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Abstract

The aim of the present work is to investigate injection of a low-viscosity fluid into a
pre-existing fracture within a linear elastic, permeable rock, as may occur in waterflooding
and supercritical CO2 injection. In conventional hydraulic fracturing, high viscosity and
cake building properties of injected fluid limit diffusion to a 1-D boundary layer incasing
the crack. In the case of injection of low viscosity fluid into a fracture, diffusion will take
place over wider range of scales, from 1-D to 2-D, thus, necessitating a new approach. In
addition, the dissipation of energy associated with fracturing of the rock dominates the
energy expended to flow a low viscosity fluid into the crack channel. As a result, the rock
fracture toughness is an important parameter in evaluating the propagation driven by a
low-viscosity fluid. We consider a pre-existing, un-propped, stationary Perkins, Kern and
Nordgren’s (PKN) fracture into which a low viscosity fluid is injected under a constant flow
rate. The fundamental solution to the auxiliary problem of a step pressure increase in a
fracture [1] is used to formulate and solve the convolution integral equation governing the
transient crack pressurization under the assumption of negligible viscous dissipation. The
propagation criterion for a PKN crack [2] is then used to evaluate the onset of propagation.
The obtained solution for transient pressurization of a stationary crack provides initial
conditions to the fracture propagation problem.

1. Introduction

The problem of injection of a low-viscosity fluid into a pre-existing fracture may arise in
several rock engineering areas, such as, injection of liquid waste (e.g., supercritical CO2) into
deep geological formations for storage [3,4,5], waterflooding process to increase recovery
from an oil reservoir [6], and control of possible leaks from pre-existing fractures around
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radioactive and nuclear wastes storage sites [7]. These fractures could be either of natural
origin or man-made (e.g., hydraulic fractures used to stimulate production from a now
depleted reservoir chosen for waste storage).

This paper attempts to study injection of a low viscosity fluid into a pre-existing un-propped
fracture of the Perkins and Kern and Nordgren (PKN) geometry within a linearly elastic,
permeable rock. In the classical PKN model, the fracture length is much larger than the
fracture height [8] with the latter confined to a permeable (reservoir) layer sandwiched
between two impermeable (cap) rock layers. This assumption allows to model a vertical
fracture cross-section as a pressurized Griffith (plane strain) crack.

Until recently, in part due to the lack of a reliable fracture breakdown criterion for a PKN
fracture, studies of the PKN fracture propagation have been bounded to the limiting regime
corresponding to the dominance of the viscous dissipation in the fluid flow in the crack
channel, i.e. when the rock toughness can be neglected [9, 10]. This particular dissipation
regime is favored when a high viscosity fracturing fluid and/or high injection rates are used,
or at late stages of fracture growth (long fractures). Moreover, for sufficiently large time,
the history of injection prior to the onset of the viscosity dominated regime may have minor
impacts on the modeling of the classical PKN fracture.

In unconventional hydraulic fracturing (injection of a low-viscosity fluid), on one hand, the
dissipation of energy to extend the fracture in the rock may not be negligible compared
to the viscous dissipation. On the other hand, the injection history prior to the onset of
propagation may not be neglected. With this in mind, we investigate fluid injection into a
stationary, pre-existing fracture up to the onset of the propagation, which is defined by the
recently introduced propagation criteria for a PKN fracture [2]. The corresponding transient
pressurization and leak-off history prior to the breakdown will provide initial conditions
for the problem of a propagating PKN fracture in the toughness dominated regime, to be
addressed elsewhere.

Contrary to conventional hydraulic fracture where high viscosity and cake-building
properties of injected fluid limit the leak-off to a 1-D boundary layer incasing the crack,
the low viscosity fluid allows for diffusion over a wider range of scales from 1-D to 2-D.
Although, several investigations looked at the propagation of a fracture driven by a low
viscosity fluid, when fluid diffusion is fully two-dimensional [11, 12, 13], the study of
injection into a stationary, pre-existing fracture has not yet received due attention. One of the
foci of this study is to identify solutions corresponding to the limiting cases of the small and
large injection time (1-D and fully-developed 2-D diffusion, respectively), and the solution in
the intermediate regime corresponding to the evolution between the two limiting cases.

This paper is organized as follows. In section 2 we define and formulate the problem. In
Section 3 we first revisit the problem of a step pressure increase in a crack [1], which we
then use to formulate and solve the problem of transient pressurization of a crack due to a
constant rate of fluid injection. The criterion of PKN propagation [2] is used to evaluate the
onset of the fracture propagation. We illustrate the results of this study by considering a case
study in which the transient pressurization and the breakdown of pre-existing fractures of
different lengths are evaluated for a water injection project.
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2. Mathematical formulation

2.1. Problem definition

We consider a pre-existing, un-propped (zero opening) crack of length 2ℓ and height h within

a linearly elastic, permeable rock characterized by the plane strain modulus E
′

and toughness
KIc (Figure 1). The crack is aligned perpendicular to the minimum in-situ stress σmin and is
loaded internally by fluid pressure p f , generated by the fluid injection at the crack center at
a constant rate Qo. The following assumptions are used in this work. 1) The crack height
is small compared to the length, such that the deformation field in any vertical cross-section
that is not immediately close to the crack edges (x = ±ℓ) is approximately plane-strain, and
the fluid pressure is equilibrated within a vertical crack cross-section (the PKN assumptions).
2) The minimum in-situ stress σmin and the initial reservoir pore pressure p0 are uniform
along the crack. 3) Initial reservoir pore pressure p0 is approximately equal to the minimum
in-situ stress σmin, allowing the crack to open immediately upon the start of the injection;
or alternatively, time t0 from the onset of injection that is required to pressurize the initially
closed crack (p0 < σmin) to the point of incipient opening (p f (t0) = σmin) is small compared
to the timescale of interest (e.g., the time to the onset of the fracture propagation). 4) Injected
fluid is of a low viscosity (and/or the rate of injection is slow), such that the viscous pressure
drop in the crack is negligible, or, in other words, the fluid pressure is uniform in the crack. 5)
The crack is confined between two impermeable layers, which, together with the assumption
of pressure equilibrium within a vertical crack cross-section, suggests a 2-D fluid diffusion
within the permeable rock layer. 6) The injected and reservoir fluid have similar rheological
properties.

2.2. Governing equations

2.2.1. Elasticity equation

The elasticity equation

w(x, z) =
4
(

p f (x)− σmin

)

E
′

√

h2

4
− z2, (1)

is used to relate the opening of a PKN fracture w to the net pressure p
f
− σmin, which is

assumed to be equilibrated in a vertical cross-section of the crack, ∂p f /∂z = 0, [14]. The
opening of PKN fracture at mid height (z = 0) is

w(x) =
2h

E
′

(

p f (x)− σmin

)

. (2)

For the particular case of uniformly pressurized fracture, the fracture volume can be
evaluated using the elasticity equation (1) as

Vcrack =
πh2ℓ

E
′

(

p f − σmin

)

. (3)
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Figure 1. A pre-existing PKN fracture with length 2ℓ and height h

2.2.2. Fluid continuity

Local fluid continuity

Following [15, 16], lubrication equation can be used to describe the flow of an incompressible
fluid in a crack (Figure 1) as follows

∂w

∂t
+ ḡ (x, t) =

1

12µ

∂

∂x

(

w3
∂p f

∂x

)

, ḡ (x, t) = 2g (x, t) (t > 0, |x| < ℓ) , (4)

where ḡ (x, t) is the fluid leak-off rate at the crack walls and µ is the viscosity of the injected
fluid [17].

Global fluid continuity

The global volume balance of the fluid injected into the fracture is given by:

Vinject = Vcrack + Vleak, (5)

in which Vinject indicates the cumulative volume of the fluid injected into the fracture and
Vleak is the cumulative leak-off volume.
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2.2.3. Propagation condition

The stress intensity factor KI =
√

GE′ associated with the energy release rate G at the
propagating PKN fracture edge is given by KI = (p f (ℓ) − σmin)

√
πh/4 [2]. The criterion

for the propagation of a PKN fracture in mobile equilibrium (KI = KIc) can therefore be
expressed as

p f (ℓ)− σmin =
2KIc√

πh
. (6)

2.2.4. Diffusivity equation and boundary integral representation

The Green’s function method can be used to solve an inhomogenous differential equation
subjected to boundary conditions. For the fluid flow through the porous media, the
diffusivity equation is given by [18]:

∂p

∂t
− α∇2 p =

γ̇

S
, (7)

where γ̇ is the fluid source density (the rate of unit volume of injected fluid in a
unit volume of material), S = φct and α = k/µφct are fluid storage and diffusivity
coefficients, respectively, expressed in terms of the formation permeability k, formation
bulk compressibility ct, and porosity φ. Due to the presence of the impermeable cap rock
boundaries at z = ±h/2 and pressure equilibrium in a vertical cross section , the diffusion
problem is two dimensional (2-D). The general 2-D boundary integral for the pressure
perturbation due to a distribution of instantaneous sources g(x, t) [L/T] along a crack y = 0,
|x| ≤ ℓ is given by [19]

p f (x, t)− p0 =

t
∫

0

ℓ
∫

−ℓ

g(x
′
, t

′
)

4πSα(t − t
′ )

exp

(

− (x − x
′
)2

4α(t − t
′ )

)

dx
′
dt

′
. (8)

3. Transient pressurization due to fluid injection

In this section, we study transient pressurization due to the injection of a fluid at a constant
rate of flow into a pre-existing and stationary fracture. In order to facilitate the solution
to this problem, we first revisit the fundamental solution to an auxiliary problem of a step
pressure increase in crack [1] and introduce a new result for the large time asymptote of
this problem. This fundamental solution is then used to formulate and solve a convolution
integral equation governing the solution for the transient pressurization.

3.1. Auxiliary problem: step pressure increase

Consider a fracture subjected to a step pressure increase of magnitude p∗,

Pressurization of a PKN Fracture in a Permeable Rock During Injection of a Low Viscosity Fluid
http://dx.doi.org/10.5772/56474

633



p(x, t)− p0 = p∗ H (t) , (|x| < ℓ) (9)

where H (t) is a Heaviside function. To facilitate solution of (8) with (9), we rewrite it in the
normalized form

1 =
1

2

τ
∫

0

1
∫

−1

ψ(ξ
′
, τ

′
) exp

(

− (ξ − ξ
′
)2

τ − τ
′

)

dξ
′
dτ

′

τ − τ
′ , (10)

where the nondimensional time (τ), coordinate (ξ), leak-off rate (ψ), and cumulative leak-off
volume (Φ) are defined as

τ =
t

t∗
, ξ =

x

ℓ
, ψ(ξ, τ) =

ℓg (x, t)

2παSp∗
, Φ(τ) =

2Vleak(t)

πℓ2hSp∗
, (11)

and t∗ = ℓ2/4α is diffusion timescale. After applying Laplace transform, (10) becomes:

1/s =

1
∫

−1

ψ(ξ
′
, s)K0

(

2
√

s|ξ − ξ
′ |
)

dξ
′
, (12)

where K0 is the modified Bessel function of the second kind, s is the Laplace transform
parameter and ψ(ξ, s) is the Laplace image of ψ(ξ, τ).

Before integral convolution equation (12) is treated numerically, it is useful to consider its
asymptotics for short and long injection times.

During the injection process when the characteristic lengthscale for fluid diffusion
√

αt is
small compared to the crack size ℓ, or in terms of the normalize time, τ ≪ 1, the fluid
diffusion pattern is approximately 1-D and the normalized leak-off rate is given by [1]:

ψ(τ) =
2

π3/2
√

τ
(τ ≪ 1). (13)

As the injection time increases, the 1-D fluid diffusion pattern is no longer valid and a 2-D
fluid diffusion pattern must be considered. We can show that for long enough injection times
the Laplace image of the fluid leak-off rate is given by:

ψ(ξ, s) =

(

−π

2

√

1 − ξ2s [ln (s/4) + 2γ]

)−1

(τ ≫ 1), (14)

where γ = 0.5772 is the Euler’s constant. The approximate image of (14) in actual time
domain is:
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Figure 2. Comparison of the numerical solution for the normalized leak-off rate in the auxiliary problem (step pressure increase

along the crack) with the small time (a) and large time (b) asymptotes.

ψ(ξ, τ) ≈

(

π

2

√

1 − ξ2
(

ln
(

ω2τ
)

− 2γ
)

)−1

(τ ≫ 1), (15)

where ω = 2.67.

Following [1] we solve (12) numerically for the Laplace image ψ (ξ, s) (−1 ≤ ξ ≤ 1 and
10−9 ≤ s ≤ 109) using N = 110 discretization nodes along the fracture, and then apply
inverse numerical Laplace transform (Stehfest algorithm [20] with six terms) to tabulate the
solution for the normalized leak-off rate ψ(ξ, τ). This solution is contrasted to the small and
large time asymptotes in Figure 2.

The normalized cumulative leak-off from a fracture subjected to a step pressure increase can
be obtained by integrating from fluid leak-off rate with respect to time and space and is given
by [1] :
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Φ(τ) =
∫ τ

0

∫ 1

−1
ψ
(

ξ
′

, τ
′

)

dξ
′

dτ
′

, (16)

3.2. Transient pressurization problem

Assuming a uniform pressure along the crack channel (the viscous pressure drop in the crack
is negligible), and “instantaneous” pressure build-up at the beginning of injection from the
initial pore pressure value p0 to the value p f = σmin corresponding to the incipient crack
opening, the cumulative leak-off volume Vleak can be obtained by the applying the Duhamel’s
theorem [1, 19]

Vleak = ν(t)(σmin − p0) +

t
∫

0+

ν(t − t′)
dp f

dt
′

dt
′

, (17)

where ν(t) = π
2 ℓ

2hSΦ(t/t∗) is the cumulative leak-off volume of the fracture subjected to a
unit step pressure increase, as discussed in the previous section.

Equation (5) can be expressed in the case of fluid injection at a constant rate Q0 as

Q0t =
πh2ℓ

E
′
(p f (t)− σmin) + ν(t)(σmin − p0) +

t
∫

0+

ν(t − t′)
dp f

dt
′

dt
′

, (18)

where expression (3) for Vcrack was used. Let us now define a characteristic pressure
perturbation p∗ = Q0/(πhSα), which is then used to scale the net pressure and the initial
effective stress

Π =
p f − σmin

p∗
, Σ0 =

σmin − p0

p∗
(19)

respectively. Using normalized parameters (11) and (19), we convert (18) to the
nondimensional form:

τ

4
= ηΠ (τ) +

1

2
Σ0Φ(τ) +

1

2

τ
∫

0+

Φ(τ − τ
′

)
dΠ

dτ
′
dτ

′

,

(

η =
h

ℓSE
′

)

(20)

where Φ(τ) is the normalized cumulative leak-off rate in the auxiliary problem, (16), and η
is a scaled crack height-to-length ratio. Applying the Laplace transform to (20) yields the
solution for the Laplace image of the normalized pressure in the crack:
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Figure 3. Evolution of the fluid net-pressure during a constant-rate injection into a stationary crack within an

abnormally-pressurized reservoir p0 ≈ σmin for various values of the crack height-to-length ratio h/ℓSE
′
.

Π(s) =
1

2s2

1 − 2Σ0s2
Φ(s)

2η + sΦ(s)
, (21)

in which Φ(s) is the Laplace image of Φ(τ). This solution is then numerically inverted to the
time domain using the Stehfest algorithm [20].

Evolution of the normalized pressure Π during the transient pressurization of a crack is
shown in Figure 3 for the case of an abnormally pressurized reservoir Σ0 ≈ 0 (p0 ≈ σmin)

and for various values of the scaled crack height-to-length ratio η = h/ℓSE
′
. (The 1-D

diffusion solution to the same problem is shown by dashed lines for comparison).

With the solution for the normalized pressure in hand, the onset of the fracture propagation
can be determined from the normalized form of (6):

Π = ΠB with ΠB =
2
√

πhSαKIc

Q0
, (22)

where ΠB is the normalized breakdown pressure.

Example. Water injection project

Consider an example of the fracture breakdown calculations for a water injection project
in a sandstone formation [21] characterized by porosity φ = 0.1, permeability k = 10.132
md, pre-existing fracture height h = 30.48 m (assumed to span the height of the sandstone
layer), minimum in-situ stress σmin = 28.8 MPa, bulk rock compressibility ct = 5.35 × 10−10

Pa-1, fluid viscosity µ = 1 cp, rock toughness KIc = 1 MPa m1/2, plane strain modulus

E
′
= 9.3 GPa. The reported injection rate was Q0 = 0.00052 m3/s. The calculated values

are S = 5.35 × 10−11 Pa-1 (storage parameter),α = 0.19 m2/s (diffusivity coefficient), p∗ =
Q0/(πhSα) = 0.537 MPa (characteristic pressure perturbation). The normalized breakdown
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net-pressure, (22), is ΠB = 0.38 (or, in dimensional terms, (p f − σmin)B = p∗ΠB = 0.204

MPa). We chose two arbitrary fracture half-lengths ℓ = 100 m (h/ℓSE
′

= 0.61) and ℓ = 1000

m (h/ℓSE
′

= 0.061) to estimate the onset of fracture propagation from Figure 3 to be at
τ = 2.5 (point A) and τ = 1.22 (point B), respectively. The corresponding dimensional
breakdown times are 9 hrs (ℓ = 100 m) and 19 days (ℓ = 1000 m).

4. Conclusions

Important applications of injection of a low viscosity fluid into a pre-existing fracture, such
as waterflooding and supercritical CO2 injection in geological sequestration, necessitate
comprehensive studies of mechanical and hydraulically properties of fractures from the
beginning of injection until the onset of fracture propagation. In this study, we considered
a low viscosity fluid injection into a pre-existing, un-propped crack of a PKN geometry. We
focus on the case of a critically-overpressured reservoir and initially closed (un-propped)
crack. The extension of this work to propped cracks and more general reservoir conditions
are reported elsewhere.

The analysis assumes negligible viscous dissipation during injection of a low viscosity fluid
at a sufficiently slow injection rate [22], and, as a result, approximately uniform pressure
distribution in the crack. Furthermore, the poroelastic effects are also neglected in this study.
To outline the validity of the latter assumption, we can show that the later stages of transient
pressurization (the so-called leak-off dominated regime when the injection time ≫ diffusion
timescale ℓ2/4α) with and without poroelasticity effects are identical. However, the generated
poroelastic backstress which tends to close the fracture may cause a delay in the initiation
of crack propagation when compared to the case where poroelastic effects are neglected. In
addition, for certain ranges of fracture and fluid properties and field operating condition the
backstress may become large enough to prevent the fracture from propagation indefinitely.

We evaluated the evolution of the fluid pressure inside the fracture during the transient
pressurization by considering 2-D fluid diffusion from the fracture into the surrounding
porous rock. As the fracture is pressurized, the condition for the onset of its propagation
(breakdown condition) is eventually reached. We quantified how the fracture breakdown
condition depends upon the rock and fluid properties, the in-situ stress and the fluid injection
rate. The history of the transient pressurization prior to breakdown can be used to provide
the initial conditions for the fracture propagation problem.
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