuring and evaluating the human body kinematics are improvements of 
athletic performance (Anderson D. et al., 1994; Yamamoto Y., 2004; von Porat A. et al., 2007) 
in competitions and historic evaluation studies of patients to determine if the prescribed 
therapy is being efficient and evaluating the rehabilitation of patients (Yang X. J. et al., 2012; 
Vancampfort D. Et al., 2012; Cup E. H. et al., 2007; Kun L. et al., 2011) based on the 
information provided by measuring the limbs’ movements. Several systems for body 
kinematics monitoring have been realized using different approaches such as complex 
electronic systems including a 2.4 GHz radio-frequency (RF) transceiver (Afonso J. A. et al., 
2010), motion capture techniques (Ren L. et al., 2008; Parker T. M. et al., 2008) and advanced 
software algorithms that demand profound specific know-how and are also very complex 
(Moustakidis S.P. et al., 2010; Wu Y. et al., 2011). Other applications for limb posture 
monitoring include the assessment of certain neurologic and orthopedic diseases (Yavuzer 
G. et al., 2008; Mavrogiorgoua P. et al., 2001; Turcot K. et al., 2008). A gait monitoring system 
based on optical fiber, complemented with a motion capture system, has already been 
proposed but, when compared to the solution presented in this paper, it shows several 
differences including: use of a plastic optical fiber (POF), calibration procedure required and 
measurement based on the transmitted optical power when the POF is bent (Bilro L. et al., 
2011). Therefore, the importance of measuring (Godfrey A. et al., 2008) and characterizing 
the limbs’ kinematics is quintessential in diagnosing physical and mental disorders, 
originated by trauma, stroke or disease, and determining the appropriate treatment and 
therapy. The data can be saved (using the setup showed in the Figure 2) for further analysis 
and study which enables comparisons between results to be made along the time. Moreover, 
the proposed system was designed to obtain maneuverability making it compatible with 
free range body kinematics movements. 

2.2. Approach 

The gait cycle can be defined as the sum of the two components that compose a full step, e.g. 
the stance and the swing phases. The stance and swings phases comprehend the periods 
when the foot is touching the ground and advancing in the air permitting the progression of  
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(a) 

 
(b) 

 
(c) 

Figure 4. In (a), the elastic knee with the pressure buttons signaled with green ellipses. In (b), the 
sensing part attached to a standard elastic knee band and in (c), a close-up just of the PVC foil with the 
embedded FBG signaled with a red circle and the pressure buttons with green ellipses. 
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the body, respectively. The knee kinematics is represented by two stages: flexion and 
extension. The objective is to represent graphically, as a function of the measured 
wavelength, the full human gait period, centered on the knee joint using just one FBG and a 
single mode optical fiber. This section focus on the validation of the proposed concept by 
measuring the knee’s kinematics, the single fiber and single FBG sensor, placed in the center 
of the knee (patella), are enough to measure and evaluate the subject’s evolution. In order to 
make this possible, a high-sensitivity sensor is necessary to detect the full movement from 
one extreme (when the leg is completely straight) to the other (maximum knee deflection 
during gait) and all movements that happen in-between, i.e., stance and swing phases. The 
sensing part is based on a flexible structure that can be placed/removed on/from the knee 
very easily. This is done by using small pressure buttons as attaching elements. The Figure 4 
shows in more detail the small metallic pressure buttons that attach the different 
components of the sensing system, the elastic knee band already placed and the foil with the 
embedded FBG. This type of elastic knee band is regularly used in prevention/precaution 
situations in people with a temporary or permanent muscular injury enabling the use of the 
flexible structure by any person and in any junction in the body. The pressure buttons 
ensure that the sensing element is able to sense the flexion and extension of the knee as the 
subject moves around. Since optical fibers are immune to electromagnetic interference (EMI) 
and can be used safely in wet environments or even under water, the proposed solution 
increases the number of possible applications for this technology. 

2.3. Flexible sensing structure 

The accurate measurement of the knee joint movement is possible if the dynamic range of 
the sensor is increased. This can be accomplished by proper selection of the substrate 
material that can conform correctly to the actual movement. Therefore, a structure with 
enough area to cover the knee enables the transference of the movements to the embedded 
sensor. A wide rectangular configuration was chosen to cover both the flexion and the 
extension movements since it provides the required area of contact to be translated by the 
sensing area and allows the light to travel without any abrupt corners that would obstruct 
the communication with the monitoring stage. The main characteristics, and advantages, of 
this foil include flexibility, stretchability and the capability to sustain a good bonding 
between the optical fiber and the substrate. The host material is polyvinyl chloride (PVC) 
with custom formulation to assure the bonding and the stimulus transfer (Silva A. et al., 
2012). Moreover its size and shape are completely customizable during fabrication. 

2.4. Samples and experiments 

As previously stated, the knee kinematics is characterized mainly by the flexion and 
extension dynamics. In order to monitor these movements, the flexible polymeric foil 
prototype, having the sensor embedded in it, was applied to an elastic knee band placing 
the FBG correctly on the patella using pressure buttons as bonding elements. The Figure 5 
shows the raw data measured by the FBG with the volunteer walking and running on top of 
a commercially available treadmill validating the system’s consistency and reliability.  
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Figure 5. FBG’s measured raw unfiltered two full gait cycles for three different speeds. Key points of 
the swing and stance phases are represented by the minimum and maximum deflections of the FBG, 
and the time in-between them, respectively. 

The periodicity of the signals and the respective association with the gait cycle are easily 
recognized, i.e., all the different movements associated with a full step are clearly 
identifiable in the measured waveforms. The tests were done during 10 seconds but only 
two full gait cycles are considered for clear visualization of the acquired raw unfiltered data. 
In the Figure 5 it is seen the FBG’s raw data waveforms for three different walking speeds, 
as an example of the system’s capability, at 0.8 km.h-1 (0.22 m.s-1), 4 km.h-1 (1.11 m.s-1) and 8 
km.h-1 (2.22 m.s-1).  For the highest speed, the measured curve becomes sharper with few 
differences. The running movement is a quicker step which leads to the waveform 
sharpness and presents a slight different kinematics, mainly when the front foot reaches the 
ground and pulls the entire body forward. Nonetheless, the results enable the identification 
of the several events occurring during the walking and running movements. In order to 
compare the period of the measured data with the different stages of a full step, the Figure 5 
shows the two extreme values obtained by the system during a complete step on a 2.5 
seconds measurement at 4 km.h-1. The stage where the flexion of the leg in the knee joint, 
hence on the FBG as well, is the minimum possible during a full step is visible 
corresponding to a value of 1547.76 nm (resonance wavelength). The maximum deflection 
obtained during a step corresponds to a value of 1548.16 nm. Between the two extremes of 
the movement, there is a stage with low amplitude variations that follows the knee 
movement while the leg is in contact with the floor. It should be noted that between the 
minimum and maximum values, the leg is always touching the floor (stance phase) and the 
FBG sensor is basically completely stretched with just minor variations related to the elastic 
knee band used. This relatively constant period is marked in red in the chart seen in the 
Figure 5. The right leg starts its movement backwards touching the floor first with the ankle, 
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proceeding with the base of the foot until it begins the movement forward with the tip of the 
toes (the maximum deflection represented in the figure represents around 80% of the gait 
period (Trew M. et al., 2005). The FBG based sensor enables identification of all the different 
movements associated with a full step allowing comparison between different results 
acquired in different situations. The presented solution for the knee can also be applied to 
any other joint in the human body. 

2.5. Discussion 

The measurements seen in Figure 3 show a smooth waveform at low speeds. For speeds 
above 4 km/h the elasticity factor of the knee band and the slip occurring during the 
movement change slightly the position of the attached FBG in the knee-band. It can be 
concluded that the elastic band matches perfectly the skin for slow movements (roughly≤4 
km.h-1) guaranteeing that the FBG is always on the correct place. Due to the FBG’s high 
resolution, 10 pm, the slightest slip induces immediately a change in the output data. This 
means that a “calibration” procedure is needed to guarantee that the sensor is exactly on top 
of the patella. Also, the elastic band used is specified for a leg perimeter around the knee of 
35-38 cm. For the subjects with a corresponding leg girth, it reproduces correctly the knee 
movement during the gait. For the remaining ones, a slight displacement of the FBG occurs 
due to the vibration induced in the leg while taking steps forward, and therefore explaining 
the wavelength variations observed in the measurements. Typically, the knee position tends 
to be steady at low speeds as seen in the test performed at 0.8 km.h-1  in the Figure 5, but its 
variations become more significant as the speed increases. The stronger vibration caused by 
the running steps is the source for the somewhat abrupt peaks in the waveform at 8 km.h-1. 
Different sizes of the elastic knee band and the way it is attached to the foil with the 
embedded sensor or even embed it in the textile (Grillet A. et al., 2008) of an elastic knee 
band can also reduce these fast oscillations. Regarding the sensing electronic modules, the 
fast changes observed can also be explained. 

2.6. Conclusions 

A structure made of polyvinyl chloride (PVC) material, carrying an embedded Fiber Bragg 
Grating (FBG) sensor with a 10 pm resolution, was attached to an elastic knee band. A clear 
characterization of the movement of the knee joint as a function of the wavelength variation 
and the associated angle measured between the tibia and femur were obtained. All the 
different movements associated with a full step, the stance and swing phases and their 
characteristic progression, are clearly identifiable in the obtained waveforms allowing 
comparison between different results acquired in different situations. The presented 
prototype is easy to connect and does not require technical personnel to give support and 
expertise making this approach very interesting as a functioning system for body kinematics 
monitoring. Moreover, since optical fiber is immune to electromagnetic interference and can 
support wet environments, including under water, the developed system opens new 
applications for body kinematics monitoring when a direct and easy relation between 
wavelength variation and angles is achieved. The FBG really demands a careful placement, 
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and for walking speeds above 4 km.h-1, the knee band slips and does not reproduce as 
accurately the gait cycle. Another solution for this problem could be to embed the optical 
fiber with the sensor in the actual textile to be used on the knee. The integration of a single 
optical fiber in a polymeric foil made of PVC resulted in a structure with a very good 
sensitivity for transducing accurately the knee flexion and extension during the walking and 
running tests. It is easy to install, comfortable to wear and accurately measures the body 
kinematics. Since this approach uses a flexible structure it can be worn by any person and it 
can be applied to other articulations as the shoulder or the elbow. 

3. Hand posture monitoring 

Following the knee’s kinematics monitoring example, the FBGs can be used in more tricky 
examples as the hand posture monitoring. In reality, the FBG is a powerful tool for 
monitoring the body articulations due to its sensitivity, response and inherently properties 
as multiplexing. 

The hand is possibly on the most complex articulating system mainly due to the density of 
articulations per volume. Moreover, apart from the anatomic structure, the hand is a key 
element to perform the interface between the human and the world. One could imagine how 
difficult it would be to perform its daily duties without using any hand. 

However, the hand impairment is more common that one could image, mainly driven by 
stroke. Just in 2010, 73.7 billion dollars (Lloyd-Jones D. et al., 2010) were mainly spent on 
rehabilitation programs required to minimize muscle spasticity or pain and to recover from 
impairment. It is on this very stage that FBGs can be a great tool not only to enhance the 
rehabilitation programs but also to minimize their costs. 

3.1. Hands’ kinematics 

The hand movements can be simplified to flexion-extension (straightening of the fingers) 
and abduction-adduction (pulling fingers apart or towards each other). 

In today’s physical therapy sessions, the exercises focus mainly on finger passive range of 
motion, fist making, object pick-up, finger extension and grip strengthening. In reality, one 
is mainly performing flexion-extension movements, which is the most frequently performed 
movement on a daily basis. Furthermore, the abduction-adduction movement has a much 
lower amplitude compared to the flexion-extension ones. 

Based on these exercises, the therapist looks for data related to grip and pinch strength, joint 
range of motion, and functional abilities (Dipietro L. et al., 2003). Their assessment provides 
key-information for diagnosis, rehabilitation program and treatment progress analysis. 

The most common tactic to retrieve the required data is based on the measurement of the 
finger range of movements while the subject is grabbing different balls of different densities. 
For the range of movement is measured via a goniometer place on each finger joint which 
allied to the ball density enables the strength calculus. As one can imagine, such technique is 
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prone to errors, due to parallax effect, and inappropriate use of the equipment. Furthermore, 
such technique does not enable a simultaneous measurements of the entire had range of 
motion. As a result, the therapist takes a significant amount of time to perform all the 
required measurements that end up to have associated errors (Dipietro L. et al., 2003). 

Independently of the performed exercises, the subjectivity associated to the patient’s 
evaluation by the therapist leads to non-conclusive assessment of the patient’s motor 
capacity and consequently misdiagnosis. Furthermore, the existing solutions are not suited 
to dynamic measurements. This scenario opens the opportunity for the development of a 
wearable device capable of performing an online monitoring of the hand kinematics in a 
more efficient manner.   

3.2. State-of-the-art 

In a generic scenario, a set of sensors applied to a glove are able to retrieve data related to 
the hand posture, from which directly or indirectly, depending on the sensor system 
architecture, other measurands can be also retrieved, e.g. pinch strength, motion range, 
among others (Dipietro L. et al., 2003).  

It is already possible to find some wearable solutions capable of monitoring the hand 
posture and retrieving the required data, few based on electrically conductive elastomer 
(Lorussi F. et al., 2003; Lorussi F. et al., 2005; Scilingo E. P. et al., 2003; Tognetti A. et al., 
2006), accelerometers (Perng J. K. et al., n.d.), induction coils, (Fahn C.-S. et al., 2005) and 
hetero-core fiber optic sensor (Nishiyama M. et al., 2009), but none on FBGs. 

However, the available solutions are quite complex (Silva A. F. et al., 2011b), namely 
because of non-linear responses from the sensor, fragility issues or complex methods for 
signal processing. Still, from the existing technologies and solutions, the ones based on 
optical fiber sensors offer the biggest potential, when looking for performance and 
wearability (Lee B., 2003). 

A solution based on FBG sensors can accomplish a simpler device compared to the existent 
ones by working on the sensor system design. 

3.3. Monitoring approach 

The finger movements on the joint site induce strain, namely tensile on the upper-side and 
compressive on the bottom-side, considering the open hand the steady-state. By applying a 
FBG on the joint site and use it as a strain gauge, one can related the measured strain to the 
angle between joints. The Bragg pitch deviates in accordance to the finger’s flexion and 
extension movements. 

A human hand has 14 joints to be monitor. Therefore, the same number of FBGs is required 
to be positioned at each joint. The FBGs’ inherent multiplexing and self-referencing 
characteristics helps to reduce the system complexity as all the required sensors can be fitted 
in a single optical fiber (see the Figure 6).  
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Figure 6. FBG sensor positioning proposal. 

The nominal elongation of the finger joints, at the top or bottom face of the hand, is around 
14 %, which is higher that the optical fiber’s elongation range. Such limitation can be 
overcome in at least three methods by playing with the sensor positioning and/or optical 
fiber layout: 

 The sensor may be placed on the side face of the joint. It is known that at a midline of a 
structure, the elongation while bending is null. A similar situation occurs on the finger 
joints, as one can see it as a bending load applied to the finger. Closer the FBG is 
positioned to the midline, lower is the strain that it will undergo. However, there is a 
trade-off associated to the movement sensitivity. 

 The optical fiber can be coiled around the finger. This would create a spring effect on 
the optical fiber as the finger performs flexion and extension. 

 Place the fiber in a curvilinear layout over the upper-face plane of the hand. This 
simulates the previous coil effects but on a two dimensional plane. 

Based on the developed technique to integrate FBGs on flexible polymeric laminates, one 
could fabricate such laminate and use as a glove’s upper face. On the upper face, the sensors 
are positively stretched, avoiding the wrinkles effect that occurs on the glove’s lower face. 

The laminate fabrication process ensures the correct positioning of the sensors and, at the 
same time, it provides protection to the optical fiber, enabling reliability and improving the 
wear out. 
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(a) 

 
(b) 

 
(c) 

Figure 7. (a) Hand-shape polymeric foil with embedded FBGs; (b) Polymeric foil being sewed to a 
textile glove; (c) FBG-instrumented glove functional prototype. 
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3.4. Glove fabrication 

Although the bare optical fiber commonly used for FBG only has an external diameter of 250 
µm, which makes it perfect to be embedded in many structures, its fragility is still a major 
issue. The developed solution based on the integration of optical fiber and FBGs inside a 
thin and flexible polymeric substrate facilitates its use as a garment. It has been reported its 
flexibility, stretchability and capacity to keep the bond between the optical fiber and the 
substrate for signal transduction (Silva A. F. et al., 2009; Silva A. F. et al., 2010a). The degree 
of customization of the flexible substrate enables it to be manufactured with a hand shape. 
The approach was to replace the upper face of a glove by the polymeric substrate with the 
embedded FBGs in a single optical fiber (see the photographs in the Figure 7). 

3.5. Performance assessment 

The Figure 8 shows the raw signal obtained while the ring finger performs flexion and 
extension movements. The raw data shows the Bragg pitch deviation along the time the subject 
perform opening and closing hand movements. It is important to remark that the retrieved data 
is only related to the proximal interphalangeal crease of the ring finger. From the raw data, 
information can be processed namely, range of motion, strength and movement speed. 

As the sensors are positioned on the glove’s upper face, as the subject closes the hand, a 
positive strain occurs on the sensor site, resulting in a positive deviation of the Bragg pitch. 
As one opens the hand, the Bragg pitch decreases. For data processing, the null deviation 
occurs when the subject has his hand open, while the maximum deviation is set to the close 
hand state, driving the maximum strain. 

Indirectly, the strength may be determined, since there is a correlation between the 
measured strain and the required load of 128 pm.N-1 (Silva A. F. et al., 2010b). 

An important characteristic in this type of systems is the accuracy. For this system, such 
parameter is evaluated comparing the value retrieved from the system with the valued 
measured by a goniometer. A FBG-based system is able to present an almost true linear 
response - see the Figure 8(b) - with a maximum error of 2º in a 90º range. 

Although the system mainly monitors the flexion-extension movement, one could 
experience that the acquired data is not influenced by the abduction-adduction, as it is 
constrained by the glove’s structure itself. 

Another key factor while developing the sensing glove is related to the Bragg wavelength 
inscription for each one of the 14 FBGs sensors. The reflected spectral component of each 
FBG uses around 0.3 nm of the available spectrum and requires a dynamic range of 1 nm for 
the finger movement. By considering the C-band optical range (1530-1560 nm), each FBG 
should be inscribed in 1.84 nm steps in order to fit all sensors in a single fiber. 

3.6. Virtual hand movement 

The therapy session not only is tedious for the therapist as it also monotonous to the patient. 
In order to improve the motivation surrounding the therapeutic session, a virtual reality 
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environment may be set up based on the developed monitoring system. As the data that is 
retrieved from the sensors is made via personal computer, besides presenting the data 
exclusively for the therapist, the data can be used to create a tridimensional model of the 
hand that replicates what the patient is doing. 

Furthermore, virtual interaction can be added, enabling game-like and personalized paced 
exercises to promote finger strength while keeping the subject motivated. 

In the developed environment (see the Figure 9), it is possible to visualize the hand 
movement in real-time and provide at the same time information about the hand posture in 
terms of angles, strength and movement range. 

 
(a) 

 
(b) 

Figure 8. (a) Ring finger FBG sensor response for opening and closing hand movements; (b) System 
accuracy based on the comparison between real and measured angles. 

A virtual monitoring system can be developed in LabView® environement with two 
purposes: 
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 Stimulate the patient to the therapy sessions by establishing game-like exercises. The 
hand movements are replicated in real time on the virtual environment that can be 
rotated and span. 

 Provide information to the therapist regarding the angle at each joint, range of motion, 
movements speed and strength. It also provides a database of records that are helpful to 
evaluate the treatment evolution. 

 
Figure 9. An example of the real-time monitor of the hand posture. 

The monitoring hardware enables sampling frequencies from 32 Hz up to 2 kHz, ensuring a 
smooth visualization of the hand movement. The computational requirements are quite low 
(Intel Pentium IV processor with 512 MB of RAM), meaning that this systems does not 
require any special configuration, which is of great interest as it reduces the cost. 

4. Cardio-respiratory frequency monitoring 

The ability to monitor the vital signs of patients requiring medical assistance is a crucial 
issue (Fernandez R. et al., 2005), where the respiratory and the cardiac frequencies can be 
selected (among others) as presenting high interest (Evans D. et al., 2001). There are specific 
situations where the acquisition of these frequencies are important, e.g., with patients doing 
exams based on Magnetic Resonance Imaging (or MRI). However, this can be unsuitable, 
due to the potential occurrence of thermal or electrical burns associated with oximeter 
sensors and cables, temperature probes and MRI surface coils. These burns can be a result of 
inductions during MRI exams (Dempsey M. F. et al., 2001; Jones S. et al., 1996) or even 
during cardiothoracic surgeries (Wehrle G. et al., 2001). Therefore, the use of optical fibers 
can be an interesting solution for measuring the cardio-respiratory frequency. This 
statement is of particular importance because the optical fibers don’t contain conductive 
parts therefore, this makes the optical fibers insensitive to external electromagnetic fields. In 
this section it will be proved the exequibility to deploy sensing/monitoring solutions for 
both the pulmonary and the cardiac frequency. Contrary to similar solutions found in the 
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literature (Augousti A. T. et al., 2005; Davis C. et al., 1999), this section shows how it is 
possible to use a single optical fiber sensor and at the same time keeping it compatible with 
the healthcare environments. 

4.1. Approach 

There are few requirements that must be addressed: providing a simple sensing solution 
capable of measuring the cardio-pulmonary components with a single sensor and at the 
same time ensures their compatibility with different people. As illustrated in the Figure 10, 
the most suitable approach for complying with these requirements is providing a small and 
flexible structure able to readily be attached/unattached to/from the chest’s site. Such 
approach enables their use by any person. A fixation mechanism must also be provided in 
order to ensure that the sensing element is able to follow the elongation of the chest wall 
due to respiratory and cardiac components. This flexible structure is designated as carrier 
material and was used with the intention to increase the strain sensitivity of the FBG 
sensors, as well as, to improve the adhesion. 

 
Figure 10. An illustration and two photographs with two views (the front and the backside views are 
respectively the left and right photographs) of the proposed approach showing the carriers containing 
the FBGs sensors. 

4.2. Methodology 

The Figure 11 shows a functional prototype that was tested on a group of few healthy 
subjects with ages between twenty and thirty years old. During the take of the 
measurements, the subjects were standing up and maintaining the full body to rest. It must 
be noted that the sensing foil was placed over the chest because this is the position of the 
human body where the effects of the heart beats are more significant. 

The Figure 12 shows the block diagram of the complete FBG acquisition system. This 
filtering system was implemented for separating the respiratory and cardiac components 
from the acquired FBG signals. This system uses two band-pass filters, e.g., one is tuned in 
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the 0.1-0.4 Hz range for allowing the measurement of the respiratory frequency. The 
pass-band of the second filter rejects all spectral components, except those in the range 0.5-
1.3 Hz for retrieving the cardiac frequency. This second band-pass filter allows the 
discrimination of frequency around 1 Hz. This set with the frequencies of interest are 
obtained by cutting the respiratory components below 0.5 Hz and the high frequencies 
(mainly composed by high frequency noise) above 1.3 Hz. A software application was used 
to implement both pass-band filters in the digital domain using the bilinear technique 
(Losada R. A. et al., 2005) with a sampling frequency of 36 Hz. 

 
Figure 11. Photograph of a functional prototype (Silva A. F. et al., 2011a). 

 
Figure 12. The block diagram of the FBG acquisition system (Silva A. F. et al., 2011a). 

4.3. Experimental: Respiratory frequency 

In the first trials, the subjects breathing naturally for evaluating the raw signal without any 
processing stage. As illustrated in the Figure 13, the external interferences do not appear to 
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degrade the quality of the acquired signals. The small perturbations that were observed are 
mainly due to the transition between the inhale and the exhale stages. 

The ability to establish a relation between the wavelength deviation to other quantities (e.g., 
the displacement and force) is one advantage of these sensors and their linear response to 
strain. As the FBG spectral signature deviates 8 nm per 1% of elongation (Silva A. F. et al., 
2010b), it is possible to retrieve how much did the chest stretched. Consequently, the air 
volume that is inhaled and exhaled can also be estimated as well as the force that is being 
applied to breath. As the chest elongation can be retrieved from the Bragg pitch deviation, 
the volume of air inhaled or exhaled can be determined, as the Bragg sensors responds 
linear to strain (Silva A. F. et al., 2011c). A similar approach can be used to obtain the 
applied load to inhale, since there is also a linear relationship between the elongation and 
the necessary load (Silva A. F. et al., 2010a). The Figure 14 shows the corresponding 
frequency spectrums, which confirms the existence of main frequency peak between 0.1 and 
0.4 Hz. In this figure is also possible to observe the group of high-frequency components 
superimposed on the normal respiratory signal that may be originated from involuntary 
body movements. 

 
Figure 13. The sensor response to a normal breath (raw data) that was obtained for a group of twelve 
healthy subjects (#0 to #11). 

These respiratory results were compared with reference signals acquired with the help of a 
commercial device (e.g., the Zephyr BioHarness) for validation purposes. The raw signals 
acquired from the FBGs were subjected to a band-pass filter in the 0.1-0.4 Hz range. The 
Figure 15 shows the signals of a single subject that have been acquired with the help of both 
the commercial device and the FBG sensor. It is possible to confirm quasi-identical 
behaviors along the time for the signals variations. However, a few differences may be due 
to the signal processing stage of the commercial device to which there was no access to. 
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Nevertheless, the same respiratory frequency (e.g., about 24 inhales per minute) was 
determined in both signals, and therefore, validating the measurements with FBGs. 

 
(a) 

 
(b) 

Figure 14. The frequency spectrum of normal breath also obtained for a group of twelve healthy 
subjects (#0 to #11). There top plot shows a superposition of all frequency spectrums for achieving a 
better visualization of the breading peaks. The bottom plot allows a better visualization of all frequency 
spectrums in the whole frequency range.  

4.4. Experimental: Cardiac frequency 

It exist a different test where the subjects are asked to do a deep inhale and a halt on its 
breath (once again, the Figure 16 shows an example for a single subject). At this point, a 
higher frequency response was obtained when compared with the respiratory frequency. 
The observation of these results led to the assumption that this behavior was related to the 
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heart beat frequency. The signals showed in the Figure 17 correspond to the cardiac part and 
were retrieved with the help of the signal processing stage illustrated in the Figure 12. The 
respective frequency spectrums are illustrated in the Figure 18, where it is a clear the 
existence of a region with the location of the cardiac frequency peaks in the range 0.5-1.3 Hz. 

 
Figure 15. For the respiratory component: the FBG-based sensing structure response (plot on top) 
versus the Zephy BioHarness commercial response (plot on bottom).  

 
Figure 16. Sensor’s response to a normal breath followed by a breath halt. 
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Figure 17. The cardiac frequency signals obtained by filtering the acquired raw data from the twelve 
healthy subjects (#0 to #11). 

 
Figure 18. The frequency spectrum of the cardiac frequency for the twelve healthy subjects (#0 to #11). 

The validation of the cardiac components was also done by comparing the obtained results 
with the commercial device previously used. The comparison between both systems is 
showed in the Figure 19. This test was also done for a single test subject because their 
cardiac frequency peaks are all located in the expected frequency range, e.g., between 0.5 Hz 
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and 1.3 Hz. The FBG sensor and the flexible carrier in PVC present a similar behavior in 
comparison with the commercial system, e.g., 66 heartbeats per minute on both. Therefore, 
this approach makes possible to retrieve the information about the cardiac frequency. It 
must be noted that some of the lag between the both signals is a result from external factors. 
Such factor includes involuntary movements and irregularities in the breath. 

 
Figure 19. For the cardiac component retrieving: the FBG sensing structure raw data (top plot) and 
cardiac frequency (middle plot) and comparison with commercial system (bottom plot). 

5. Epilogue 

This chapter presented biomedical applications for acquisition systems based on FBGs. The 
absence of mechanical steps on sensor’s fabrication results in the possibility to fabricate high 
sensitivity sensors with high reproducibility of their characteristics (Hill K. O. et al., 1997). 
However, the most important features that made FBG-based systems a wide established 
technology were their electrically passive operation, electromagnetic interference immunity, 
compact size, self referencing capability, and more important, inherent multiplexing-ability, 
which enable a wide number of sensors in a single fiber as well as Bragg a single 
interrogation system (Wang Q. et al., 2007). In conclusion, the FBGs are not restricted for the 
applications presented in this chapter. 
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