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1. Introduction

1.1. Fundamental models of cellular automata and phase space

1.1.1. White and Black Box Models

Input, output and functions are fundamental elements of the wider applications of dynamic
systems [3, 5, 21] such applications include: mathematics, probability, physics, statistics,
classical logic, and cellular automata.

For a pair of N bit vectors X, Y ∈ BN
2 with states, for a given 0-1 function f , the pair of 0-1

vectors are linked by an equation where the function may be expressed by Y = f (X) thus:

Input X →
- White Box -

Given function f
→ Output Y. (1)

This is called a white box model [3, 15, 28]. Using the white box model, a pair (X, Y) can be
explicitly calculated by a function f .

If there is no explicit expression for a unknown function U, a pair of vectors (X, Y) could
be collected for their correspondences on the pair of input-output relationships. Equation
Y = U(X) is still satisfied. This is called a black box model. i.e. A pair of (X, Y) can be
measured by a unknown function U, or expressed as
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Input X →
- Black Box -

Unknow function U
→ Output Y. (2)

In science and engineering [13, 28, 29], a black box is a device, system, or object which
can be viewed solely in terms of its input, output and transfer characteristics without any
knowledge of its internal works.

From a cellular automata viewpoint, the black box approach is useful in describing a situation
where both input and output are in the form of two bit vectors for an unknown function of
a digital system.

1.1.2. Characteristic Point and Phase Space

In mathematics and physics [3, 14, 18, 20, 21, 29], the concept of a phase space as introduced
by W. Gibbs in 1901 is a space in which all possible states of a system are represented. Here,
each possible state of the system corresponds to one unique point in the phase space. For
cellular automata, the phase space usually consists of all possible values of pairs of input
and output vectors in multiple dimensions.

For either a known function f or for an unknown function U, when the states of X, Y reside in
the same finite region, it is entirely feasible in principle to undertake an exhaustive procedure
to list all pairs of {(X, Y)}. For a given N bit vector X, the vector generates a point with a
unique spatial position to indicate the characteristics of the function and by listing all such
possible points, a phase space for the function is established.

1.2. Historical review on phase spaces of statistical mechanics

Top-down and bottom-up are two distinct strategies of intelligent processing and knowledge
ordering used in humanistic and scientific theories [4, 13, 15, 25, 28]. In practice, they can be
seen as alternative styles of thinking and problem solving. Top-down may be taken to mean
an approach based on an analysis or decomposition to identify key components within a
global target that has been identified for study and from which there may be constructed
a hierarchy of local features. Bottom-up may be taken to describe a process of synthesis via
integration working from local features towards a global target.

1.2.1. Bottom-up Approaches

Isaac Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646-1716) gave calculus to
the world of mathematics during the decade 1670-1680. This established a systematic
methodology for the efficient analysis of local variables in order to reveal global features.

Joseph-Louis Lagrange (1736-1813) took the conservation of energy as the foundation for his
system of mechanics where he combined the principle of virtual velocities with the principle
of least action. Along these lines, W. R. Hamilton (1805-65) established his approach to
dynamics in 1834-1835 with the first description of functions on phase space with pairs
of conjugate parameters, together with position and momentum. J. Liouville (1809-82)
proposed a theorem on the conservation of volume in phase space in 1838. C. G. Jacobi
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(1804-51) recognized that Liouville’s works could be used to describe mechanical systems
and so placed Liouville’s mathematical theorem into a mechanical context. Pücker working
in Germany and Cayley and Sylvester in the UK, extended projective geometry beyond the
ordinary three dimensions in the 1840s and Grassmann developed an n dimensional vector
space in 1844.

Riemannn’s work in 1868 developed the geometric properties of multi-dimensional
manifolds. This was followed by further developments in the 1870s by E. Betti, F. Klein,
and C. Jordan then more recently by [23, 24, 31, 33].

As it was Lagrange who took the first steps, a bottom-up approach is now often described as
a Lagrange expression. Hamiltonian dynamics is a typical representative under this expression
as it is founded on a pair of conjugate parameters [31, 33].

1.2.2. Top-down Approaches

Robert Boyle (1627-91) developed new physio-mechanical experiments. Boyle’s law states
that at a constant temperature, the volume of a fixed mass of gas is inversely proportional to
its pressure using a set of measures characterizing the global properties of a gas. Anders
Celsius (1701-1744) proposed a thermometer scale calibrated to the freezing point and
boiling point of water. Benjamin Thompson (later known as Count Rumford) (1753-1814)
explored cannon barrel-boring experiments and demonstrated the conversion of work into
heat via friction in the absence of any additional weight of the object due to such heating
being detected. Leonhard Euler (1707-1783) developed a Kinetic Heat Theory based on his
description of a calculus of variations to introduce the concept of moving axes in astronomy.
Daniel Bernoulli (1700-1782) and Pierre-Simon Laplace (1749-1827) refined Newton’s work
to represent gas properties through repulsive interactions. Jean Baptiste Joseph Fourier
(1768-1830) developed an understanding of the conduction of heat to represent a periodic
function as a Fourier series. Poisson (1781-1840) further developed the theories of heat
using Fourier series. Thomas Young (1773-1829) expressed the modern formulation of
energy, mathematically associated with mv2. Sadi Carnot (1796-1832) introduced the concept
of ideal gas cycle analysis. William Thomson (later known as Lord Kelvin) (1824-1907)
developed a wave theory of heat in homogeneous solid bodies. James Prescott Joule
(1818-1889) established the relationship between heat and mechanical work through a
series of experiments. John James Waterston (1811-1883) explored a kinetic theory of
gases and mean free path. Von Helmholtz (1821-94) further developed the principle of
conservation of energy extending Carnot’s principle of kinetic energy into a mathematical
formulation. Rudolf Clausius (1822-88) explored an expression of the second law for which
the only function is the transfer of heat to propose the function dQ/T to compare heat
flows with heat conversions using Carnot’s techniques to derive entropy and show the two
laws of thermodynamics were the equivalent of the older caloric theory. Gustav Robert
Kirchhoff (1824-1887) derived from the second law of thermodynamics that objects cannot
be distinguished by thermal radiation at a uniform temperature to formulate a black body
[23, 24, 31, 33].

Leonhard Euler (1707-1783) provided key methodologies in this direction with a top-down
approach known as a Euler expression. A Fourier series of a periodic function is a typical
representative under this expression founded on a periodic function composed of a set of simple
harmonic components [31, 33].
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1.2.3. Formal Expression of Phase Space in Statistical Mechanics

Following methodologies established by Hamilton, Lagrange, and Euler, [26] and L.
Boltzmann (1844-1906) went on to lay the foundations of statistical mechanics from 1871.
They introduced the term phase to describe the analogy they saw between the physical
trajectories of particles in two dimensional space and Lissajous figures expressed as
interactive maps. When two harmonic frequencies exist as rational fractions, period 4 circular
patterns occur. However, when the frequency ratio is irrational, the system trajectories visit
all points on the plane bounded by the signal amplitude. J. C. Maxwell (1831-79) adopted
Boltzmann’s expression of phase to describe the state of systems in 1879. William Thomson
(Lord Kelvin) was the first to use the word demon for Maxwell’s Thermodynamics concept
in 1874. H. Poincarè (1854-1912) in 1885 took a geometric approach to visualize a saddle
point where stable and unstable trajectories intersected in phase space. Various mapping
techniques are relevant to such explorations. These include Poincarè sections (maps),
fixed-point classifications, and the conservation of phase space as an integrated invariant.
Influenced by the work of Maxwell and Boltzmann together with other wider contributions,
J. W. Gibbs (1939-1903) proposed his Elementary Principles in Statistical Mechanics in 1902
to describe a phase as represented by a point of 2n dimensions.

From a terminological viewpoint, Gibbs brought us such expressions as statistical mechanics,
micro ensemble, canonical ensemble, and grand ensemble. He facilitated the establishment of a
hierarchy in Statistical Mechanics. However, Gibbs did not use the term phase space. The first
formal expression of the term phase space appeared in the context of ergodic theory in a 1913
publication by A. Rosenthal and M. Plancherel [26, 31, 33].

From 1919 to 1922, Sir Charles Galton Darwin (1887-1962) worked with Sir Ralph Howard
Fowler (1889-1944) on statistical mechanics and established the Darwin-Fowler method.

1.2.4. Key Properties in Statistical Mechanics

[23, 24, 31, 33] noted the usefulness of listing key properties in classical statistical mechanics.
A typical comparison is presented below in Table 1.

In general, both Maxwell-Boltzmann and Gibbs follow black-box models without involving
explicit local functions. However, the Darwin-Fowler method uses a complex function
to describe its unit cell so making it a white box model. Both Maxwell-Boltzmann and
Darwin-Fowler schemes use Lagrange expressions to calculate cell unit and to form their
fundamentals using a bottom-up strategy. Meanwhile, Gibbs applies Euler expressions for
analysis using a top-down strategy without involving explicit cell units.

Table 1 uses abbreviations as follows: TM for Time Measurement, PSM for Phase Space
Measurement, PS for Phase Space, EPV for Equal Phase Volume, MPD for Most Probable
Distribution, MCE for Micro Canonical Ensemble, CE for Canonical Ensemble, and GCE for
Grand Canonical Ensemble.

1.2.5. Common Interpretations of Quantum Mechanics

Quantum mechanics is a modern legacy with its roots in classical statistical mechanics [11,
12, 17]. Meanwhile, Bose-Einstein, Fermi-Dirac statistics, and Planck’s quantum are deeply
connected with the statistical mechanics of Boltzmann and Gibbs [17, 19].
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Key Maxwell-Boltzmann Darwin-Fowler Gibbs
Issue Most probable theory Average Theory Ensemble Theory

Assumption Ergodic Average: Ergodic Average: Equality of PS:
TM = PSM TM = PSM EPV in same probability

Phase Space State State Density functions
N combination combination Liouville equation

Cell Unit Local cell in n particles Complex function Ensemble based
n Stirling Approximation non restriction to n non-cell required

Balanced MPD MPD MPD
States with maximal entropy with maximal entropy with maximal entropy

Expression Lagrange Lagrange Euler
Interaction No No Yes

Prefer Isolated system Isolated system MCE: isolated system;
System for { MCE, CE} for { MCE, CE} CE : closed system;

not for GCE not for GCE GCE : open system
Model Black-box White-box Black-box

non function explicit function non function
Bottom-up Bottom-up Top-down

Table 1. Key Methods in Statistical Mechanics

In the context of the pursuit of an interpretation of quantum mechanics, the state vector
or wave function has been widely discussed as a model for describing the individual
components of a system (e.g. an electron).

The most comprehensive descriptions of an individual physical system are to be found in the
various versions of the Copenhagen interpretation [8], or in subsequent versions incorporating
minor modifications as in the hidden variable interpretations [19, 31].

An interpretation according to the state vector based not on an individual system but on an
ensemble of identically prepared systems is known as a statistical ensemble interpretation or
more briefly just as a statistical interpretation [19, 31].

The two alternative strategies of top-down and bottom-up strongly influence the direction of
various explorations in the field of quantum mechanism. The Lagrange expression emphasizes
single particles in a bottom-up strategy. In contrast, the Euler expression emphasizes complex
objects treated as ensembles in a top-down strategy.

From as early as the turn of the 20th century when Plank started his quantum revolution,
various interpretations of quantum behaviors have been explored. Following the Heisenberg
matrix approach and the Schrödinger wave function equation, the intellectually absorbing
anomalies of quantum mechanics have been linked to intrinsic behaviors associated with
particle and wave duality.

To address the various paradoxes encountered in the development of quantum mechanics
during the course of 20th century, a number of different interpretations may be listed [19, 31].

Probabilistic interpretation Max Born 1926 [19]]

Copenhagen interpretation N. Bohr and Heisenberg 1927 [8]

Double-solution interpretation de Broglie 1927, 1953 [9]
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de Broglie-Bohm Theory de Broglie 1927, David Bohm 1952 [9]

Standard interpretation von Neumann 1932 Wigner, Wheeler [32]

Quantum Logic G. Birkhoff and von Neumann 1936 [19]

Ensemble interpretation D. Blokhintsev 1949 [6]

Many-world interpretation H. Everett 1957 [19]

Time-symmetric theory Y. Aharonov 1964

Stochastic interpretation E.Nelson 1966

Many-minds interpretation H. Zeh 1970 [34]

Consistent histories R. Griffiths 1984

Objective collapse theories Ghirardi-Rimini-Weber 1986

Transitional interpretation J. Cramer 1986

Rational interpretation C. Rovelli 1994

In general, the seven key interpretations (Copenhagen, Double-solution, de Broglie-Bohm,
Standard, Ensemble, Many-world, and Stochastic) of the first four decades of the 20th century
can be separated as follows into the following two general categories [9, 31]:

1) Lagrange Expression: comprising the Copenhagen Interpretation (N. Bohr and
Heisenberg), the Double-solution (de Broglie), the Standard Interpretation (von
Neumann), the Many-world interpretation (H. Everett), and the de Broglie-Bohm Theory
(de Broglie & David Bohm)

2) Euler Expression: comprising the Double-solution (de Broglie), the Ensemble
interpretation (D. Blokhintsev), and the Stochastic interpretation (E. Nelson)

In general, a Lagrange expression is preferred for representing a single quanta while a Euler
expression can better describe certain group activities. It is interesting to note that de Broglie’s
Double-solution with a special interpretation can to be involved in both cases [9, 31].

According to Einstein’s criteria for quantum mechanics [10], an interpretation of quantum
mechanics can be characterized by its treatment of:

• Realism

• Completeness

• Local realism

• Determinism

Here, an interpretation is taken to mean a correspondence between the elements of the
mathematical formalism M and the elements of an interpreting structure I, where:

The Mathematical formalism M consists of the Hilbert space machinery of ket-vectors,
self-adjoint operations on the space of ket-vectors, unitary time dependence of the
ket-vectors and measurement operations: and ...
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The interpreting structure I includes states, transitions between states, measurement
operations and possible information about spatial extension of these elements.

Applying Einstein’s criteria to this set of interpretations, the ensemble interpretation
(statistical interpretation) is a minimalist interpretation. It claims to make the fewest
assumptions associated with the standard mathematics. The most notable supporter of such
statistical interpretation was Einstein himself [19, 22, 31].

1.2.6. Statistical Interpretation of Quantum Mechanics

At the 1927 Solvay Congress, Einstein proposed a statistical interpretation in order to
avoid conceptual difficulties if the reduction of a wave packet led to the association of
wave functions with individual systems. He hoped that someday a complete theory
of microphysics would become available to establish a conceptual base as a (preferred)
alternative to modern quantum mechanics [9, 31].

In 1932, von Neumann established mathematical foundations for quantum mechanics as a
standard interpretation on Hilbert space to provide a proof rejecting any hidden variable
approach [32].

Influenced by K.V. Nikolskii and V.A. Fock, D. I. Blokhintsev developed a statistical
interpretation in the 1940s. He expressed the view that modern quantum mechanics is not a
theory of micro-processes but rather a means of studying their properties by the application
of statistical ensembles. Menawhile, the approach taken in the publication was borrowed
from classical macro physics [6, 19, 22].

Landé’s 1951 book sought to reconcile the contradictions between the two classical concepts
of the particle and the wave by providing something equivalent to the descriptions of
physical phenomena in either terms. He emphasized that in diffraction experiments, particles
exhibit both maximum and minimum intensities of diffraction through a perfectly normal
mechanical process that can be described in terms of a wave explanation. Using transition
probability, these experimentally-determinable transition probabilities can be shown to map
a matrix [19].

1.2.7. Main weaknesses in key interpretations

Compared to continuous approaches, Heisenberg’s matrix offers several advances in
handling the case of a single particle. In July 1926, the first question Heisenberg asked
Schrödinger was, "Can you use your continuous wave equation to explain black body
radiation or quantum effects in photoelectric actions?"

Due to the inherent differences between the two strategies it is difficult to find a direct answer
to the question under the Copenhagen interpretation, "Is the Schrödinger equation a single
particle description or an equation for a group of particles?" [16, 19, 31].

Through statistical interpretation is a minimalist interpretation, it too is not a complete
interpretation. During the development of statistical interpretation there were various
debates between Blokhintsev and Heisenberg during the 1940s [19, 22].

Heisenberg questioned as self contradictory, Blokhintsev’s basic contention that quantum
mechanics eliminates the observer and becomes objectively significant due to the fact that the
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wave function does not describe the state of a particle but rather identifies that the particle
belongs to a particular ensemble. In this, Heisenberg argued that in order to assign a particle
to a particular ensemble, some knowledge of the particle is required on the part of the
observer [19], p445.

The main weakness of Blokhintsev’s ensemble interpretation is that though its mathematical
formula can express wave distributions well it fails to describe particle structure properly.
This is a common weakness of similar mathematical constructions based on periodic
components of a Fourier series [19, 27, 31].

Similar to difficulties faced by the Schrödinger equation, ensemble construction is suitable for
wave representations but is weak in particle description. On the other hand, the Copenhagen
interpretation is preferred for a single particle but comes with inherent limitations of
expression with respect to wave behaviours which require further reliance on Born’s
probabilistic interpretation of the wave-function.

1.2.8. Other Challenges on Statistical Mechanics

Statistical mechanics presents us with several fundemental difficulties [20, 23, 24, 31, 33]:

Ergodic property: a time sequence average over a large set of local measurements be
replaced by space (phase)-average

Analytic apparatus the construction of asymptotic formulas.

Computational Efficiency: use of modern computing power in tackling complexity.

Discrete via continuous: relationships between irregular discrete systems and regular
continuous systems.

Logic foundation: solid logic foundation for statistical mechanics.

1.3. Chapter organization

In this chapter, variant construction comprising variant logic, variant measurement and variant
phase space is explored with a view to addressing the main challenges and difficulties
associated with statistical interpretations and statistical mechanics. The focus is on a unified
model to illustrate a path leading from local measurements to global matrices on phase space
via variant construction.

This chapter is organized into 12 sections addressing the following:

1. general introduction (above)

2. system architecture

3. creating micro ensemble

4. canonical ensemble and interactive maps

5. global ensemble and interactive map matrices

6. representation models

7. symbolic representation on selected cases
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8. sample results

9. analysis of visual distributions

10. global symmetry properties

11. main results

12. conclusions

2. System architecture

In this section, system architecture and its core components are discussed with the use of
diagrams.

2.1. Architecture

The three components of a Variant Phase Space System are the Creating Micro Ensemble (CME),
the Canonical Ensemble (CEIM) together with the Interactive Map and the Global Ensemble Matrix
(GEM) as shown in Figure 1. The architecture is shown in Figure 1(a) with the key modules
of the three core components being shown in Figures 1(b) through 1(d) respectively.

In the first part of the system, a micro ensemble and its eight projections are created for a
given vector and function by the CME component. Next, in order to exhaust all possible
2N vectors, a CE and eight IMs are established by the CEIM component. Then, in order to
exhaust all possible 22n

functions, a CE matrix and eight IM matrices are generated by the
GEM component.

With eight parameters in an input group, there are four parameters in the intermediate group
and two parameters in the output group.

The three groups of parameters may be listed as follows.

Input group:

N an integer indicates a 0-1 vector with N elements

n an integer indicates n variables for a function

X a 0-1 vector with N elements, X ∈ BN
2

∀X exhaustive set of all states of N bit vectors with 2N elements

J a function with n variables, J ∈ B2n

2

∀J exhaustive set of all functions of n variables with 22n
elements

SM a selection on a pair of measurements

FC A given configuration for variant logic functions: a 22n−1
× 22n−1

matrix

Intermediate group:

ME(J, X) a micro ensemble under either multiple or conditional probability measurements

IP(J, X) a set of eight interactive projections related to ME(J, X)

CE(J) a canonical ensemble for an N bit vector under an n variable function J

IM(J) a set of eight interactive maps associated with one CE(J)

Interactive Maps on Variant Phase Spaces
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{N, n} →
X ∈ BN

2 →
J ∈ B2n

2 →
SM →

Creating
Micro

Ensemble
CME

→ ME(J, X) →
→ IP(J, X) →

∀X →

Canonical
Ensemble &

Interactive Maps
CEIM

→ {CE(J), IM(J)}

{CE(J), IM(J)} →
∀J →
FC →

Global
Ensemble
Matrices

GEM

→ CEM
→ IMM

(a) Architecture

{N, n} →
X ∈ BN

2 →
J ∈ B2n

2 →

Variant
Measures

VM
→ VM(J, X) →

Probability
Measurements

PM
→ PM(J, X)

PM(J, X) →
SM →

Micro
Ensemble

ME
→

Interactive
Projection

IP

→ ME(J, X)
→ IP(J, X)

(b) CME Creating Micro Ensemble Component

ME(J, X) →
IP(J, X) →

∀X →

Canonical
Ensemble

CE
→

Interactive
Maps

IM
→ {CE(J), IM(J)}

(c) CEIM Canonical Ensemble and Interactive Map Component

{CE(J), IM(J)} →
∀J →

Sets of {CE(J)},
{IM(J)}
SCEIM

→ SCE →
→ SIM →

FC →

CE & IM
Matrices

CIM

→ CEM
→ IMM

(d) GEM Global Ensemble Matrix Component

Figure 1. (a-d) Variant Phase Space System; (a) Architecture; (b) CME Creating Micro Ensemble; (c) CEIM Canonical Ensemble

and Interactive Map; (d) GEM Global Ensemble Matrix

Output group:

CEM one CE matrix under FC condition

IMM a set of eight IM matrices under FC condition

2.2. CME creating micro ensemble

The CME component as shown in Figure 1(b) is composed of four modules: VM Variant
Measures, PM Probability Measurements, ME Micro Ensemble and IP Interactive Projection. Five
distinct parameters are shown as input signals {N, n, X, J, SM} and two groups of vector
measurements are performed as a group of output signals {ME(J, X), IP(J, X)} respectively.

The various parameter can be described as follows:
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Input:

N an integer indicating a 0-1 vector with N elements

n an integer indicating n variables for a function

X a 0-1 vector with N elements, X ∈ BN
2

J a function with n variables, J ∈ B2n

2

SM a selection on a pair of measurements

Output:

ME(J, X) a micro ensemble under either multiple or conditional probability measurements

IP(J, X) a set of eight interactive projections under the SM condition

A point in variant phase space can be determined under a set of conditions. A set of relevant
projections can be associated with an interactive environment. The operation of this module
transfers each set of input parameters to one micro ensemble signal and its distinct interactive
projections subject to certain restrictions.

2.3. CEIM canonical ensemble and interactive map

The CEIM component as shown in Figure 1(c) is composed of two modules: CE Canonical
Ensemble and IP Interactive Projection. This component inputs three groups of parameters
{ME(J, X), IP(J, X), ∀X} from the CME component and outputs two sets of canonical
ensembles together with its interactive maps {CE(J), IM(J)} as distinct distributions under
certain environments. One additional input and two output parameters are described as
follows:

Adding Input:

∀X exhaustive set of all states of N bit vectors with 2N elements

Output:

CE(J) a canonical ensemble for an N bit vector under an n variable function J

IM(J) a set of eight interactive maps associated with CE(J)

The CEIM component collects all possible micro ensembles for a given function to form a
canonical ensemble on variant phase space. Meanwhile, different interactive maps associated
with this CE can be calculated to output as a set of IM(J) as distinct distributions under
certain environment.

2.4. GIM global ensemble and interactive map matrix

The GIM component as shown in Figure 1(d) is composed of two modules: one for the
SCEIM Set of Cannonical Ensembles together with Interactive Maps, and the other for the CIM CE
& IM Matrices.

Two outputs {CE(J), IM(J)} from CEIM are taken as inputs, while another two parameters
{∀J, FC} and two outputs can be described as follows:

Interactive Maps on Variant Phase Spaces
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Adding Input:

∀J exhaustive set of all functions of n variables with 22n
elements

FC a given configuration for variant logic functions: a 22n−1
× 22n−1

matrix

Output:

CEM a CE matrix under FC condition

IMM a set of IM matrices under FC condition

The SCEIM module processes an exhaustive operation on all possible values of function J
to generate sets of {{CE(J)}, {IM(J)}}∀J as the output. The CIM module further organizes

the data to arrange each set as a 22n−1
× 22n−1

matrix with 22n
elements and with the specific

arrangement determined by FC condition.

After two exhaustive processes through CEIM and GIM activities, a CE matrix and the
relevant IM Matrices are generated. Each matrix contains 22n

elements as distributions.
Further symmetry properties can be identified from each specific configuration.

Since specific components and modules are relevant to the detail of the complex mechanisms,
further explanations on each component are presented in Sections 3 through 5.

3. Creating micro ensemble

The first part of the system is the CME component composed of four modules: VM Variant
Measures, PM Probability Measurements, ME Micro Ensemble and IP Interactive Projection
respectively.

It is necessary to clearly describe these four modules in order to understand the measurement
properties of variant construction [35]-[44]. Relevant information and supporting materials
on fundamental levels of variant construction are briefly descried in Section 3.1 and the four
modules are investigated in Sections 3.2 through 3.5.

3.1. Initial preparation on variant measurements

The variant measurement construction is based on n-variable logic functions and N bit
vectors taken as input and output results [40, 43, 44].

3.1.1. Two sets of states

For n-variables where x = xn−1...xi...x0, 0 ≤ i < n, xi ∈ {0, 1} = B2, let a position j be the
selected variable 0 ≤ j < n, xj be the selected variable. Let output variable y and n-variable
function f , y = f (x), y ∈ B2, x ∈ Bn

2 . For all states of x, a set S(n) composed of the 2n states
can be divided into two sets: S0(n) and S1(n).







S0(n) = {x|xj = 0, ∀x ∈ Bn
2}

S1(n) = {x|xj = 1, ∀x ∈ Bn
2}

S(n) = {S0(n), S1(n)}
(3)
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3.1.2. Four variant functions

For a given logic function f , input and output pair relationships define four variant logic
functions { f⊥, f+, f−, f⊤}.















f⊥(x) = { f (x)|x ∈ S0(n), y = 0}
f+(x) = { f (x)|x ∈ S0(n), y = 1}
f−(x) = { f (x)|x ∈ S1(n), y = 0}
f⊤(x) = { f (x)|x ∈ S1(n), y = 1}

(4)

3.1.3. Two polarized functions

Considering two standard logic canonical expressions: AND-OR form is selected from
{ f+(x), f⊤(x)} as y = 1 items, and OR-AND form is selected from { f−(x), f⊥(x)} as y = 0
items. Considering { f⊤(x), f⊥(x)}, xj = y items, they are invariant themselves.

To select { f+(x), f−(x)}, xj 6= y in forming a variant logic expression. Let f (x) = 〈 f+|x| f−〉
be the variant logic expression. Any logic function can be expressed as a variant logic
form. In 〈 f+|x| f−〉 structure, f+ selected 1 items in S0(n) as same as the AND-OR standard
expression, and f− selected 0 items in S1(n) as same as OR-AND expression.

3.1.4. n = 2 representation

For a convenient understanding of the variant representation, 2-variable logic structures are
illustrated in Table 2 for its 16 functions in four variant functions as follows.

Let xv =















⊥, x = 0, y = 0;
+, x = 0, y = 1;
−, x = 1, y = 0;
⊤, x = 1, y = 1.

and xδ =

{

x, δ = 1;
x̄, δ = 0.

For a pair of { f+, f−} functions selected from the structure, relevant representations are
illustrated in Table 3 to show the variant capacity on the full expression of all logic functions.

Checking two functions f = 3 and f = 6 respectively.
{ f = 3 := {1, 0}, f+ = 11 := 〈0|∅〉, f− = 2 := 〈∅|3〉};
{ f = 6 := {2, 1}, f+ = 14 := 〈2|∅〉, f− = 2 := 〈∅|3〉}.

3.1.5. Variant measure functions

Let ∆ be the variant measure function [1, 35]-[42]

∆ = 〈∆⊥, ∆+, ∆−, ∆⊤〉
∆J(x) = 〈∆⊥ J(x), ∆+ J(x), ∆− J(x), ∆⊤ J(x)〉

∆α J(x) =

{

1, J(x) ∈ Jα(x), α ∈ {⊥,+,−,⊤}
0, others

(7)

For any given n-variable state there is one position in ∆J(x) to be 1 and other 3 positions are
0.
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f f ∈ 3 2 1 0 3v 2v 1v 0v f⊥ ∈ f+ ∈ f− ∈ f⊤ ∈
No. S(n) 11 10 01 00 11v 10v 01v 00v S0(n) S0(n) S1(n) S1(n)

0 {∅} 0 0 0 0 − ⊥ − ⊥ {2, 0} {∅} {3, 1} {∅}
1 {0} 0 0 0 1 − ⊥ − + {2} {0} {3, 1} {∅}
2 {1} 0 0 1 0 − ⊥ ⊤ ⊥ {2.0} {∅} {3} {1}
3 {1, 0} 0 0 1 1 − ⊥ ⊤ + {2} {0} {3} {1}
4 {2} 0 1 0 0 − + − ⊥ {0} {2} {3, 1} {∅}
5 {2, 0} 0 1 0 1 − + − + {∅} {2, 0} {3, 1} {∅}
6 {2, 1} 0 1 1 0 − + ⊤ ⊥ {0} {2} {3} {1}
7 {2, 1, 0} 0 1 1 1 − + ⊤ + {∅} {2, 0} {3} {1}
8 {3} 1 0 0 0 ⊤ ⊥ − ⊥ {2, 0} {∅} {1} {3}
9 {3, 0} 1 0 0 1 ⊤ ⊥ − + {2} {0} {1} {3}

10 {3, 1} 1 0 1 0 ⊤ ⊥ ⊤ ⊥ {2, 0} {∅} {∅} {3, 1}
11 {3, 1, 0} 1 0 1 1 ⊤ ⊥ ⊤ + {2} {0} {∅} {3, 1}
12 {3, 2} 1 1 0 0 ⊤ + − ⊥ {0} {2} {1} {3}
13 {3, 2, 0} 1 1 0 1 ⊤ + − + {∅} {2, 0} {1} {3}
14 {3, 2, 1} 1 1 1 0 ⊤ + ⊤ ⊥ {0} {2} {∅} {3, 1}
15 {3, 2, 1, 0} 1 1 1 1 ⊤ + ⊤ + {∅} {2, 0} {∅} {3, 1}

(5)

Table 2. Four Variant Functions in 2-variable logic

f f ∈ 3 2 1 0 f+ ∈ 30 21 10 01 f− ∈
No. S(n) 11 10 01 00 S0(n) 110 101 010 001 S1(n)

0 {∅} 0 0 0 0 〈∅| 1 0 1 0 |3, 1〉
1 {0} 0 0 0 1 〈0| 1 0 1 1 |3, 1〉
2 {1} 0 0 1 0 〈∅| 1 0 0 0 |3〉
3 {1, 0} 0 0 1 1 〈0| 1 0 0 1 |3〉
4 {2} 0 1 0 0 〈2| 1 1 1 0 |3, 1〉
5 {2, 0} 0 1 0 1 〈2, 0| 1 1 1 1 |3, 1〉
6 {2, 1} 0 1 1 0 〈2| 1 1 0 0 |3〉
7 {2, 1, 0} 0 1 1 1 〈2, 0| 1 1 0 1 |3〉
8 {3} 1 0 0 0 〈∅| 0 0 1 0 |1〉
9 {3, 0} 1 0 0 1 〈0| 0 0 1 1 |1〉

10 {3, 1} 1 0 1 0 〈∅| 0 0 0 0 |∅〉
11 {3, 1, 0} 1 0 1 1 〈0| 0 0 0 1 |∅〉
12 {3, 2} 1 1 0 0 〈2| 0 1 1 0 |1〉
13 {3, 2, 0} 1 1 0 1 〈2, 0| 0 1 1 1 |1〉
14 {3, 2, 1} 1 1 1 0 〈2| 0 1 0 0 |∅〉
15 {3, 2, 1, 0} 1 1 1 1 〈2, 0| 0 1 0 1 |∅〉

(6)

Table 3. A pair of selected functions and their full expression
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3.1.6. Variant measures on vector

For any N bit 0-1 vector X, X = XN−1...Xj...X0, 0 ≤ j < N, Xj ∈ B2, X ∈ BN
2 under n-variable

function J, n bit 0-1 output vector Y, Y = J(X) = 〈J+|X|J−〉, Y = YN−1...Yj...Y0, 0 ≤ j <

N, Yj ∈ B2, Y ∈ BN
2 . For the j-th position xj = [...Xj...] ∈ Bn

2 to form Yj = J(xj) = 〈J+|xj|J−〉.
Let N bit positions be cyclic linked. Variant measures of J(X) can be decomposed as a
quaternion

∆(X : Y) = ∆J(X) =
N−1

∑
j=0

∆J(xj) = 〈N⊥, N+, N−, N⊤〉 (8)

〈N⊥, N+, N−, N⊤〉, N = N⊥ + N+ + N− + N⊤.

3.1.7. Example

E.g. N = 12, given J, Y = J(X).

X = 1 0 1 1 1 0 1 1 1 0 0 1

Y = 0 0 1 0 1 0 1 0 1 1 0 0

∆(X : Y) = − ⊥ ⊤ − ⊤ ⊥ ⊤ − ⊤ + ⊥ −

∆J(X) = 〈N⊥, N+, N−, N⊤〉 = 〈3, 1, 4, 4〉, N = 12.

Input and output pairs are 0-1 variables for only four combinations. For any given function
J, the quantitative relationship of {⊥,+,−,⊤} is directly derived from the input/output
sequences. Four meta measures are determined.

3.1.8. Basic Properties of Variant Logic

For given n 0-1 variables, a given function J and an N bit vector X, the following corollaries
can be described [35]-[44].

Corollary 3.1: For n 0-1 variables, the state set contains a total of 2n states.

Corollary 3.2: For n 0-1 variables, the function set contains a total of 22n
functions.

Corollary 3.3: For an N bit vector X, the phase space is composed of a total of 2N vectors.

Corollary 3.4: A logic function f can be partitioned as four variant functions as f =
( f⊥, f+, f−, f⊤) respectively.

Corollary 3.5: For a given vector X and a given function J, a measure vector of
four meta measures for variant measures can be determined as a quaternion ∆J(X) =
〈N⊥, N+, N−, N⊤〉.

3.2. VM variant measures

Using defined variant functions, it is possible to describe the VM module in Fig. 1(b) as
follows.
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Under variant construction, N bits of 0-1 vector X under a function J produce seven Meta
measures composed of a measure vector VM(J, X).

(X : J(X)) → (N⊥, N+, N−, N⊤),
N0 = N⊥ + N+,
N1 = N− + N⊤,
N = N0 + N1.

(9)

From a measuring viewpoint, there are seven measures identified in this set of parameters.
They can be expressed in three levels.

N

N0 N1

N⊥ N+ N− N⊤

(10)

In the current system, the output of the VM module is expressed as VM(J, X) =
{N⊥, N+, N−, N⊤, N0, N1, N}.

3.3. PM probability measurements

Measures of VM(J, X) are input as numeric vectors into the PM module. Using variant
quaternion and other three core measures, local measurements of probability signals are
calculated as eight meta measurements in two groups by following the given equations. For
any N bit 0-1 vector X, function J, under ∆ measurement: ∆J(X) = 〈N⊥, N+, N−, N⊤〉,
N0 = N⊥ + N+, N1 = N− + N⊤, N = N0 + N1

The first group of probability signal vectors ρ and {ρ0, ρ1} are defined by



















ρ = ∆J(X)
N = (ρ⊥, ρ+, ρ−, ρ⊤, )

ρα = Nα
N , α ∈ {⊥,+,−,⊤};

ρ0 = N0/N,
ρ1 = N1/N.

(11)

The second group of probability signal vectors ρ̃ and {ρ̃0, ρ̃1} is defined by



















































ρ̃ = ∆J(X)
N0|N1

= (ρ̃⊥, ρ̃+, ρ̃−, ρ̃⊤) ,

ρ̃⊥ = N⊥
N0

,

ρ̃+ = N+
N0

,

ρ̃− = N−
N1

,

ρ̃⊤ = N⊤
N1

;

ρ̃0 = N0/N,
ρ̃1 = N1/N.

(12)

The two groups of probability measurements are key components in variant measurement.
The first group corresponds to multiple probability measurements and the second group
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corresponds to conditional probability measurements. In this Chapter, only two quaternion
measurements are used in order to focus attention on the simplest interactive combinations
without further measurements of {ρ0, ρ1} and {ρ̃0, ρ̃1} involved.

Under such condition, the output signals of the PM module can be expressed as a pair of
probability vectors in quaternion forms PM(J, X) = {ρ, ρ̃}.

3.4. ME micro ensemble

The ME module has two inputs. PM(J, X) provides probability measurement vectors
to provide the basis of the measurement. The input parameter SM indicates Selected
Measurements from PM(J, X).

In this paper, two cases for a pair of measurement selections are restricted to permit an
investigation of possible configurations of interactive distributions in their variant phase
spaces under simple conditions.

Case A: (pi, pj) or (p+, p−) ∈ P ⊂ ρ with two measurements from ρ;

Case B: ( p̃i, p̃j) or ( p̃+, p̃−) ∈ P̃ ⊂ ρ̃ with two measurements from ρ̃.

Under these conditions, each (pi(J, X), pj(J, X)) or ( p̃i(J, X), p̃j(J, X)) determines a fixed
position on variant phase space as a Micro Ensemble. The output of the ME module can
be expressed as ME(J, X) = (pi(J, X), pj(J, X))|( p̃i(J, X), p̃j(J, X)) under a given function J,
an N bit vector X and SM conditions.

3.4.1. Variant Phase Space

Since each ME must be located on a certain position in a square area on variant phase space,
it is convenient to show the restrictions and specific properties according to the following
propositions.

Proposition 3.1: In the Case A condition, a total of six configurations can be identified in
different P selections. For each configuration, its pair of probability measurements can be
restricted in a triangle area of a [0, 1]2 region.

Proof: Any selection of two elements (pi(J, X), pj(J, X)) from P, it satisfies 0 ≤ pi(J, X) +
pj(J, X) ≤ 1, there are six distinct selections. �

Proposition 3.2: In the Case B condition, a total of six configurations can be identified into
two groups in different P̃ selections, four configurations in the first group are restricted in a
square area and two configurations of the second group are restricted on a diagonal line.

Proof: Since two equations in ρ̃ quaternion are in the conditions of ˜ρ⊥ + ˜ρ+ = ˜ρ− + ˜ρ⊤ = 1.
For the first group, two selected components can satisfy 0 ≤ p̃i, p̃j ≤ 1, four distinct selections

are identified in a [0, 1]2 restricted region. For the second group, two selected components
can satisfy 0 ≤ p̃i, p̃j ≤ 1 and p̃i + p̃j = 1, only two distinct selections are identified on a

diagonal line distributed in a [0, 1]2 region. �

Under this arrangement, all measurements are relevant to variant construction. Now, let this
type of phase spaces be Variant Phase Space VPS. For an N bit vector X, a pair of probability
measurements determines a micro ensemble to be a specific position in VPS.
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In order to distinguish between the two types of VPS, let us name a subset of VPS under
Case A conditions as a Multiple Phase Space MPS while we name a subset of VPS under
Case B conditions as a Conditional Phase Space CPS. Samples of canonical ensembles of the six
combinations under a given SM condition under a function in both MPS & CPS are shown
in Figure 2(I,II) respectively.

3.5. IP interactive projections

Using a micro ensemble ME(J, X), different projections can be identified in an IP module

under various interactive conditions. Based on the input micro ensemble for each Case, two

groups of eight interactive projections can be distinguished by symmetry/anti-symmetry and

synchronous/asynchronous conditions.

3.5.1. Synchronous and Asynchronous Operations

Each ME(J, X) is a pair of probability measurements and it is essential to establish

corresponding rules to place their interactive projection in the same probability region i.e.

[0, 1] segment.

We can distinguish between Synchronous and Asynchronous time-related operations.

Under a synchronous operation {+,−,×, /, }, only one merged measurement is located in

[0, 1] region to express one activity from a ME.

However, under an asynchronous operation ⊕, two input measurements p+ 6= p−, generate

an output result as a vector that has two positions of p+ and p− with a weighted value 1 on

each position; when p = p+ = p− there is a weighted value of 2 on the position p.

Under asynchronous operations, merged results may be distinguished by their position

or overlap each other with a cumulative weight value of 2. However, under synchronous

operations, two measurements are merged as a unit weight to shift interactive measurements

to one position in the [0, 1] region.

From an integrative viewpoint, the two types of operations may be considered capable

of either merging two particles (asynchronous) on two positions or integrating two waves

(synchronous) on a position.

3.5.2. Case A: Multiple Probability Interactive Projections

For each ME(J, P) = (pi(J, X), pj(J, X)) has a position on a unit square [0, 1]2.

Let P = {p+, p−} (or {px, py}) locate a pair of measurements, the IP module projects two

measurements and its weight into four conditions in different symmetric properties to form

two groups of eight weight vectors as interactive projections.

Using P = {p+, p−}, a pair of measurement vectors {u, v} are formulated:
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(I) Type A

(II) Type B

Figure 2. (I-II) Six combinations of two selected measurements for a function on VPS of two probability models (I) Type A:(a-f)

Six combinations in MPS; (II) Type B:(a-f) Six combinations in CPS
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u = (u+, u−, u0, u1) = {uβ}

v = (v+, v−, v0, v1) = {vβ}

β ∈ {+,−, 0, 1}

(13)



















































u+ = p+
u− = p−
u0 = u+ ⊕ u−

u1 = u+ + u−

v+ =
1+p+

2

v− =
1−p−

2
v0 = v+ ⊕ v−
v1 = v+ + v− − 0.5

(14)

where 0 ≤ uβ, vβ ≤ 1, β ∈ {+,−, 0, 1}, ⊕ : Asynchronous addition, + : Synchronous
addition.

3.5.3. Case B: Conditional Probability Interactive Projections

For each ME(J, P̃) = ( p̃i(J, X), p̃j(J, X)) we can note that it has a position on a unit square

[0, 1]2.

Let P̃ = { p̃+, p̃−} locate a pair of measurements, the IP module projects two measurements
and its weight into four conditions in different symmetric properties to form two groups of
eight weights as interactive projections.

Using P̃ = { p̃+, p̃−}, a pair of vectors {ũ, ṽ} are formulated:















ũ = (ũ+, ũ−, ũ0, ũ1) = {ũβ}

ṽ = (ṽ+, ṽ−, ṽ0, ṽ1) = {ṽβ}

β ∈ {+,−, 0, 1}

(15)

For the four projections in a square area, the following equations are required.



















































ũ+ = p̃+
ũ− = p̃−
ũ0 = ũ+ ⊕ ũ−

ũ1 = ũ++ũ−
2

ṽ+ =
1+ p̃+

2

ṽ− =
1− p̃−

2
ṽ0 = ṽ+ ⊕ ṽ−
ṽ1 = ṽ+ + ṽ− − 0.5

(16)
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For the two projections in a diagonal line, the following equations are satisfied.



















































ũ+ = p̃i

ũ− = p̃j

ũ0 = ũ+ ⊕ ũ−

ũ1 = ũ+ + ũ−

ṽ+ =
1+ p̃i

2

ṽ− =
1− p̃j

2
ṽ0 = ṽ+ ⊕ ṽ−
ṽ1 = ṽ+ + ṽ− − 0.5

(17)

where 0 ≤ ũβ, ṽβ ≤ 1, β ∈ {+,−, 0, 1}, ⊕ : Asynchronous addition, + : Synchronous
addition.

3.5.4. Key Properties in IP Module

Under Symmetry/Anti-symmetry and Synchronous/Asynchronous conditions, one ME
corresponds to eight interactive projections to express their selected characteristics.

Proposition 3.3: Two types of distinguished projections can be identified under
symmetry/anti-symmetry conditions for each ME.

Proof: For two projection vectors {u, v}, we can note that u represents a symmetry condition
and v represents an anti-symmetry condition. �

Proposition 3.4: Synchronous and Asynchronous conditions lead to significant different
output results.

Proof: In a synchronous operation, only one unit weight is output as {u1, v1}. However, in
an asynchronous operation, two positions may be seen to have a combined weight {u0, v0}.
�

Proposition 3.5: Other projections are simple ones corresponding to relevant measurement
projections.

Proof: Other output results are {u+, u−, v+, v−}, each parameter is only dependent on one
measurement to get a similar distribution from a projection viewpoint. There is no real
interactive activity involved. �

Proposition 3.6: If two probability measurements are required to satisfy pi + pj ≤ 1, then
their symmetry interactive projection result is equal to pi + pj.

Proof: Merged result is in the [0, 1] region. �

Proposition 3.7: If two probability measurements independently have 0 ≤ pi, pj ≤ 1, then
their symmetry interactive projection is (pi + pj)/2.

Proof: Under this condition, merged results are in the [0, 1] region. �

Proposition 3.8 From a selected ME, eight interactive projections can be formulated.

Proof: By Propositions 3.3-3.7. �
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Under different conditions, one pair of probability measurements can be interactively
projected into eight distinct results. However, from a variant viewpoint, it is not sufficient
for a serious analysis to use only a single set of measurements from a ME, further extensions
are required.

To distinguish among different measurements in interactive projections, four types of
measurements are defined as Left, Right, D-P and D-W , where {u+, v+, ũ+, ṽ+} are
Left measurements, {u−, v−, ũ−, ṽ−} are Right measurements, {u0, v0, ũ0, ṽ0} are D-P
measurements and {u1, v1, ũ1, ṽ1} are D-W measurements respectively.

4. CEIM canonical ensemble and interactive maps

It is a basic step to generate a micro ensemble and eight interactive projections on variant
phase space. For a given function J, it is necessary to determine the specific positions of all
possible vectors of ∀X to form a canonical ensemble on variant phase space.

The CEIM component is composed of two modules: the CE Canonical Ensemble and the IM
Interactive Map.

The CE module collects all possible MEs into a canonical ensemble. In addition, the IM
module makes relevant interactive projections via IP’s outputs to generate a list of interactive
distributions in the relevant maps as output results.

4.1. CE canonical ensemble

In the CE module, all the MEs are collected to form a CE in variant phase space according to
the following equations.

For a function J and all 2N vectors of ∀X, let CEL(J, X) be a point of CEL(J) on a plane
lattice

CEL(J, X) =

{

T, ME(J, X) = P|P̃
F, Otherwise

(18)

CEL(J) =
⋃

∀X

CEL(J, X) (19)

Applying the equation for CEL(J), a canonical lattice CEL can be established to indicate a
specific distribution from a logic viewpoint.

Since different CEL(J, X) may have the same position, let CE(J, X) be a point of CE(J) in a
canonical ensemble

CE(J, X) =

{

1, CEL(J, X) = T
0, Otherwise

(20)

CE(J) = ∑
∀X

CE(J, X) (21)
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Using equation CE(J), a canonical ensemble of variant phase space is produced. Each
non-zero position has a numeric weight as a value to indicate numbers of MEs collected
in a position.

4.1.1. Key Properties in CE

Proposition 4.1: Under Case A conditions, O(N2/2) points may be identified on a CEL(J)
lattice.

Proof: For each probability measurement, N + 1 values may be distinguished; points are
located in a triangular area and a total of (N + 1)N/2 points may be distinguished. �

Proposition 4.2: Under Case B conditions, O(N)− O(N2) points may be distinguished on a
CEL(J) lattice.

Proof: For each probability measurement, N + 1 values may be distinguished; points
are located in a square area and (N + 1)2 points may be distinguished for four square
distributions and N + 1 points may be distinguished for two diagonal line distributions.
�

Proposition 4.3: In Case A or Case B, values of all possible points of CE(J) collected are
equal to 2N .

Proof: This is the total number of vectors that may be distinguished for ∀X. �

Proposition 4.4: For a given SM condition, CE(J) is a statistical canonical ensemble on
variant phase space.

Proof: For a given SM condition, a CE(J) distribution is independent of special sequences
of collection. Its detailed configuration is relevant to {n, N} and SM respectively. All valid
positions can be statistically generated. �

Under this organization, each CE(J) has a fixed plane lattice with a distinct distribution. This
invariant property is useful for our further explorations.

4.2. IM interactive map

In an IM module, all possible IP projections of either {u, v} or {ũ, ṽ} are collected. Each
projection corresponds to a specific IM distribution.

The IM module provides a statistical means to accumulate all possible vectors of N bits for
a selected signal and generate a histogram. Eight signals correspond to eight histograms
respectively. Among these, four histograms exhibit properties of symmetry and another four
histograms exhibit properties of anti-symmetry.

4.2.1. Statistical distributions

For a function J, all measurement signals are collected from the IP and the relevant histogram
represents a complete statistical distribution as an IP map.

Using u and v signals, each uβ or vβ determines a fixed position in the relevant

histogram to make vector X on a position. After completing 2N data sequences, eight
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symmetry/anti-symmetry histograms of {H(uβ|J)}, {H(vβ|J)}|{H(ũβ|J)}, {H(ṽβ|J)} are
generated.

Under the multiple probability condition, β ∈ {+,−, 0, 1}

{

H(uβ|J) = ∑∀X∈BN
2

H(uβ|J(X))

H(vβ|J) = ∑∀X∈BN
2

H(vβ|J(X)), J ∈ B2n

2
(22)

Under the conditional probability condition, β ∈ {+,−, 0, 1}

{

H(ũβ|J) = ∑∀X∈BN
2

H(ũβ|J(X))

H(ṽβ|J) = ∑∀X∈BN
2

H(ṽβ|J(X)), J ∈ B2n

2
(23)

4.2.2. Normalized probability histograms

Let |H(..)| denote the total number in the histogram H(..), a normalized probability
histogram (PH(..)) can be expressed as































PH(uβ|J) =
H(uβ |J)
|H(uβ |J)|

PH(vβ|J) =
H(vβ |J)
|H(vβ |J)|

, J ∈ B2n

2

PH(ũβ|J) =
H(ũβ |J)
|H(ũβ |J)|

PH(ṽβ|J) =
H(ṽβ |J)
|H(ṽβ |J)|

, J ∈ B2n

2

(24)

Here, all interactive maps are also restricted in [0, 1]2 areas respectively.

Distributions are dependant on the data set as a whole and are not sensitive to varying under
special sequences. Under this condition, when the data set has been exhaustively listed, then
the same distributions are always linked to the given signal set.

Let IM(J) = {PH(u|J), PH(v|J)} or {PH(ũ|J), PH(ṽ|J)} be the output results of an IM
module. Then the eight histogram distributions provide invariant spectrums to represent
properties among different interactive conditions.

Using such descriptions, the output results of the CEIM component are {CE(J), IM(J)}.

From a given function, a set of histograms can be generated as a group of eight probability
histograms in variant phase space. Two groups of sixteen histograms are required. Sample
cases are shown in Figures 3-4(I-II).
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⇒

PH(u+|J) PH(u−|J)
(a) Left (b) Right

PH(u0|J) PH(u1|J)
(c) D-P (d) D-W

PH(v+|J) PH(v−|J)
(e) Left (f) Right

PH(v0|J) PH(v1|J)
(g) D-P (h) D-W

CEL J = 3 in MPS Eight Interactive Maps
(I) Representative patterns of Histograms for function J (a-d) symmetric cases; (e-h)

antisymmetric cases

(a) Left (b) Right

(c) D-P (d) D-W

(e) Left (f) Right

(g) D-P (h) D-W
(II) N = {12}, n = 2, J = 3 Two groups of results in eight histograms

Figure 3. (I-II) N = {12}, n = 2, J = 3 Simulation results ; (I) Representative Patterns for PH(u+ |J) = PH(u− |J) and
PH(v+ |J) = PH(1 − v− |J) conditions; (II) N = {12}, n = 2, J = 3 Two groups of eight interactive histograms on MPS
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⇒

PH(ũ+|J) PH(ũ−|J)
(a) Left (b) Right

PH(ũ0|J) PH(ũ1|J)
(c) D-P (d) D-W

PH(ṽ+|J) PH(ṽ−|J)
(e) Left (f) Right

PH(ṽ0|J) PH(ṽ1|J)
(g) D-P (h) D-W

CEL J = 3 in CPS Eight Interactive Maps
(I) Representative patterns of Histograms for function J (a-d) symmetric cases; (e-h)

antisymmetric cases

(a) Left (b) Right

(c) D-P (d) D-W

(e) Left (f) Right

(g) D-P (h) D-W
(II) N = {12}, n = 2, J = 3 Two groups of results in eight histograms

Figure 4. (I-II) N = {12, }, n = 2, J = 3 Simulation results; (I) Representative Patterns for PH(ũ+ |J) = PH(ũ− |J) and
PH(ṽ+ |J) = PH(1 − ṽ− |J) conditions; (II) N = {12}, n = 2, J = 3 Two groups of eight interactive histograms on CPS
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5. GEIM global ensemble and interactive map matrices

The GEIM component is composed of two modules: SCEIM Sets of CE&IM, and CIM CE&IM
Matrices.

{CE(J), IM(J)} and ∀J are put in the SCEIM module to generate sets of CEs and IMs on each
given function exhaustively. All generated CEs and IMs are organized by the CIM module
under the FC condition in which a special variant coding scheme is applied for a global
configuration of output matrices.

5.1. SCEIM sets of canonical ensembles and interactive maps

The SCEIM module produces {SCE, SIM} composed of all possible CE and IM sets of ∀J
under exhaustive conditions.

SCE = {∀J, CE(J)|J ∈ B2n

2 }
SIM = {∀J, {PH(u|J), PH(v|J)} or {PH(ũ|J), PH(ṽ|J)}|J ∈ B2n

2 }
(25)

Meanwhile, the SCE and the SIM provide output results to the CIM module.

5.2. CIM canonical ensemble and interactive map matrices

In addition to using {SCE, SIM} as inputs, the FC also inputs a code scheme to determine a
detailed configuration for each matrix.

5.2.1. Global Matrix Representations

In the CIM module, {SCE, SIM} inputs have nine sets of CEs and IMs. Each set is composed
of 22n

elements and each element is a histogram or a plane lattice. The CIM module arranges
all 22n

elements generated as a matrix by a given FC code scheme.

5.2.2. The Matrix and Its elements

For a given FC scheme, let FC(J) = 〈J1|J0〉, each element















M〈J1|J0〉(uβ|J) = PH(uβ|J)

M〈J1|J0〉(vβ|J) = PH(vβ|J)

J ∈ B2n

2 ; J1, J0 ∈ B2n−1

2

(26)

5.2.3. Representative patterns of matrices

Four cases of FC codes are selected for illustrations in this Chapter. Further discussion on
the details of variant coding scheme has been previously published in [40, 44].

For example, four sample cases are shown in Figure 5 under relevant conditions.
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 8 1 9

2 10 3 11

4 12 5 13

6 14 7 15

0 2 1 3

4 6 5 7

8 10 9 11

12 14 13 15

0 4 1 5

2 6 3 7

8 12 9 13

10 14 11 15

(a) SL code (b) W code (c) F code (d) C code

Figure 5. (a-c) Four Cases of Matrix configurations for n = 2 on FC (a) Case 1. SL code (b) Case 2. W code (c) Case 3. F code
(d) Case 4. C code

Case 1: FC = {n = 2, P = (3210)} a SL code;

Case 2: FC = {n = 2, P = (2103)} a W code;

Case 3: FC = {n = 2, P = (3201)} a F code;

Case 4: FC = {n = 2, P = (3102)} a C code.

Under each condition, each FC code is a special configuration to make sixteen elements
arranged as a 4 × 4 matrix.

For the matrices in this chapter, four configurations are applied to construct sample matrices
with elements arranged for illustration purposes.

6. Representation model

Figure 6 presents a graphical summary of the above. Further representations are offered in
Figure 7 to show the main steps in creating a CE in the MPS or CPS and IMs relevant to
global CEM and IMM procedures.

∀X ∈ BN
2 →

J ∈ B2n

2 →

Generating Canonical
Ensemble &

Interactive Maps
GCEIM

→ {CE(J), IM(J)} →

∀J →

Global
Ensemble
Matrices

GEM

→ CEM

→ IMM

Figure 6. Diagrammatical Representation of VPS Model

7. Symbolic representations on selected cases

Using a representational model, for a given condition, there are two sets of CEM in both
MPS and CPS. Each set contains a CEM and eight IMMs. Since each matrix contains 22n

elements, the existence of so many possible configurations adds to the difficulties in reaching
a satisfactory understanding of the data sets. In this section, symbolic representations are
applied to show more clearly the essential symmetric properties of various matrices. Using
variant logic, the following equations can be established for an n = 2 condition to apply
(a, b, c, d) = (10, 8, 2, 0) and (ã, b̃, c̃, d̃) = (10, 14, 11, 15) for each meta function.
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2N bits

∀X ∈







0 ... 0
...

1 ... 1







J ∈







0 ... 0
...

1 ... 1







2n bits

GCEIM
⇒

CE(J) in MPS CE(J) in CPS

... ...
Eight IM(J) Eight IM(J)

... ...

IM(J) in MPS IM(J) in CPS

⇒ GEM

GEM ⇒

∀J →

CEM in MPS CEM in CPS

IMM in MPS IMM in CPS

... ...
Eight IM Matrices in MPS Eight IM Matrices in CPS

... ...

IMM in MPS IMM in CPS

Figure 7. Illustrations of Representative Model of the VPS for GCEIM and GEM results
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0 = 〈0|10〉 = 〈d|ã〉 = d; 1 = 〈0|11〉 = 〈d|c̃〉;
2 = 〈2|10〉 = 〈c|ã〉 = c; 3 = 〈2|11〉 = 〈c|c̃〉;
4 = 〈0|14〉 = 〈d|b̃〉; 5 = 〈0|15〉 = 〈d|d̃〉;
6 = 〈2|14〉 = 〈c|b̃〉; 7 = 〈2|15〉 = 〈c|d̃〉;
8 = 〈8|10〉 = 〈b|ã〉 = b; 9 = 〈8|11〉 = 〈b|c̃〉;

10 = 〈10|10〉 = 〈a|ã〉 = a = ã; 11 = 〈10|11〉 = 〈a|c̃〉 = c̃;
12 = 〈8|14〉 = 〈b|b̃〉; 13 = 〈8|15〉 = 〈b|d̃〉;
14 = 〈10|14〉 = 〈a|b̃〉 = b̃; 15 = 〈10|15〉 = 〈a|d̃〉 = d̃.

(27)

Using this symbolic style, four cases of configurations and their polarized decompositions
are represented as follows.

Case 1: SL code P = (3210)









0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15









=

〈









0 0 2 2
0 0 2 2
8 8 10 10
8 8 10 10









|









10 11 10 11
14 15 14 15
10 11 10 11
14 15 14 15









〉

=

〈









d d c c
d d c c
b b a a
b b a a









|









ã c̃ ã c̃

b̃ d̃ b̃ d̃
ã c̃ ã c̃

b̃ d̃ b̃ d̃









〉

=









〈d|ã〉 〈d|c̃〉 〈c|ã〉 〈c|c̃〉
〈d|b̃〉 〈d|d̃〉 〈c|b̃〉 〈c|d̃〉
〈b|ã〉 〈b|c̃〉 〈a|ã〉 〈a|c̃〉
〈b|b̃〉 〈b|d̃〉 〈a|b̃〉 〈a|d̃〉









= 〈2x2Block|Cross〉;

(28)

Case 2: W code P = (2103)









0 8 1 9
2 10 3 11
4 12 5 13
6 14 7 15









=

〈









0 8 0 8
2 10 2 10
0 8 0 8
2 10 2 10









|









10 10 11 11
10 10 11 11
14 14 15 15
14 14 15 15









〉

=

〈









d b d b
c a c a
d b d b
c a c a









|









ã ã c̃ c̃

b̃ b̃ d̃ d̃
ã ã c̃ c̃

b̃ b̃ d̃ d̃









〉

=









〈d|ã〉 〈b|ã〉 〈d|c̃〉 〈b|c̃〉
〈c|b̃〉 〈a|b̃〉 〈c|d̃〉 〈a|d̃〉
〈d|ã〉 〈b|ã〉 〈d|c̃〉 〈b|c̃〉
〈c|b̃〉 〈a|b̃〉 〈c|d̃〉 〈a|d̃〉









= 〈Cross|2x2Block〉;

(29)
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Case 3: F code P = (3201)









0 2 1 3
4 6 5 7
8 10 9 11
12 14 13 15









=

〈









0 2 0 2
0 2 0 2
8 10 8 10
8 10 8 10









|









10 10 11 11
14 14 15 15
10 10 11 11
14 14 15 15









〉

=

〈









d c d c
d c d c
b a b a
b a b a









|









ã ã c̃ c̃

b̃ b̃ d̃ d̃
ã ã c̃ c̃

b̃ b̃ d̃ d̃









〉

=









〈d|ã〉 〈c|ã〉 〈d|c̃〉 〈c|c̃〉
〈d|b̃〉 〈c|b̃〉 〈d|d̃〉 〈c|d̃〉
〈b|ã〉 〈a|ã〉 〈b|c̃〉 〈a|c̃〉
〈b|b̃〉 〈a|b̃〉 〈b|d̃〉 〈a|d̃〉









= 〈V-2Run|H-2Run〉;

(30)

Case 4: C code P = (3102)









0 4 1 5
2 6 3 7
8 12 9 13

10 14 11 15









=

〈









0 0 0 0
2 2 2 2
8 8 8 8

10 10 10 10









|









10 14 11 15
10 14 11 15
10 14 11 15
10 14 11 15









〉

=

〈









d d d d
c c c c
b b b b
a a a a









|









ã b̃ c̃ d̃

ã b̃ c̃ d̃

ã b̃ c̃ d̃

ã b̃ c̃ d̃









〉

=









〈d|ã〉 〈d|b̃〉 〈d|c̃〉 〈d|d̃〉
〈c|ã〉 〈c|b̃〉 〈c|c̃〉 〈c|d̃〉
〈b|ã〉 〈b|b̃〉 〈b|c̃〉 〈b|d̃〉
〈a|ã〉 〈a|b̃〉 〈a|c̃〉 〈a|d̃〉









= 〈H-4Run|V-4Run〉.

(31)

Six pairs {0 : 15, 1 : 7, 2 : 11, 4 : 13, 6 : 9, 8 : 14} of distributions may have symmetry properties

0 : 15 = 〈d|ã〉 : 〈a|d̃〉;
1 : 7 = 〈d|c̃〉 : 〈c|d̃〉;
2 : 11 = 〈c|ã〉 : 〈a|c̃〉;
4 : 13 = 〈d|b̃〉 : 〈b|d̃〉;
6 : 9 = 〈c|b̃〉 : 〈b|c̃〉;
8 : 14 = 〈b|ã〉 : 〈a|b̃〉.

(32)
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Six pairs {1 : 8, 2 : 4, 3 : 12, 5 : 10, 7 : 14, 11 : 13} of distributions may have anti-symmetry
properties

1 : 8 = 〈d|c̃〉 : 〈b|ã〉;
2 : 4 = 〈c|ã〉 : 〈d|b̃〉;
3 : 12 = 〈c|c̃〉 : 〈b|b̃〉;
5 : 10 = 〈d|d̃〉 : 〈a|ã〉;
7 : 14 = 〈c|d̃〉 : 〈a|b̃〉;

11 : 13 = 〈a|c̃〉 : 〈b|d̃〉.

(33)

Two pairs {3 : 12, 5 : 10} of distributions may have self-conjugate properties with both
symmetry and anti-symmetry properties.

3 : 12 = 〈c|c̃〉 : 〈b|b̃〉;
5 : 10 = 〈d|d̃〉 : 〈a|ã〉.

(34)

Four pairs {0 : 15, 3 : 12, 5 : 10, 6 : 9} of distributions may have special properties.

0 : 15 = 〈d|ã〉 : 〈a|d̃〉;
3 : 12 = 〈c|c̃〉 : 〈b|b̃〉;
5 : 10 = 〈d|d̃〉 : 〈a|ã〉;
6 : 9 = 〈c|b̃〉 : 〈b|c̃〉.

(35)

Regions of Measurements in MPS can be illustrated as

MPS :









0 5
...

...
10 15









⇒









[1, 0] (−,−) ... [1/2, 1/2]
(−, 0) ... ...

... ... (−,−)
(0, 0) ... (0,−) [0, 1]









(36)

Regions of Measurements in CPS can be illustrated as

CPS :









0 5
...

...
10 15









⇒









[1, 0] (1,−) ... [1, 1]
(−, 0) ... ...

... ... (−, 1)
(0, 0) ... (0,−) [0, 1]









(37)

8. Sample results

8.1. CEM groups

Using n = 2 configurations, relevant CEMs on either MPS or CPS are shown in Figure 8(a-h).
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(a) SL in MPS

(b) W in MPS
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(c) F in MPS

(d) C in MPS
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(e) SL in CPS

(f) W in CPS
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(g) F in CPS

(h) C in CPS

Figure 8. (a-f) Matrices of Plane Lattices of VPS for MPS and CPS in {SL, W, F, C} codes, (a-d) MPS, (e-h) CPS; (a,e) SL code,
(b,f) W code,(c,g) F code, (d,h) C code.
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8.2. IMM groups

IM Matrices under MPS are shown in Figures 9(M1-M32) and IM Matrices under CPS are
shown in Figures 10(C1-C32).

9. Analysis of visual distributions

9.1. VPS organization

Two groups of matrices are shown in Figure 8. The four matrices shown as 8 (a-d) illustrate
MPS conditions and the four matrices shown as 8 (e-h) illustrate CPS conditions. Considering
various CEs exhibiting conjugate symmetry properties, such arrangements may be noted to
have similar distributions along the diagonal and anti-diagonal directions so that it is possible
to find a pair of CEs with each CE pair-matched by a geometric transformation to another
CE through either rotation or reflection.

9.1.1. MPS Structures

The four CE matrices in the MPS group as shown in Figure 8(a-d) can be analyzed as follows.

SL in MPS

For the matrix in Figure 8(a) showing SL in MPS, 16 CEs are arranged in linear order from
0-15 in the 4× 4 matrix. Only two pairs of {0:15, 6:9} CEs have conjugate symmetry properties.

W in MPS

For the matrix in Figure 8(b) showing W in MPS, 16 CEs are not arranged in linear order
in {0,...,15} in the 4 × 4 matrix. Only two pairs of {0:15, 6:9} CEs have conjugate symmetry
properties.

F in MPS

However, for the matrix in Figure 8(c) showing F in MPS, 16 CEs exhibit more conjugate
pairs in the 4× 4 matrix. Here, six pairs of CEs {0:15, 1:7, 2:11, 4:13, 6:9, 8:14} show conjugate
symmetry properties.

C in MPS

Also, for the matrix in Figure 8(d) showing C in MPS, we find the same number of conjugate
pairs as with the F condition. Moreover, not only do six pairs of CEs {0:15, 1:7, 2:11, 4:13,
6:9, 8:14} exhibit conjugate symmetry properties, but also four CEs {10,8,2,0} are polarized on
the vertical as per the left column and four CEs {10,14,11,15} are polarized on the horizontal
direction as per the bottom row. In addition, nine CEs showing interactive properties are
evident top-right in a 3 × 3 matrix.

9.1.2. CPS Structures

The four CE matrices shown in Figure 8(e-h) in the CPS group can be analyzed as follows.

SL in CPS
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For the matrix in Figure 8(e) showing SL in CPS, 16 CEs are arranged in linear order from
0-15 as a 4 × 4 matrix. Four pairs of CEs {0:15, 3:12, 5:10, 6:9} have conjugate symmetry
properties.

W in CPS

For the matrix in Figure 8(f) showing W in CPS, 16 CEs are not arranged in linear order.
However, four pairs of CEs {0:15, 3:12, 5:10, 6:9} have conjugate symmetry properties.

F in CPS

For the matrix in Figure 8(g) showing F in CPS, we can recognize two CE groups where each
group has six pairs of CEs with conjugate symmetry properties {0:15, 1:7, 2:11, 4:13, 6:9, 8:14}
and {2:4, 1:8, 3:12, 5:10, 7:14, 11:13}.

C in CPS

For the matrix in Figure 8(h) showing C in CPS, 12 CEs (out of 16) show conjugate pairing.
This is the same number of conjugate pairs as is evident with the F condition in CPS. Also,
if we look at polarization, the matrix for C in CPS is very different from the other coding
matrices. It has significant polarized properties connecting the outer elements of the matrix.
Here, four CEs {10,8,2,0} are polarized on the vertical as per the left column, and another
four CEs {5,7,13,15} as per the right column. Also, four CEs {0,4,1,8} are polarized on the
horizontal as per the top-row and another four CEs {10,14,11,15} as per the bottom-row. Four
more CEs {3,6,9,12} exhibit interactive properties in a 2 x 2 central grid. In all, five distinct
regions can be identified as significant. It is interesting to note such remarkable symmetry
illustrating interactions between and among these meta functions.

9.2. IMM organization

From one matrix in VPS, eight matrices corresponding to the two vectors {u, v} =
{(u+, u−, u0, u1), (v+, v−, v0, v1)} can be generated showing interactive properties under
symmetry/anti-symmetry, and synchronous/asynchronous conditions respectively. A total
of 64 matrices are shown in two groups in Figures 9 (M1-M32) for MPS and in Figures 10
(C1-C32) for CPS, respectively.

9.2.1. MPS Structures

SL group in MPS

For the SL group in Figure 9 (M1-M8), the two matrix vectors {u, v} =
{(u+, u−, u0, u1), (v+, v−, v0, v1)} are best considered separately.

M1-M4: Let us first consider elements M1-M4 where the four matrices of (u+, u−, u0, u1) are
in a symmetry group,

In u+ matrix M1, elements in the columns and rows are arranged in what may be described
as a periodic crossing structure.

In u− matrix M2, four elements with the same IMs are arranged in a 2 × 2 block with four
distinct distributions being observed.
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In u0 matrix M3, each element shows simple additions from elements in u+ and u−

respectively. It it interesting to note that only two pairs of positions {0:15, 6:9} are similarly
distributed in the relevant MPS matrix.

However, in u1 matrix M4, significant symmetry properties can be observed. Four pairs
{0:15, 3:12, 5:10, 6:9} have symmetry or anti-symmetry properties that are different from the
u0 condition.

M4-M8: Let us now consider elements M5-M8 where the four matrices of (v+, v−, v0, v1) are
in an anti-symmetry group,

In v+ matrix M5, elements in the columns and rows are arranged as periodic crossing
structures.

In v− matrix M6, four elements with the same IMs are arranged in a 2 × 2 block with four
distinct distributions observed.

In v0 matrix M7, each element shows simple additions from elements in v+ and v−
respectively. Only two pairs of positions {0:15, 6:9} are similarly distributed in the relevant
MPS matrix.

In v1 matrix M8, significant symmetry properties can be observed. Two pairs {0:15, 6:9} have
anti-symmetry properties that are the same as the v0 condition.

W group in MPS

For the W group in Figure 9 (M9-M16), the two matrix vectors {u, v} =
{(u+, u−, u0, u1), (v+, v−, v0, v1)} are best considered separately.

M9-M12: Let us now consider elements M9-M12 where the four matrices (u+, u−, u0, u1) are
in a symmetry group,

In u+ matrix M9, four elements with the same IMs are arranged in a 2 × 2 block with four
distinct distributions observed.

In u− matrix M10, elements in the columns and rows are arranged as a periodic crossing
structure.

In u0 matrix M11, each element shows simple additions with elements in u+ and u−

respectively. It it interesting to note that only two pairs of positions {0:15, 6:9} are similarly
distributed in the relevant MPS matrix.

However, in u1 matrix M12, significant symmetry properties can be observed. Four pairs
{0:15, 3:12, 5:10, 6:9} have symmetry or anti-symmetry properties that are different from the
u0 condition.

M13-M16: Let us now consider elements M13-M16 where the four matrices (v+, v,v0, v1) are
in an anti-symmetry group,

In v+ matrix M13, four elements with the same IMs are arranged in a 2 × 2 block with four
distinct distributions observed.

In v− matrix M14, elements in the columns and rows are arranged as a periodic crossing
structure.
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In v0 matrix M15, each element shows simple additions with elements in v+ and v−
respectively. Only two pairs of positions {0:15, 6:9} are similarly distributed in the relevant
MPS matrix.

In v1 matrix M16, significant symmetry properties can be observed. Two pairs {0:15, 6:9} have
anti-symmetry properties the same as under the v0 condition.

F group in MPS

For the F group in Figure 9 (M17-M24), the two matrix vectors {u, v} =
{(u+, u−, u0, u1), (v+, v−, v0, v1)} are best considered separately.

M17-M20: Let us now consider elements M17-M20 where the four matrices (u+, u−, u0, u1)
are in a symmetry group,

In u+ matrix M17, the horizontal elements are arranged in H-2R patterns and vertical
elements are in a periodic crossing structure.

In u− matrix M18, vertical elements are arranged in V-2R patterns and the horizontal
elements as a periodic crossing structure.

In u0 matrix M19, each element shows simple additions with elements in u+ and u−

respectively. It it interesting to note that six pairs of positions {0:15, 1:7. 2:11, 4:13, 6:9,
8:14} are similarly distributed.

However, in u1 matrix M20, significant symmetry properties can be observed. Not only do
six pairs {0:15, 1:7. 2:11, 4:13, 6:9, 8:14} have symmetry properties and another six pairs of
{1:8, 2:4, 3:12, 5:10, 7:14, 11:13 } with anti-symmetry properties but there are also significantly
differences compared with the u0 condition.

M21-M24: Let us now consider elements M17-M20 where the four matrices of (v+, v,v0, v1)
are in an anti-symmetry group,

In v+ matrix M21, the horizontal elements are arranged in H-2R patterns and the vertical
elements as a periodic crossing structure.

In v− matrix M22, the vertical elements are arranged in V-2R patterns and the horizontal
elements as a periodic crossing structure.

In v0 matrix M23, each element shows simple additions with elements in v+ and v−
respectively. It it interesting to note that six pairs of positions {0:15, 1:7. 2:11, 4:13, 6:9,
8:14} are in the anti-symmetry distribution.

In v1 matrix M24, significant symmetry properties can be observed. Six pairs {0:15, 1:7.
2:11, 4:13, 6:9, 8:14} have anti-symmetry properties and two pairs {2:4, 11:13} have symmetry
properties.

C group in MPS

For the C group in Figure 9 (M25-M32), two matrix vectors {u, v} =
{(u+, u−, u0, u1), (v+, v−, v0, v1)} are best considered separately.

M25-M28: Let us now consider elements M25-M28 where the four matrices of (u+, u−, u0, u1)
are in a symmetry group,
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In u+ matrix M25, the horizontal elements are in a periodic crossing structure and the vertical
elements are arranged in V-4R patterns

In u− matrix M26, the horizontal elements are arranged in H-4R patterns and the vertical
elements as a periodic crossing structure.

In u0 matrix M27, each element shows simple additions with elements in u+ and u−

respectively. It it interesting to note that six pairs of positions {0:15, 1:7. 2:11, 4:13, 6:9,
8:14} are similarly distributed.

However, in u1 matrix M28, significant symmetry properties can be observed. Not only do six
pairs {0:15, 1:7. 2:11, 4:13, 6:9, 8:14} have symmetry but another six pairs {1:8, 2:4, 3:12, 5:10,
7:14, 11:13 } have anti-symmetry properties, all significantly different from the u0 condition.

M29-M32: Let us now consider elements M29-M32 where the four matrices of (v+, v,v0, v1)
are in an anti-symmetry group,

In v+ matrix M29, the horizontal elements are arranged in H-4R patterns and the vertical
elements as a periodic crossing structure.

In v− matrix M30, the horizontal elements are arranged in H-4R patterns and the vertical
elements as a periodic crossing structure.

In v0 matrix M31, each element shows simple additions with elements in v+ and v−
respectively. The distribution of six pairs of positions {0:15, 1:7. 2:11, 4:13, 6:9, 8:14} exhibit
anti-symmetry.

In v1 matrix M32, significant symmetry properties can be observed. Six pairs {0:15, 1:7.
2:11, 4:13, 6:9, 8:14} have anti-symmetry properties and two pairs {2:4, 11:13} have symmetry
properties.

9.2.2. CPS Structures

Four groups of different configurations shown in Figure 10 (C1-C32) are discussed separately
as follows.

SL group in CPS

For the SL group in Figure 10 (C1-C8), he two matrix vectors {ũ, ṽ} =
{(ũ+, ũ−, ũ0, ũ1), (ṽ+, ṽ−, ṽ0, ṽ1)} are best considered separately.

C1-C4: Let us now consider elements C1-C4 where the four matrices of (ũ+, ũ−, ũ0, ũ1) are
in a symmetry group,

In ũ+ matrix C1, elements in the columns and rows are in a periodic crossing structure.

In ũ− matrix C2, four elements with the same IMs are arranged in a 2 × 2 block with four
distinct distributions observed.

In ũ0 matrix C3, each element shows simple additions from elements in ũ+ and ũ−

respectively. It it interesting to note that four pairs of positions {0:15, 3:12, 5:10, 6:9} are
similarly distributed in the relevant CPS matrix.

In ũ1 matrix C4, similar symmetry properties can be observed. Four pairs {0:15, 3:12, 5:10,
6:9} have symmetry or anti-symmetry properties that are the same as for the ũ0 condition.
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C5-C8: Let us now consider elements C5-C8 where the four matrices of (ṽ+, ṽ,ṽ0, ṽ1) are in
an anti-symmetry group,

In ṽ+ matrix C5, elements in the columns and rows are arranged in a periodic crossing
structure.

In ṽ− matrix C6, four elements with same IMs are arranged in a 2× 2 block and four distinct
distributions are observed.

In ṽ0 matrix C7, each element shows simple additions from elements in ṽ+ and ṽ−
respectively. Only two pairs of positions {0:15, 6:9} are in the same distribution in similar
arrangements.

In ṽ1 matrix C8, similar symmetry properties can be observed. Four pairs {0:15, 3:12, 5:10,
6:9} have anti-symmetry properties significantly different from those in the ṽ0 condition.

W group in CPS

For the W group in Figure 10 (C9-C16), the two matrix vectors {ũ, ṽ} =
{(ũ+, ũ−, ũ0, ũ1), (ṽ+, ṽ−, ṽ0, ṽ1)} are best considered separately.

C9-C12: Let us now consider elements C9-C12 where the four matrices of (ũ+, ũ−, ũ0, ũ1) are
in a symmetry group,

In ũ+ matrix C9, four elements with the same IMs are arranged in a 2 × 2 block and four
distinct distributions are observed.

In ũ− matrix C10, elements in the columns and rows are arranged as a periodic crossing
structure.

In ũ0 matrix C11, each element shows simple additions from elements in ũ+ and ũ−

respectively. It it interesting to note that four pairs of positions {0:15, 3:12, 5:10, 6:9} are
distributed in similar arrangements in the relevant CPS matrix.

In ũ1 matrix C12, similar symmetry properties can be observed. Four pairs {0:15, 3:12, 5:10,
6:9} have symmetry or anti-symmetry properties that are the same as under the ũ0 condition.

C13-C16: Let us now consider elements C13-C16 where the four matrices of (ṽ+, ṽ,ṽ0, ṽ1) are
in an anti-symmetry group,

In ṽ+ matrix C13, four elements with the same IMs are arranged in a 2 × 2 block and four
distinct distributions are observed.

In ṽ− matrix C14, elements in the columns and rows are arranged as a periodic crossing
structure.

In ṽ0 matrix C15, each element shows simple additions from elements in ṽ+ and ṽ−
respectively. Only two pairs of positions {0:15, 6:9} show the same distribution in similar
arrangements.

In ṽ1 matrix C16, significant symmetry properties can be observed. Four pairs {0:15, 3:12,
5:10, 6:9} have anti-symmetry properties that are different from those under ṽ0 conditions.

F group in CPS
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For the F group in Figure 10 (C17-C24), the two matrix vectors {ũ, ṽ} =
{(ũ+, ũ−, ũ0, ũ1), (ṽ+, ṽ−, ṽ0, ṽ1)} are best considered separately.

C17-C20: Let us now consider elements C17-C20 where the four matrices of (ũ+, ũ−, ũ0, ũ1)
are in a symmetry group,

In ũ+ matrix C17, horizontal elements are arranged in H-2R patterns and vertical elements
are in a periodic crossing structure.

In ũ− matrix C18, vertical elements are arranged in V-2R patterns and horizontal elements
as a periodic crossing structure.

In ũ0 matrix C19, each element shows simple additions from elements in ũ+ and ũ−

respectively. It interesting to note that six pairs of positions {0:15, 1:7. 2:11, 4:13, 6:9, 8:14}
and {0:15, 1:7. 2:11, 4:13, 6:9, 8:14} are in the similar distributions.

In ũ1 matrix C20, similar symmetry properties can be observed. Not only do six pairs {0:15,
1:7. 2:11, 4:13, 6:9, 8:14} have symmetry but also another six pairs {1:8, 2:4, 3:12, 5:10, 7:14,
11:13 } exhibit anti-symmetry properties that are the same as under ũ0 conditions.

C21-C24: Let us now consider elements C21-C24 where the four matrices of (ṽ+, ṽ,ṽ0, ṽ1) are
in an anti-symmetry group,

In ṽ+ matrix C21, horizontal elements are arranged in H-2R patterns and vertical elements
as periodic crossing structures.

In ṽ− matrix C22, vertical elements are arranged in V-2R patterns and horizontal elements as
a periodic crossing structure.

In ṽ0 matrix C23, each element shows simple additions from elements in ṽ+ and ṽ−
respectively. It is interesting to note that only six pairs of positions {0:15, 1:7. 2:11, 4:13,
6:9, 8:14} show anti-symmetry distributions.

In ṽ1 matrix C24, significant symmetry properties can be observed. Six pairs {0:15, 1:7. 2:11,
4:13, 6:9, 8:14} have anti-symmetry properties and six pairs {1:8, 2:4, 3:12, 5:10, 7:14, 11:13 }
have symmetry properties.

C group in CPS

For the C group in Figure 10 (C25-C32), the two matrix vectors {ũ, ṽ} =
{(ũ+, ũ−, ũ0, ũ1), (ṽ+, ṽ−, ṽ0, ṽ1)} are best considered separately.

C25-C28: Let us now consider elements C25-C28 where the four matrices of (ũ+, ũ−, ũ0, ũ1)
are in a symmetry group,

In ũ+ matrix C25, horizontal elements are arranged as a periodic crossing structure. and
vertical elements are arranged in V-4R patterns

In ũ− matrix C26, horizontal elements are arranged in H-4R patterns and vertical elements
as a periodic crossing structure.

In ũ0 matrix C27, each element shows simple additions from elements in u+ and u−

respectively. It is interesting to note that six pairs of positions {0:15, 1:7. 2:11, 4:13, 6:9,
8:14} are similarly distributed and six pairs of positions {1:8, 2:4, 3:12, 5:10, 7:14, 11:13 } show
anti-symmetry properties.

Interactive Maps on Variant Phase Spaces
http://dx.doi.org/10.5772/51635

155



Type Case CP ∈ MPS CP ∈ CPS GP Notes

SL P=(3210) 2(a) 4(a,d) N Limited conjugate symmetry
W P=(2103) 2(a) 4(a,d) N Limited conjugate symmetry
F P=(3201) 6(e) 12(e,f) N Pairs conjugate symmetry
C P=(3102) 6(e) 12(e,f) Y Global symmetry

Table 4. Global Symmetry Properties on CE Matrices

In ũ1 matrix C28, significant symmetry properties can be observed. Not only do six pairs
{0:15, 1:7. 2:11, 4:13, 6:9, 8:14} show symmetry but also another six pairs {1:8, 2:4, 3:12, 5:10,
7:14, 11:13 } exhibit anti-symmetry properties similar to those under ũ0 conditions.

C29-C32: Let us now consider elements C29-C32 where the four matrices of (ṽ+, ṽ,ṽ0, ṽ1) are
in an anti-symmetry group,

In ṽ+ matrix C29, horizontal elements are arranged in H-4R patterns and vertical elements
are arranged as a periodic crossing structure.

In ṽ− matrix C30, horizontal elements are arranged in H-4R patterns and vertical elements
are arranged as a periodic crossing structure.

In ṽ0 matrix C31, each element shows simple additions from elements in ṽ+ and ṽ−
respectively. Two pairs of positions {0:15, 4:13, 6:9, 8:14} exhibit anti-symmetry distributions.

In ṽ1 matrix C32, significant symmetry properties can be observed. Six pairs {0:15, 1:7. 2:11,
4:13, 6:9, 8:14} have anti-symmetry properties and another six pairs {1:8, 2:4, 3:12, 5:10, 7:14,
11:13 } have symmetry properties that are different from those under ṽ0 condition.

10. Global symmetric properties

Working from four sets of CEM and IMM results, key global symmetry properties are
presented and summarized in Table 4 for CEMs and in Table 5 for IMMs as follows.

Where CP is a conjugate pair, GP is global polarization and a:(0:15,6:9), d:(3:12,5:10),
e:(0:15,1:7,2:11,4:13,6:9,8:14), f:(1:8,2:4,3:12,5:10,7:14,11:13), are pair functions.

It is interesting to note that significant differences in symmetry properties between MPS and
CPS can be observed for CEM conjugate pairs.

In general, we find double the number of incidences of symmetry properties with CPS
compared with MPS shown in Table 4.

Where SP is a Symmetric Pair, ASP is an Anti-symmetric Pair, GS is Global
Symmetry and a:(0:15,6:9), b:(0:15,6:9,3:12), c:(5:10), d:(3:12,5:10), e:(0:15,1:7,2:11,4:13,6:9,8:14),
f:(1:8,2:4,3:12,5:10,7:14,11:13), g:(2:4,11:13) are pair functions.

It is interesting to note that symmetry properties evident in IMM groups in Table 5 are more
refined than the original configurations under MPS and CPS conditions.

The classification of different projections and polarized properties can be further
refined to show their various interactive activities in relevant sub-categories. Further
details for conjugate pairs can be distinguished under symmetry/anti-symmetry and
synchronous/asynchronous configurations. Conjugate pairs can be further differentiated
as being either symmetric or anti-symmetric pairs.
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Type Case Left Right SP(D-P) ASP(D-P) SP(D-W) ASP(D-W) GS

SL P=(3210) Cross 2x2Block Weak
u 2 (a) 0 3 (b) 1 (c)
v 0 2 (a) 0 2 (a)
ũ 2 (a) 2 (d) 2 (a) 2 (d)
ṽ 0 2 (a) 2 (d) 2 (a)

W P=(2103) 2x2Block Cross Weak
u 2 (a) 0 3 (b) 1 (c)
v 0 2 (a) 0 2 (a)
ũ 2 (a) 2 (d) 2 (a) 2 (d)
ṽ 0 2 (a) 2 (d) 2 (a)

F P=(3201) V-2R H-2R Stronger
u 6 (e) 0 6 (e) 6 (f)
v 0 6 (e) 2 (g) 6 (e)
ũ 6 (e) 6 (f) 6 (e) 6 (f)
ṽ 0 6 (e) 6 (e) 6 (f)

C P=(3102) V-4R H-4R Strongest
u 6 (e) 0 6 (e) 6 (f)
v 0 6 (e) 2 (g) 6 (e)
ũ 6 (e) 6 (f) 6 (e) 6 (f)
ṽ 0 6 (e) 6 (e) 6 (f)

Table 5. Global Symmetry Properties on IM Matrices

10.1. Comparison of variant phase space and statistical mechanics

Both Maxwell-Boltzmann and Darwin-Fowler schemes are considered suitable for processing
isolated systems. Meanwhile, a Gibbs scheme can be applied to several different systems
namely, an isolated system on a micro canonical ensemble, a closed system on a canonical
ensemble, and an open system on a grand canonical ensemble [20, 23, 24, 31, 33]. Such
significant differences can offer useful comparisons when considering Variant Phase Space.

Using Variant Phase Space (VPS) components and key properties of Classical Statistical
Mechanics (CSM), two types of systems are compared in Table 6.

Table 6 shows some key differences that may be distinguished between VPS and CSM.
Both approaches use parameters {n, N, X} on a selected function. However, there is a
distinct difference for ME with a split into non-interactive and interactive activities between
Maxwell-Boltzmann on ME(VPS) and Gibbs on IP(VPS), respectively. This difference is
further distinguished on CE(VPS) and IM(VPS) levels.

Normally statistical mechanics is not based on all possible functions Instead, one function
with the most probable properties is selected. Only the Maxwell demon mechanism provides
any possible function for potential applications, under such restriction, modern statistical
mechanics has no computational mechanism for GEM capacities.

GEM capacities do not cover a Gibbs grand canonical ensemble. However, using a given
configuration of variant logic function to arrange full sets of distributions similar to variation,
functional capacities can be associated with a truly large number of configurations: 2n! × 22n

.
This provides an opportunity to exhaust distributions for possible functions on a scale that
goes way beyond the conventional framework of modern statistical mechanics.
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Component VPS Meaning CSM Notes

Parameter n Variables Local unit Cell unit on rule space
N Dimension Dimension Vector Dimension on value space
X Nbit vector Random events I/O vectors

X ∈ BN
2

J n-function Probable function Selected function

J ∈ B2n

2
{p+, p−} Probability pairs {q, p} Conjugate pairs

of measurements of measurements

CME VM Variant Measures Classes of events Types of vector elements
PM Probability Density Probability

Measurements Probability on each class
ME Micro Phase Point Unit in Phase Space for

Ensemble Maxwell-Boltzmann non interaction
IP Interactive Micro Canonical Unit in Ensemble

Projections Ensemble Gibbs with interaction

CEIM CE Canonical Canonical Ensemble Non-interactive
Ensemble Maxwell-Boltzmann distribution

IM Interactive Canonical Ensemble Interactive
Maps Gibbs distributions

GEM SCEIM Sets of CE&IM Full set of Full set of
Maxwell demons possible distributions

CIM CE&IM Matrices Global distribution Matrices for non-interactive
Matrices and interactive distributions

Table 6. Comparison between VPS and CSM

Key Output Operation Strategy Expression

CIM Matrices for Global organization of Top Hilbert space, Dynamic
CE&IMs distributions for a configuration systems, Variation functional

⇓ Top-down
SCEIM Sets of Global Integration on Meta distribution, distribution

CE&IMs distributions for all functions Down function, periodic distribution

CEIM CE&IMs Integration of distributions UP Maxwell-Boltzmann, Gibbs,
for a function Euler, Canonical ensemble

⇑ Bottom-up
CME ME&IPs From local measures to Hamilton,Lagrange, Uncertainty,

micro ensemble and projections Bottom Fourier pairs, Phase point

Table 7. Operation, strategy and expression of VPS

10.2. Corresponding structures on variant phase space

Top-down and bottom-up strategies can both be applied to Variant Phase Space. See Table 7.

Top-down and bottom-up strategies can each open a window through which to glimpse the
mysteries of Variant Phase Space. Such glimpses do not yet provide a complete picture and
further investigation is clearly required.

11. Main results

It is appropriate to present the results as a series of detailed propositions and predictions as
follows.
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For an n variable function J ∈ B2n

2 and an N bit vector X ∈ BN
2 , following propositions can

be established.

11.1. Propositions

Proposition 11.1: Two types of probability measurements, Multiple and Conditional
probabilities determine two distinct phase spaces, MPS and CPS.

Proof: In a PM module, multiple probabilities generates MPS and conditional probabilities
create CPS. �

Proposition 11.2: Two types of operations: symmetry/anti-symmetry and
synchronous/asynchronous generate eight interactive projections.

Proof: Two pairs of measurement vectors {u, v} or {ũ, ṽ} are involved in projections, where
u = (u+, u−, u0, u1), v = (v+, v−, v0, v1) and ũ = (ũ+, ũ−, ũ0, ũ1), ṽ = (ṽ+, ṽ−, ṽ0, ṽ1), each
pair has eight interactive projections. �

Proposition 11.3: Following a bottom-up approach, two CE and 16 IMs can be generated to
exhaust all 2N input vectors for the relevant ME and IP measurements.

Proof: Results may be generated using a CEIM module and Proposition 11.3 is further
supported by Propositions 11.1 to 11.2. �

Proposition 11.4: Each CE is a statistical distribution and each IM corresponds to one of
eight IP modes.

Proof: A pair of probability measurements has one fixed CE combination and each IP mode
corresponds to one IM distribution. �

Proposition 11.5: Both Proposition 11.3 and Proposition 11.4 provide a general Maxwell
Demon mechanism.

Proof: For any function, CE and IMs can be fully and exhaustively generated without
reference to thermodynamic issues. �

Proposition 11.6: Exhausting ∀J ∈ B2n

2 , two sets of {CE} and 16 sets of {IM} can be generated,

each set contains 22n
elements and each element is a distribution.

Proof: Using the SCEIM module, they are natural outputs. �

Proposition 11.7: In a variant logic framework, there are 2n! × 22n
configurations for

arranging a set of {CE} and eight sets of {IM} into a CEM and eight IMMs.

Proof: Since each IMM has the same organization as the CEM, a total of 2n! × 22n

configurations can be distinguished and each configuration corresponds to a variant logic
matrix. �

Proposition 11.8: With a top-down approach, either a CEM or an IMM on a proper
configuration can be composed of two polarized matrices. Each polarized matrix has periodic
structures on its columns and/or rows.

Proof: Since a proper configuration is based on n periodic meta vectors and their
combinations, its relative arrangements are invariant under permutation and complementary
operations on the vector with 22n

bits that determine each polarized structure. �
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Proposition 11.9: For MPS on C code conditions, a pair of measurements in a CEM can be
arranged in a square with corners having values {[0, 0], [1, 0], [1/2, 1/2], [0, 1]}.

Proof: Under a C code configuration, the possible regions of measurements for a CEM in
MPS can be shown in

MPS : CEM =













[1, 0] ... (−,−) ... [1/2, 1/2]
... ...

(−, 0) ... (−,−)
... ...

(0, 0) ... (0,−) ... [0, 1]













�

Proposition 11.10: For CPS on C code conditions, a pair of measurements in a CEM can be
arranged in a square with corners having values {[0, 0], [1, 0], [1, 1], [0, 1]}.

Proof: Under a C code configuration, the possible regions of measurements for a CEM in
CPS can be shown in

CPS : CEM =













[1, 0] ... (1,−) ... [1, 1]
... ...

(−, 0) ... (−, 1)
... ...

(0, 0) ... (0,−) ... [0, 1]













�

11.2. Predictions

Prediction 11.1: Following a bottom-up strategy, it is not possible to determine CE properties
using limited numbers of ME.

This prediction points towards a more general intrinsic restriction on uncertainty effects for
incomplete procedures applied to random events.

Prediction 11.2: For a configuration that is not in a variant logic framework, there may be a
square integral configuration capable of providing an approximate solution.

Periodic matrices could play a key role as core components of approximation procedures.

Prediction 11.3: A sound statistical interpretation of quantum mechanics can be established
using VPS construction.

Since both top-down and bottom-up strategies are included, further exploration is feasible.

Prediction 11.4: VPS construction can provide a foundation based on logic and hierarchies
of measurement levels for complex dynamic systems, statistical mechanics, and cellular
automata.

Through VPS construction clearly offers significant potential, this prediction needs to be
tested by solid experimental and theoretical results backed by evidence.
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(M1) u+ SL group

(M2) u− SL group
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(M3) u0 SL group

(M4) u1 SL group
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(M5) v+ SL group

(M6) v− SL group
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(M7) v0 SL group

(M8) v1 SL group
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(M9) u+ W group

(M10) u− W group
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(M11) u0 W group

(M12) u1 W group
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(M13) v+ W group

(M14) v− W group
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(M15) v0 W group

(M16) v1 W group
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(M17) u+ F group

(M18) u− F group
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(M19) u0 F group

(M20) u1 F group
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(M21) v+ F group

(M22) v− F group
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(M23) v0 F group

(M24) v1 F group
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(M25) u+ C group

(M26) u− C group
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(M27) u0 C group

(M28) u1 C group
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(M29) v+ C group

(M30) v− C group
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(M31) v0 C group

(M32) v1 C group

Figure 9. (M1-M32) IMM for MPS; (M1-M8) SL group; (M9-M16) W group; (M17-M24) F group; (M25-M-32) C group.
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(C1) ũ+ SL group

(C2) ũ− SL group
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(C3) ũ0 SL group

(C4) ũ1 SL group

Emerging Applications of Cellular Automata178



(C5) ṽ+ SL group

(C6) ṽ− SL group
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(C7) ṽ0 SL group

(C8) ṽ1 SL group
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(C9) ũ+ W group

(C10) ũ− W group
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(C11) ũ0 W group

(C12) ũ1 W group
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(C13) ṽ+ W group

(C14) ṽ− W group
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(C15) ṽ0 W group

(C16) ṽ1 W group
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(C17) ũ+ F group

(C18) ũ− F group
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(C19) ũ0 F group

(C20) ũ1 F group
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(C21) ṽ+ F group

(C22) ṽ− F group
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(C23) ṽ0 F group

(C24) ṽ1 F group
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(C25) ũ+ C group

(C26) ũ− C group
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(C27) ũ0 C group

(C28) ũ1 C group

Emerging Applications of Cellular Automata190



(C29) ṽ+ C group

(C30) ṽ− C group
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(C31) ṽ0 C group

(C32) ṽ1 C group

Figure 10. (C1-C32) IMM for CPS; (C1-C8) SL group; (C9-C16) W group; (C17-C24) F group; (C25-C32) C group.
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12. Conclusion

This chapter provides a brief investigation into Variant Phase Space (VPS) construction.

Using an n variable 0-1 function and an N bit vector, a VPS hierarchy can be progressively

established via variant measures, multiple or conditional probability measurements, and

selected pair of measurements to determine a Micro Ensemble (ME) and its eight interactive

projections. Collecting all possible 2N pairs of probability measurements, a Canonical

Ensemble (CE) and its eight Interactive Maps (IMs) are generated following a bottom-up

approach.

Applying a Maxwell demon mechanism, all possible 22n
functions can be calculated to create

a result comprising a {CE} and eight sets of {IM}. Using either a CE or an IM as an element,

it is possible to use a variant logic configuration to organize each set of distributions to be

a 22n−1
× 22n−1

matrix as a CE Matrix (CEM) or IM Matrix (IMM), respectively. Following

a top-down approach, a CEM or IMM can be decomposed into two polarized matrices

with each matrix having periodic properties that meet the requirements of a Fourier-like

transformation.

The main results are presented as ten propositions and four predictions to provide a

foundation for further exploration of quantum interpretations, statistical mechanics, complex

dynamic systems, and cellular automata.

The chapter does not explore global properties in detail, and further detailed investigations

and expansions are necessary.

Anticipating that the principles put forward in this chapter will prove to be well founded,

we look forward to exploring advanced scientific and technological applications in the near

future.

Acknowledgements

Thanks to Professor Hui C. Shen of USTC for the selected works of de Broglie, and a historical

review of statistical interpretation and modern development of statistical mechanics, to Colin

W. Campbell for help with the English edition, to Jie Wan for MPS and CPS figures, to

The School of Software Engineering, Yunnan University, The Key Laboratory of Software

Engineering of Yunnan Province, and The Yunnan Advanced Overseas Scholar Project

(W8110305) for financial support to the Information Security research projects (2010EI02,

2010KS06).

Author details

Jeffrey Zheng1, Christian Zheng2 and Tosiyasu Kunii3

1 Yunnan University, Key Lab of Yunnan Software Engineering, P.R. China
2 University of Melbourne, Australia
3 University of Tokyo, Japan

Interactive Maps on Variant Phase Spaces
http://dx.doi.org/10.5772/51635

193



References

[1] Ash, R. B. & Doléans-Dade, C. A. [2000]. Probability & Measure Theory, Elsevier.

[2] Barrow, J. D., Davies, P. C. W. & Charles L. Harper, J. E. [2004]. SCIENCE AND
ULTIMATE REALITY: Quantum Theory, Cosmology and Complexity, Cambridge University
Press.

[3] Belevitch V. [1962]. Summary of the history of circuit theory, Proceedings of the IRE, Vol
50, Iss 5, 848-855.

[4] Bender E.A. [2000]. An Introduction to Mathematical Modeling, Dover, New York.

[5] Birkhoff G.D. [1927]. Dynamic Systems, American Mathematical Society, New York.

[6] Blokhintsev D.I. [1964]. Quantum Mechanics, Dordrecht-Holland.

[7] Bohr, N. [1935]. Can quantum-mechanical description of physical reality be considered
complete?, Physical Review 48. 696-702.

[8] Bohr, N. [1949]. Discussion with Einstein on Epistemological Problems in Atomic Physics,
Evanston. 200-241.

[9] de Broglie, L.; Translated by Shen H.C. [2012]. Selected Works of de Broglie. in Chinese,
Peijing University Press.

[10] Einstein, A., Podolsky, B. & Rosen, N. [1935]. Can quantum-mechanical description of
physical reality be considered complete?, Physical Review 47. 770-780.

[11] Feynman, R. [1965]. The Character of Physical Law, MIT Press.

[12] Feynman, R., Leighton, R. & Sands, M. [1965,1989]. The Feynman Lectures on Physics,
Vol. 3, Addison-Wesley, Reading, Mass.

[13] Gershenfeld N. [1998]. The Nature of Mathematical Modeling, Cambridge Uni. Press.

[14] Gibbs J.W. [1902]. Elementary Principles in Statistical Mechanics, Yale Uni. Press, New
Haven.

[15] Goodwin G.C. and Payne R.L. [1977]. Dynamic System Identification:Experiment Design
and Data Analysis, Academic Press.

[16] Healey, R., Hellman, G. & Edited. [1998]. Quantum Measurement: Beyond Paradox, Uni.
Minnesota Press.

[17] Hume J.N.P. [1974]. Physics in two volums, Vol. 2 Relativity, Electromagnetism and Quantum
Physics, The Ronald Press Company, New York.

[18] Ivey D.G. [1974]. Physics in two volums, Vol. 1 Classical Mechanics and Introductory
Statistical Mechanics, The Ronald Press Company, New York.

[19] Jammer, M. [1974]. The Philosophy of Quantum Mechanics, Wiley-Interscience Publication.

Emerging Applications of Cellular Automata194



[20] Khinchin A.J. [1949]. Mathematical Foundations of Statistical Mechanics, Dover, New York.

[21] Kurth R. [1960]. Axiomatics of Classical Statistical Mechanics, Pergamon Press, Oxford.

[22] Kuzemsky A.L. [2008]. Works by D.I. Blokhintsev and the Development
of Quantum Physics, Physics of Partcles and Nuclei, Vol 39, No.2 137-172.
DOI:10.1134/S1063779608020019

[23] Landau L.D. and Lifshitz E.M. [1996]. Statistical Physics, 3rd Edition Part 1,
Butterworth-Heinemann, Oxford.

[24] Lee Tsung-Dao [2006]. Statistical Mechanics, in Chinese, Shanghai Science and
Technology Press.

[25] Nelles O. [2001]. Nonlinear System Identification, Springer.

[26] Nolte D.D. [2010]. The tangled tale of phase space. Physics Today, April 2010. 33-39.
http://www.physicstoday.org

[27] Penrose, R. [2004]. The Road to Reality, Vintage Books, London.

[28] Pintelon P. and Schoukens J. [2001]. System Identification: A frequency domain approach,
IEEE Press, New York.

[29] Pring M.J. [2002]. Breaking the Black Box, McGraw-Hill.

[30] Reif F. [1967]. Statistical Physics, Berkley Physics Course - Vol. 5, McGraw-Hill.

[31] Shen Hui-Chuan [2011]. Statistical Mechanics, in Chinese, University of Science and
Technology of China Press.

[32] von Neumann, J. [1932,1996]. Mathematical Foundations of Quantum Mechanics, Princeton
Univ. Press.

[33] Wu, Ta-You [2010]. Thermodynamics, Gas-dynamics and Statistical Mechanics , in Chinese,
Scientific Press, Beijing.

[34] Zeh, H. D. [1970]. On the interpretation of measurement in quantum theory, Foundation
of Physics 1. 69-76.

[35] Zheng, J., Zheng, C. & Kunii T. [2012]. From Local Interactive Measurements to Global
Matrix Representations on Variant Construction ÂĺC A Particle Model of Quantum
Interactions for Double Path Experiments, Advanced Topics in Measurements, edited by:
Z. Haq 371-400.
URL: http://www.intechopen.com/books/advanced-topics-in-measurements

[36] Zheng, J., Zheng, C. & Kunii T. [2012]. From Conditional Probability Measurements
to Global Matrix Representations on Variant Construction ÂĺC A Particle Model
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