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1. Introduction

After exposure to genotoxic agents, cells activate DNA damage response pathways consist‐
ing of a signaling cascade (cell cycle checkpoints), and of DNA repair processes able to rec‐
ognize and remove a great number of DNA lesions [1].

DNA repair is characterized by an impressive high number of different proteins necessary
to perform specialized biochemical reactions, which are different according to the type of le‐
sion to be repaired [2]. Thus, the nucleotide excision repair (NER) mechanism will repair
bulky lesions, such as the cyclobutane pyrimidine dimers (CPDs) produced by UV-C irradi‐
ation, or other types of adducts produced by the interaction of chemicals with DNA. Base
excision repair (BER) is instead involved in the removal of bases damaged by alkylating, or
oxidative agents, while the repair of single and double strand breaks is performed through
the pathway of homologous recombination, or via the non homologous end-joning (NHEJ)
repair. In addition, cells repair errors introduced during DNA replication with the mecha‐
nism of mismatch repair (MMR).

Among the many factors involved in these defense processes against DNA damage,
p21CDKN1A protein – known also as p21(WAF1/CIP1/SDI1) – plays a key role in several fundamental
biological processes, such as cell cycle control, DNA replication/repair, gene transcription,
apoptosis, and cell motility [3-6]. This protein is a cyclin-dependent kinase (CDK) inhibitor
belonging to the Cip/Kip family; it was first described as a potent inhibitor of cell prolifera‐
tion and DNA replication, both in physiological conditions and after DNA damage [7,8].
Homologs are found in several organisms, including Xenopus (Xic1), Drosophila (Dacapo), as
well as C. Elegans (CKI-1). In mammals, p21 was previously known as CDK-interacting pro‐
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tein 1 (CIP1), wild type p53-activated fragment (WAF1), senescent cell-derived inhibitor 1
(SDI1), and melanoma differentiation-associated protein 6 (MDA-6); all these names have
been substituted by a new terminology including all CDK inhibitors, and p21 is now named
CDKN1A.

Due to the lack of a defined tertiary structure, p21 protein may adopt an extended confor‐
mation [9], which may explain its ability to interact with a number of proteins involved in
several important biological processes [3-6] (Figure 1).

Figure 1. Schematic structure of p21 protein showing the regions responsible for binding to Cyclins, CDK and PCNA.
Below the N- and C-terminal regions are indicated the processes in which they are involved, respectively.

2. p21 biology and functions

The main role of p21 is cell-cycle regulation, performed by inhibiting the activity of cyclin-
CDK complexes thanks to direct interaction through specific sequences (termed CDK and
Cy motifs) in the N-terminal domain of the protein [10-13]. Cell cycle progression may be
also regulated, independently of cyclins and CDKs, thanks to the strong affinity binding to
proliferating cell nuclear antigen (PCNA) [14-17], a protein playing a central role in DNA
replication and repair, as well as in other processes of DNA metabolism [18,19]. This associ‐
ation may interfere with PCNA-dependent enzyme activities involved in DNA synthesis
[18,19]. In contrast with the negative cell-cycle regulation, p21 may also serve as an assem‐
bly factor for cyclin D-CDK4/6 complexes, thus promoting cyclin D-dependent events, and
downstream activation of cyclin E-CDK2 [7,8].

CDKN1A gene inactivation studies performed with experimental models, and in particular
with knock-out mice, have confirmed the tumor suppressor functions of this protein [20,21].
The p21-null mice showed a normal development and did not show any spontaneous tumor
formation until 7-month of age [20]. However, embryonic fibroblasts derived from these ani‐
mals were deficient in G1 checkpoint arrest following DNA damage [20]. Subsequent stud‐
ies in this model were extended to a longer time frame and the observations reported that
p21-deficient mice developed spontaneous tumors at a median age of 16 months. The most

New Research Directions in DNA Repair250



common malignancies occurring in these animals were hemopoietic (B-cell lymphoma), en‐
dothelial, and epithelial tumors [21]. In addition, accelerated tumor formation and an in‐
creased capacity of tumor metastasis, respectively induced by urethane or by gamma
radiation, were found in p21-/- mice [22,23]. Accelerated tumorigenesis, and promotion of
lung metastasis was also found in correlation with cytoplasmic p21 in the mammary epiteli‐
um of mice expressing the MMTV/neu oncogene [24]. Tumor suppression functions of p21
were also confirmed by studies in the skin and in the colon of p21-deficient mice [25,26].
Furthermore, spontaneous tumor formation in p21-null mice was also found to occur in
combination with other knock-out genetic backgrounds, such as Muc2-/- (mice lacking mucin
2), and Apc1638+/- (mutant allele of the adenomatosis polyposis gene) mice [27,28].

In addition to enhanced tumor formation, further investigations showed that loss of p21
caused exhaustion of blood stem cells [29], and induced development of Systemic Lupus Er‐
ythematosus in female animals [30]. Thus, the results obtained from transgenic mice, clearly
indicated the tumor suppressor role of p21, although other studies have provided contrast‐
ing results [6,31]. As an example, p21-null mice crossed with knock-in PML-RAR mice,
showed an oncogenic role of p21 in maintaining self-renewal of leukemic stem cells [32]. The
dual behaviour of p21 most probably occurs because of its participation in several cellular
processes, and it is dependent on different factors [6,31].

An important aspect for determining the target of p21 activity is the intracellular localiza‐
tion. Early studies indicated that lack of p21 expression, or cytoplasmic localization of the
protein, promoted anchorage-independent growth, and drug resistance [5,6,31]. Human p21
protein is located predominantly in the nucleus; however, it is also present in the nucleolus
and in the cytoplasm. In the nucleus, in addition to inhibit CDK2 and binding to PCNA, p21
may also associate with transcriptional regulators [4]. In the nucleolus, p21 was found to co-
localize with cyclin E [33], and to accumulate after DNA damage, as a consequence of inhibi‐
tion of nuclear export [34]. Interestingly, growing body of evidence indicates that the
cytoplasmic localization of p21 is linked to drug resistance [6,31], thus suggesting that in this
compartment the protein may have a tumor-promoting function [35]. Cellular localization of
p21 is regulated mainly by post-translation modifications. In fact, nuclear translocation ap‐
pears to be counteracted by different kinases phosphorylating Thr145 and Ser146 residues
located near the NLS region of p21 [36-38]. These modifications are responsible for cytoplas‐
mic localization of p21, as well as for the loss of interaction with PCNA [39]. An important
role in p21 phosphorylation is played by AKT1/PKB, which also mediates stability of the
protein [36,37]. Another relevant modification of p21 (i.e ubiquitination) regulating its deg‐
radation, has been shown to occur predominantly in the nucleus, because p21 mutant in the
NLS region exhibited enhanced stability [40].

A summary of the most important functions performed by p21 protein is reported in the fol‐
lowing paragraphs.

Cell-cycle regulation

As the principal mediator of cell cycle arrest in response to DNA damage, p21 not only acts
by inactivating G1-phase cyclins/CDKs complexes, but also by inhibiting cell cycle progres‐
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sion through other mechanisms. These possibly include direct interaction with PCNA to in‐
hibit DNA replication, and indirect effects mediated by interaction with other cell cycle
regulators. In addition, p21 has been shown to play a role in the maintenance of G2-phase
arrest, through multiple mechanisms [3,5,6].

The demonstration that p21 is involved in cell response to DNA damage, mediated through
transcriptional activation by p53, was first obtained in mammalian cells [41,42]. The main
role of p21 in the G1 checkpoint resides in its ability to inhibit the activity of cyclin E, and
cyclin A/CDK2 complexes required for the G1/S phase transition, thereby contributing to G1-
phase arrest [43]. Accordingly, mouse embryonic fibroblasts (MEFs) obtained from p21-null
mice fail to arrest in G1 phase, in response to DNA damage [20,44]. Recently, it has been
demonstrated that CDK2-/- MEFs, as well as regenerating liver cells in CDK2-/- mice, are able
to arrest at the G1/S checkpoint in response to γ-irradiation. This response has been found to
depend on the ability of CDK1 to substitute for CDK2, and on p21, which may associate
with, and inhibit nuclear CDK1 at the G1/S transition [45].

p21 potentially participates in the G1/S checkpoint also by blocking directly DNA synthesis,
thanks to its ability to bind the central region (interdomain connecting loop) of PCNA
[46,47]. In vitro studies showed that the C-terminal domain of p21 is sufficient to displace
DNA replication enzymes from PCNA, thereby blocking processive DNA synthesis [47,48].
In vivo expression of C- vs N-terminal truncated forms of p21, as well as of CDK- or PCNA-
binding deficient p21 mutants, indicated that p21 interaction with PCNA could indeed ar‐
rest cell cycle [49–51]. In particular, interaction with PCNA localized at DNA replication
sites could prevent loading of DNA polymerase δ, but occurrence of this mechanism was
observed in a limited number of cells [52], and never proved with endogenous p21, whose
levels are significantly reduced in S phase [53,54]. Other mechanisms of p21-mediated G1/S
checkpoint activation after DNA damage have been reported. A direct interaction between
p21 and the p50 non-catalytic subunit of human DNA polymerase δ was found both in vitro
and in vivo [55]. It was concluded that p21 might be recruited to the DNA replication com‐
plex via direct interaction with p50, thereby facilitating the binding to PCNA. However, this
interpretation does not take into account p21 degradation in S phase [53,54]. Another sug‐
gested explanation for p50–p21 interaction was the inhibition of cyclinA/CDK2 complex as‐
sociated with DNA polymerase δ [55]. An additional mechanism of p21-mediated arrest at
the G1/S transition was described in HCT116 cells treated with adriamycin. ICBP90 (Inverted
CCAAT box binding protein) is a 90 kDa nuclear protein that binds to the promoter of topoi‐
somerase IIα gene, and that was suggested to be important in the G1/S transition, due to par‐
tial colocalization with PCNA [56]. Expression of p21 directly down-regulated the levels of
ICBP90 protein, both through the reduction of E2F-mediated transcription and the promo‐
tion of ubiquitin-dependent proteolytic degradation [56]. Thus, downregulation of ICBP90
by p21 might constitute another level of checkpoint control of S-phase entry.

It has been shown that p21 is also essential to sustain the G2 phase checkpoint after DNA
damage in human cells, as well as in preventing G2-arrested cells from undergoing addition‐
al S-phase [57-59].
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Cyclin B-CDK1 complex has a relatively low affinity for p21 when compared with the other
cyclin-CDK complexes [60], and a low amount of cyclin B/CDK1 was found to be associated
with p21 after activation of the G2 checkpoint [61]. However, p21 has been demonstrated to
contribute to CDK1 inactivation by inhibiting the CDK-activating kinase (CAK) and, conse‐
quently, the CDK1-activating Thr161 phosphorylation. Thus, p21/CAK pathway appears to
be essential in sustaining the G2 arrest in response to DNA damage [61]. Other likely targets
of p21 in G2 phase are cyclin A-CDK1/2 complexes [62,63]. As an additional mechanism of
G2 arrest, p21 was also suggested to mediate nuclear retention of cyclin B1-CDK1 complex in
response to genotoxic stress, thus preventing its activation by Cdc25 and CAK [64]. Recent‐
ly, it has been also proposed that p21 contributes to G2 arrest by mediating cyclin B degrada‐
tion in response to DNA damage [65]. Furthermore, a new p21-dependent mechanism to
maintain G2 arrest after DNA damage has been shown to involve Emi1 protein, an inhibitor
of the Anaphase Promoting Complex (APC) whose destruction controls progression
through mitosis to G1 phase [66]. It has been reported that p21 down-regulates Emi1 in cells
arrested in G2 by DNA damage, thereby contributing to APC activation and degradation of
key substrates, including cyclins A2 and B1. Thus, p21 controls positively this checkpoint
preventing G2-arrested cells from entering mitosis [66].

Another important function of p21 is related to the control of basal proliferation in specific
cell types. In particular, the stem cell self-renewal of keratinocytes [67], of the haematopoiet‐
ic system [29], and of the mouse forebrain and hyppocampus [68,69], have been shown to
depend on p21 protein. In fact, studies in CDKN1A knock-out mice showed that p21 re‐
stricts the self-renewal potential of stem cell population, and promotes their irreversible
commitment to differentiation [67]. In the absence of p21, an increase in stem cell prolifera‐
tion with a consequent exhaustion of the population was observed in different cell types
[67-70]. Interestingly, p21 is also able to maintain the self-renewal potential of leukemic stem
cells, and to protect them from DNA damage accumulation, thereby demonstrating an onco‐
genic activity of the protein [32].

Cell quiescence and senescence are other processes in which p21 plays a fundamental role
by keeping cells arrested in G0, or G0-like state, in order to prevent untimely DNA replica‐
tion [71,72]. Accordingly, loss of p21 has been shown to facilitate cell cycle entry from a qui‐
escence state, at the expense of replication stress [73]. Interestingly, lack of p21 expression
has been found to link cell cycle control with appendage regeneration in mice, since p21-/-

animals showed a phenotype similar to that of regenerating mouse strains [74].

p21 also plays a complex role in cell differentiation. In fact, its expression is induced in dif‐
ferentiating cells of the skin and of the intestinal epithelium, as well as in cultured epider‐
mal cells, while down-regulation has been observed at late stages of differentiation [75,76].
However, p21 appears to play a positive role in promoting differentiation of human pro‐
myelocytic leukaemia cells [77], mouse skeletal muscle and cartilage cells [78,79], and oligo‐
dendrocytes [80]. The whole body of evidence indicates that p21 plays either positive or
negative roles in differentiation, independently of cell cycle control, but depending on cell
type and specific stage of differentiation. This regulatory function may involve specific in‐
teractions of p21 with critical regulators of differentiation [3,6].
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In contrast with the CDK inhibitory function, a cell growth promoting effect has also been
demonstrated [81]. In fact, p21 may serve as an assembly factor for cyclin D/CDK4 complex,
thereby promoting its nuclear translocation, kinase activation, and cell proliferation [81].
This function has been suggested to potentially confer an oncogenic activity to p21 [6,31,35].

Transcriptional regulation

In addition to the role of CDK inhibitor, p21 functions as a transcriptional cofactor that may
regulate transcription, either positively or negatively [3-5,82]. This activity of p21 may occur
through three different mechanisms: i) by inhibition of cyclin/CDK complexes; ii) by direct
binding to several transcription factors, such as NF-kB, Myc, E2F, STAT3, and estrogen re‐
ceptors [2-5]; iii) by regulating the activity of transcriptional co-activators, such as p300/CBP
[5,82]. According to the first mechanism, CDK inhibition will prevent the phosphorylation
of Rb-family proteins, thereby inactivating E2F-dependent transcription [4,5]. In the second
mechanism, p21 acts as a co-factor that physically interacts with, and represses the activity
of transcription factors. As an example, interaction of p21 with STAT3 proteins inhibits their
transcriptional activity; overexpression of p21 was shown to reduce the transcriptional activ‐
ity of STAT3 proteins, without modifying their DNA binding activity [83]. In addition, it
was shown that p21 may specifically repress E2F-dependent transcription [84], not only
through inhibition of cyclin/CDK activity and substrate association, but also through a di‐
rect interaction with E2F factor [85], which could function as an anchor for p21 [3]. Another
important example is the binding of p21 to the N-terminus of c-Myc, resulting in the inter‐
ference of c-Myc-Max association, and in the suppression c-Myc-dependent transcription. At
the same time, the interaction between c-Myc and p21 may directly counteract p21-depend‐
ent inhibition of DNA synthesis, as c-Myc binds p21 in competition with PCNA [86]. A gen‐
eral correlation has been observed between p21 inhibitory effects and specific DNA
sequences in the promoter of some genes showing a cell cycle-dependent transcriptional
regulation by p21 [87]. For example, it has been shown that p21 functions as transcriptional
repressor of the myc and cdc25A genes upon DNA damage, being recruited to the promoter
of these genes. This was associated with inhibition of p300 recruitment, and down-regula‐
tion of histone H4 acetylation [88]. p21 may also bind to other transcription factors and
modulate positively their function. An example is given by the estrogen receptor (ERα)-de‐
pendent transcription which may be enhanced by p21 through CDK-dependent and inde‐
pendent mechanisms [89,90]. The third mechanism occurs by modulation of a repression
domain in p300, which occurs independently of the CDK inhibitor effect on the phosphory‐
lation of p300 [91,92]. This protein is an essential co-activator that stimulate gene expression
through its acetyl transferase activity, or through its ability to interact with components of
the transcriptional machinery [93]. It has been shown that p21 prevents the recruitment of
p300, causing histone hypoacetylation and transcriptional repression [94].

After UV-induced DNA damage, p21 has been shown to directly interact and to regulate the
histone acetyl transferase activity (HAT) activity of p300 [95], which provides accessibility of
NER machinery to DNA damage sites through histone acetylation [96]. For this activity, full-
length p21 protein is required and its binding to p300 is not dependent on interaction with
PCNA [95]. It is known that both p21 and PCNA may bind p300 at basal levels, and that
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PCNA inhibits the transcriptional activity of p300 [97]. After DNA damage, p21 may restore
p300-HAT activity by disrupting the inhibitory interaction with PCNA, thereby allowing
p300 to participate in NER [5].

Finally, p21 also up-regulates multiple genes that have been associated with senescence or
implicated in age-related diseases, in which a DNA damage response seems to occur [98].

Apoptosis

p21 is a major inhibitor of p53-dependent as well as p53-independent apoptosis [2-6,31]. In
fact, reduction in p21 expression was shown to lead to apoptosis in DNA-damaged human
cancer cells [99-101]. The cleavage and inactivation of p21 is mediated by caspase-3 in hu‐
man normal cells, and in cancer cell lines [99,100]. However, the inhibitory function is not
absolute since, under some circumstances (e.g. enforced overexpression), p21 may promote
the signaling apoptotic pathway that ultimately determines cell death [99,100]. Initial work
provided the evidence that in the absence of p21, DNA-damaged cells underwent cell cycle
arrest followed by typical apoptotic cell death [59,102]. These findings suggested that p21
could exert an anti-apoptotic function in response to DNA damage. The mechanism by
which p21 negatively regulates DNA damage-induced death machinery relies on its ability
to bind key regulatory proteins involved in the apoptotic process (e.g. protease precursors
and specific kinases) [100]. Indeed, p21 physically interacts, through its first N-terminal 33
aminoacids, with pro-caspase 3, i.e. the inactive precursor of the apoptotic executioner cas‐
pase 3 [103,104]; when bound to p21, the inactive pro-caspase cannot be converted into the
active protease and apoptosis is inhibited [104]. Caspase 2, which acts upstream caspase 3, is
also kept in a repressed status by p21 [105]. The strict relationship between p21 and caspases
is also supported by the observation that p21 itself is cleaved by caspases early during DNA
damage induced apoptosis; proteolysis involves the p21 NLS region, and impairs p21 trans‐
location into the nucleus [106-108].

The p53-independent expression of p21 in several human cell lines, induce not only cell cy‐
cle inhibition, but also suppression of apoptosis [99,100]. Two mechanisms of action are re‐
sponsible for this phenomenon: i) the interaction with pro-apoptotic regulatory proteins,
such as pro-caspase-3, caspase-8 or apoptosis signal-regulating kinase-1 (ASK-1), with their
consequent inhibition [103,104,109]. ii) the inhibition of apoptotic events, such as chromatin
condensation, cell shrinkage and loss of adhesion, by targeting caspase-dependent activa‐
tion of CDKs [110].

In the first case, p21 forms a complex with ASK-1 within the cytoplasm [111]. In the second
one, p21 seems to have an anti-apoptotic activity through the inhibition of CDK activity re‐
quired for activation of the caspase cascade downstream of mitochondria [112,113].

An important consequence of the inhibitory activity of apoptosis in a variety of systems is
that p21 could dramatically impair the effectiveness of chemotherapeutic agents acting by
damaging DNA. In this respect, an innovative strategy to kill cancer cells is based on the di‐
rect or indirect attenuation of p21 (obtained by different approaches) before chemotherapy
[114-116].
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In contrast with the anti-apoptotic role, p21 appears to possess pro-apoptotic functions un‐
der certain conditions, and in specific systems [5,6,31]. In fact, p21 overexpression in thymo‐
cytes induced hypersensitivity to p53-dependent cell death in response to X-rays and UV
radiation [117]. Overexpression of p21 was shown to enhance the apoptotic response in‐
duced by a variety of stimuli and in different cell systems [5,6,31]. Other studies reported
the pro-apoptotic role of p21 after targeted overexpression of the protein [118,119] or by
showing a decrease in apoptosis after p21 gene disruption [99,100]. A pro-apoptotic effect of
p21 was also observed in breast cancer cells treated with sodium butyrate, which is an in‐
ducer of p21 expression; interestingly, in these cells the pro-apoptotic effect required the in‐
teraction of p21 with PCNA [120]. However, the mechanism(s) by which p21 may promote
apoptosis are still to be clarified.

Finally, p21 may also play an important role in regulating another type of cell death, i.e. au‐
tophagy, a process in which cell organelles are enclosed and destroyed in vesicles [121]. This
mechanism appears to be regulated by p21 by maintaining autophagic proteins in an inac‐
tive state [122].

Cell motility

One of the most recently described functions of p21 is the regulation of actin-based cell mo‐
tility. Cytoplasmic p21 has been shown to influence cell motility and neuronal neurite out‐
growth by interfering with substrate adhesion through the inhibition of Rho kinase [123].
Degradation of cytoplasmic p21 favors a nonmotile cell behavior. In tumor cells, high levels
of p21 localized in the cytoplasm will favor Rho inhibition with consequent enhanced cell
movement [124]. This effect has been shown to contribute to tumor metastasis and invasion,
thus suggesting another mechanism by which p21 may play an oncogenic role [5,31].

DNA repair

The role of p21 in DNA repair, has been debated for a long period, since both negative or
absent effects, in contrast with studies supporting a positive role of p21, have been reported.
Recent lines of evidence obtained using different experimental models (with and without
overexpression systems), and particularly those performed with untransformed cells, sup‐
port a positive role for p21 in DNA repair. As already stated, the idea that p21 could play a
role in DNA repair was first suggested by the evidence showing that p21 interacts with
PCNA [10-17]. Since this binding results in competition and displacement of PCNA-interact‐
ing proteins thereby inhibiting DNA synthesis [14-16,125], it was proposed that p21 could
inhibit DNA repair, in a similar way as it affects DNA replication in vitro. However, a num‐
ber of direct interactions between p21 and specific factors participating in different process‐
es of DNA repair have indicated that p21 may mediate the DNA damage response also at
this level.

As described in the introductory section, there are different mechanisms of DNA repair
which are essentially able to remove specific lesions, thereby restoring the correct genetic in‐
formation. Given their peculiarity, the lines of evidence suggesting the participation of p21
in each process will be described individually.
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3. p21 and Nucleotide Excision Repair (NER)

The first biochemical studies showed that high p21 levels could inhibit the NER process in a
reconstituted in vitro system [126,127]. A similar effect was observed when purified p21 pro‐
tein was introduced into cells by electroporation [128]. Other studies performed on p21-null
murine fibroblasts, or on p21-/- HCT116 tumor cell line, reported that the NER process was
not significantly affected in the absence of the protein, thus implying that p21 was not in‐
volved in NER [129-132].

In contrast with these findings, a careful in vitro analysis showed that a reconstitued NER
reaction was insensitive to p21, given the non-processive DNA synthesis of NER [133,134].
In addition, early studies using ectopic expression of the protein showed that p21 did not
inhibit NER [135,136]. In particular, cells expressing a p21 mutant form unable to bind
PCNA were deficient in NER, but when the wild type protein was expressed, cells became
proficient for repair [135]. A positive role for p21 in NER, was also suggested by the co-lo‐
calization and interaction of p21 with PCNA in actively repairing normal fibroblasts
[137,138], and by increased DNA repair in cells treated with DNA-damaging drugs, after
p21 overexpression [139]. Accordingly, deletion of p21 gene in primary human fibroblasts
resulted in increased sensitivity to UV radiation, together with reduced DNA repair efficien‐
cy, namely in the global genome excision repair sub-pathway [140]. Overall, the discrepancy
of these results may be attributed to the different experimental conditions in biochemical as‐
says (e.g. low vs high concentrations of p21 in in vitro reactions), and to the different cell
model systems utilized (e.g. tumor vs normal cells, murine vs human cells), that could have
introduced biasing factors, such as reduced NER efficiency in tumor cells, and the reduced
global genome repair pathway in rodent cells [141].

Results obtained more recently with in vivo systems, i.e. by investigating the behavior of a
p21 protein tagged with Green Fluorescent Protein (GFP) in living cells challenged with
DNA damaging radiation, have shed more light on the role of p21 in DNA repair. In fact,
spatio-temporal analysis of p21-GFP autofluorescence by time-lapse microscopy showed
that p21 protein was rapidly recruited to nuclear regions where a local DNA damage was
induced with the micropore irradiation technique, or with a laser beam [142] Interestingly,
in experimental settings in which p21-GFP was co-expressed with PCNA tagged with Red
Fluorescent Protein (RFP-PCNA), the dynamics of the process of p21-GFP recruitment was
temporally similar to that of RFP-PCNA. In fact, the kinetics of p21-GFP accumulation at
DNA damage sites was very rapid, and closely followed (though with a little delay) that of
PCNA, suggesting that p21 was required at a later step after PCNA recruitment. Interesting‐
ly, the protein accumulation at DNA damage sites was found to be dependent on the previ‐
ous recruitment of PCNA since a p21 mutant protein unable to interact with PCNA
(p21PCNA-) did not accumulate at sites of DNA damage [142]. In addition, the involvement of
p21 was clearly related to the DNA repair process, since p21 recruitment did not occur in
NER-deficient XPA fibroblasts [142]. Another important feature of p21 is that both endoge‐
nous p21 in normal fibroblasts, as well as ectopic p21 protein expressed in HeLa cells, were
found to co-localize with NER factors interacting with PCNA (e.g. XPG, DNA polymerase δ,
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and CAF-1), and to be present in complexes containing these NER factors. Finally, condi‐
tions inducing an increase in endogenous p21 protein, or its ectopic expression, did not re‐
sult in inhibition of NER [142].

An independent confirmation that p21 does not affect NER, and that the protein co-localizes
with NER factors, like XPB, has been recently obtained with a similar approach of micropore
irradiation in U2OS cells expressing myc-tagged p21 protein [143]. Another study showed
that the p21 recruitment after UV damage in human melanoma SK-MEL-1 and SK-MEL-2
cell lines occurred via translocation to the nucleus and interaction with PCNA, which was
found to save p21 from degradation, and to enhance DNA repair [144].

A further step in clarifying what could be the role of p21 in DNA repair has been recently
obtained by investigating common interactors of p21 and PCNA. One such protein was
found to be p300, a transcriptional co-activator endowed with HAT activity [95]. This pro‐
tein was suggested to have a role in DNA repair synthesis [145], probably acting as a p53-
dependent regulator of chromatin accessibility to NER machinery [96]. p21 has been found
to regulate HAT activity required during DNA repair, by dissociating the p300-PCNA inter‐
action [95]. Since it was previously shown that PCNA inhibits both the HAT and transcrip‐
tional activity of p300 [97], it has been suggested that a function played by p21 in NER could
be the removal of the inhibitory effect of PCNA on HAT activity [95]. Since p300 has been
shown to acetylate a number of proteins involved in BER [5,95], our group has recently in‐
vestigated whether also NER proteins are acetylated. The results have shown that XPG, the
PCNA-interacting endonuclease involved in the incision step of NER, is indeed acetylated
by p300, and that p21 regulates the interaction between XPG and p300 in a PCNA-depend‐
ent manner [146]. Interestingly, in vitro experiments have also shown that PCNA is able to
inhibit the acetylation of XPG. Therefore, these results suggest that p21 may help in remov‐
ing the inhibitory effect of PCNA on the acetylation of XPG. This function may serve to facil‐
itate NER completion, since lack of XPG acetylation induced by knocking-down p300
expression and activity in human fibroblasts, has been found to result in the accumulation
of the endonuclease at DNA damage sites [146]. Concomitantly, knock-down of p300/CBP
expression, has been shown to significantly impair NER efficiency, suggesting that in addi‐
tion to acetylate histone for chromatin accessibility, p300/CBP may also acetylate NER fac‐
tors to facilitate DNA repair.

Taken together, these lines of evidence indicate that p21 accumulates at sites of DNA dam‐
age similarly to DNA repair factors [147], and suggest a regulatory role in NER based on
p21 ability to control, perhaps both spatially and temporally, the interaction of repair factors
with PCNA (Figure 2).

4. p21 and Base Excision Repair (BER)

Further pieces of evidence suggesting that p21 is involved in other DNA repair pathways by
regulating PCNA interacting proteins, were obtained by investigating the effect of p21 in the
BER process. In vitro experiments showed that p21 inhibited PCNA-directed stimulation of
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DNA polymerase δ long-patch BER, but not in the presence of AP endonuclease 1, indicat‐
ing a regulatory role of p21 in BER [148]. The requirement of p21 in BER is further support‐
ed by several findings: first, a direct physical association between p21 and poly(ADP-ribose)
polymerase 1 (PARP-1), another important player in BER, was described. In particular, p21
was shown to compete with PARP-1 for binding to PCNA in vitro, and an association be‐
tween p21 and PARP-1 was also found in normal fibroblasts treated with alkylating agents
[149]. In addition, both PCNA and p21 were found to inhibit the ADP-ribosylating activity
of PARP-1 [149]. We recently observed that p21-null human fibroblasts were more sensitive
to DNA damage, and deficient in DNA repair induced by alkylating agents [150]. These re‐
sults prompted us to investigate whether p21 might regulate the interaction of BER factors
with PARP-1. The recruitment of PARP-1 and PCNA to damaged DNA was found to occur
to a greater extent in p21-/- fibroblasts than in p21+/+ parental cells. The PARP-1 accumulation
in p21-/- cells was also accompanied by a higher activity of PARP-1, concomitantly with a
persistent interaction of PARP-1 with BER factors, such as XRCC1 and DNA polymerase β
[150]. Since an excess of PARP-1 antagonizes the activity of DNA polymerase β, these results
suggest that prolonged association of PARP-1 with BER factors reduced the DNA repair effi‐
ciency observed in p21-/- fibroblasts [150]. These results indicate that p21 regulates the inter‐
action between PARP-1 and BER factors, to promote efficient DNA repair.

Figure 2. Schematic representation of interplay between PCNA, p21 and PCNA-interacting proteins, during NER. In
this example, XPG endonuclease is shown. From left to right, are depicted the steps of the binding of PCNA to XPG,
followed by the arrival of p21, which then displaces XPG from PCNA, to leave space for binding of the next partner, i.e.
DNA polymerase δ.
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5. p21 and Double-Strand Breaks Repair (DSBR)

Most of the evidence that p21 is rapidly accumulated at sites of DNA damage, have been
obtained with UV-C irradiation, a typical means that primarily activates the NER pathway.
However, p21 has been shown to behave in a similar way also in cells which have sustained
other types of DNA lesions that are removed through different DNA repair pathways. Inter‐
estingly, the irradiation of normal human fibroblasts with heavy-ions inducing single (SSB)
and double DNA strand breaks (DSB), stimulated the recruitment of p21 to sites of energy
deposition [151]. Co-localization of p21 with proteins involved in double-strand break repair
(i.e. Mre11, Rad50 and PCNA) was observed in these cells [151], thus lending further sup‐
port to the accumulation of p21 at sites of DNA damage. This process has been shown to
occur independently of p53 and core NHEJ factors (such as Ku70, Ku80, and DNA PKcs)
[152]. In addition, after exposure to X-rays, recruitment of p21 was found to occur at foci
spatially distinct from those containing histone γ-H2AX and 53BP1, suggesting no relation
with DSB repair [153]. This result was explained by the production of differenty types of
DNA lesions, according to the energy source employed. However, p21 recruitment occurred
depending on its ability to bind PCNA [153]. Since results have shown that PCNA is re‐
quired for initiation of recombination-associated DNA synthesis [154], it is thus likely that
the role of p21 is related to this step of DSB repair.

6. p21 and Translesion DNA Synthesis (TLS)

The translesion DNA synthesis (TLS) is a process taking place at arrested replication forks in
a PCNA-dependent manner, and that allows the bypass of the lesion by a mechanism of
DNA polymerase switch. In this process, which actually it is not a repair reaction, the high
fidelity replicative DNA polymerase is replaced by a low-fidelity enzyme able to synthetize
DNA past a lesion [155,156]. Independent researches investigating the mechanisms control‐
ling this reaction obtained results indicating the participation of p21 also in this process. In
particular, it was suggested that p21 was required to limit the level of mutations arising
from the error-prone lesion bypass; interestingly, the interaction with PCNA was shown to
be important for the regulatory role of p21 in TLS [157]. This function of p21 has been sug‐
gested to control the loading of DNA polymerase η on PCNA, thereby contributing to limit
TLS activity and the associated mutagenesis effect [143,158]. In addition, p21 was shown to
modulate the level of PCNA ubiquitination occurring during TLS. Impaired PCNA ubiquiti‐
nation was observed when p21 was knocked-down by RNA interference [157], but also
when a nondegradable form of p21 was expressed [159]. These apparently opposite results
may be explained by the different experimental approach and model system, yet they indi‐
cate that p21 protein must be finely regulated in order to fulfill its functions in the DNA
damage response.
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7. Proteasomal degradation of p21 protein

The most important post-translational modification of p21, i.e. ubiquitination, induces its
proteasomal degradation [160]. However, both ubiquitin-dependent and -independent
mechanisms have been reported [53,161,162]. The ubiquitin-dependent mechanisms have
been described to occur via different E3 ubiquitin ligases, namely SCFSkp2, APC/CCdc20 and
CRLCdt2, both in basal conditions (e.g. in S phase) [53,163,164], and after DNA damage in‐
duced by UV or ionizing radiation [165-167]. An ubiquitin-independent degradation of p21
has been shown to be mediated by direct association with the C8α-subunit of the protea‐
some complex [168], or with MDM2, yet independently of its E3 ligase activity [169,170].
Degradation via the C8α-subunit was protected by the interaction with PCNA [168,171]. In
contrast, CRL4Cdt2-mediated (ubiquitin-dependent) degradation of p21 required the interac‐
tion with PCNA [165,166]. The relative role of these different mechanisms is not fully under‐
stood, especially in S phase [172]. To complicate these findings, p21 degradation may be
dependent on the different cell model systems investigated (p21 degradation was more pro‐
nounced in transformed cell lines) [167], as well as on the overexpression system that may
result in reduced degradation [167,171,173].

It was suggested that p21 destruction was required for efficient DNA repair, implying an
adverse effect, in particular on the NER process [174]. However, as previously discussed,
other studies have shown that p21 does not inhibit NER [142,143,173], and that p21 is re‐
quired for efficient NER in normal untransformed cells [95,140]. More recently, it has been
shown that degradation of p21 after DNA damage is triggered by the extent of DNA dam‐
age rather than the type of lesion, and is not required for DNA repair, in normal human fi‐
broblasts [173]. In fact, it has been shown that by inhibiting p21 degradation with caffeine
(obtained through inhibition of ATM activity [174]), the NER efficiency was not significantly
reduced [174]. In agreement with these findings, a recent report showed that inhibition of
p21 degradation by deletion of CUL4A (a component of the CRL4 ubiquitin ligase complex
with DDB1 and DDB2), resulted in NER stimulation [175]. These lines of evidence, while in‐
dicating that p21 degradation occurs after DNA damage, still do not clarify the actual role of
the process in the context of DNA repair. In fact, p21 degradation appears to be a phenom‐
enon independent of DNA repair, since it occurs also in NER-deficient fibroblasts [176].

8. p21 degradation, DDB2 and DNA repair

Although there is no doubt that p21 is degraded after DNA damage, several aspects of this
process suggest that it is not a pre-requisite for DNA repair, but it may be related to a more
general response to DNA damage. A particular consideration to be made is that another im‐
portant protein involved in NER, i.e. the UV-induced DNA damage binding protein 2
(DDB2) has been indicated as an important mediator of the cell fate following DNA damage
[177]. DDB2 protein is mutated in Xeroderma pigmentosum group E patients, and cells de‐
rived from these individuals show a partial deficiency in NER [178]. DDB2 protein exhibits a
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high affinity for damaged DNA and mediates binding of the CUL4A-DDB1 complex to tar‐
get histone H2A ubiquitination in chromatin [179]. In addition, DDB2-DDB1-CUL4A com‐
plex ubiquitinates p21 for proteasomal degradation [165,166]. Deletion of DDB2 in mice
(DDB2-/- cells), similarly to that of CUL4A, results in accumulation of p21 protein; however,
it was also suggested that NER was restored when deleting concomitantly CDKN1A gene
(DDB2-/- p21-/-) [180]. This result was again taken as the indication that p21 must be degraded
for optimal DNA repair. However, it must be noted that absence of p21 resulted in an in‐
creased cell entry into S-phase [175], thus confounding the type of DNA synthesis (i.e. repli‐
cative vs repair) observed [180]. It is also worth noting that in most studies investigating p21
degradation, cells were exposed to irradiation conditions inducing extensive DNA damage
[165,166,170,174]. In contrast, cell exposure to sub-lethal DNA damaging conditions, does
not lead to evident p21 degradation [142,173,181]. Since p21 is also involved in the regula‐
tion of the apoptotic process, it appears evident that p21 accumulation may inhibit apopto‐
sis. Thus, p21 degradation after extensive DNA damage may be more considered a pro-
apoptotic response rather than a pre-requisite for DNA repair [5]. In fact, DDB2-deficient
cells have been shown to be apoptosis-resistant [177], and to be significantly impaired in un‐
dergoing premature senescence [182]. Accordingly, p21 degradation, as stimulated after
DNA damage by E3 ligases associated with MKRN1 or DDB2, has been shown to facilitate
the apoptotic cell death pathway, as opposed to the cell cycle arrest and senescence
[176,183,184]. Overall, these lines of evidence seem to suggest that p21 degradation is indeed
induced to avoid inhibition of the apototic process when cells have accumulated an irrepair‐
able extent of DNA damage. In contrast, when the amount of DNA lesions are low enough
to be worth attempting to repair them, p21 is not degraded and may help in DNA repair [5].

9. Future directions

The involvement of p21 in DNA repair processes is linked to its ability to bind PCNA which
is a central hub for the majority of the factors participating in these processes. Due to its pe‐
culiar ability to displace PCNA-interacting proteins, it is likely that p21 may play a regulato‐
ry role in orchestrating the PCNA interactions. A clear example of this function is the p21
regulation of the interaction between p300 and PCNA, which has been shown to inhibit the
acetyl transferase activity. The influence of p21 is useful for histone acetylation, and for
chromatin remodeling function of p300 in DNA repair [95,185]. However, since also DNA
repair factors are acetylated by p300/CBP [5,186], the role of p21 in this context could be to
remove the inhibition exerted by PCNA. This function is important for DNA repair regula‐
tion, and the inability to perform this job is likely to impair DNA repair. In fact, in p21-null
human fibroblasts the NER factor XPG (the endonuclease involved in lesion incision) accu‐
mulates at the sites of DNA damage, in a manner similar to that observed after knock-down
of p300/CBP activity [146]. These results support a regulatory role by which p21 may influ‐
ence XPG acetylation and consequently its retention on chromatin. Studies are under way to
establish the link between XPG acetylation and NER efficiency; however, it is clear that in
the absence of p21, as well as after silencing of p300/CBP, DNA repair is inefficient [140,146].
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If p21 plays a regulatory role in DNA repair, how this function may be related/coupled to
p21 degradation? One possibility is that p21 could be degraded after execution of its func‐
tion, in order to avoid the persistence of the PCNA/p21 complex onto DNA. Prolonging the
DNA residence time of this complex may be detrimental to the genome, since additional un‐
wanted reactions might occur under these circumstances. This hypothesis is supported by
findings showing that p21 has been found to co-localize with, and participate in protein
complexes containing factors such as XPG, DNA polymerase δ and CAF-1 [142], all of which
are known to interact with PCNA. Therefore, coupling DNA repair with protein degrada‐
tion could fulfil this function. This speculation needs a formal proof, since some DNA repair
factors are ubiquitinated, while others are not. Thus, this hypothesis requires appropriated
future experimentation on the effects of p21 ubiquitination on DNA repair synthesis.
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