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1. Introduction

The temporomandibular joint, like any other synovial joint, can be the subject of severe
degenerative pathological conditions as well as fracture and ankylosis. Advanced conditions
may require rib or hip grafts, allografts, or total joint replacement. All current approaches suffer
from inherent shortcomings and the search continues for a new approach to reconstruct the
mandibular condyle with minimal or no side effects. Stem cell-based tissue engineering
approach to reconstruct the mandibular condyle has long been introduced; however its
potential clinical application requires long and costly dedicated research programs. Other
therapeutic physical approaches to enhance tissue regenerative capacity have also been
proposed, however their potential application needs further attention and investigation.

2. Clinical indication

Articular joints have a poor innate ability to regenerate following either injury or disease.
Among these diseases that affect articular joints is arthritis. In Canada, arthritis is the leading
cause of work disability, with an economic cost of $4.4 billion in 1998 alone [1]. Statistics
Canada reports estimated that 6 million Canadians will suffer from some form of arthritis by
2026, a significant increase from the current prevalence of four million Canadians [2]. The
temporomandibular joint (TM]) connects the mandible to the skull and is vital for speech,
chewing, and swallowing.It is comprised of a mandibular condyle and an articular disk. TM]
is susceptible to arthritis, fractures, ankylosis, and dysfunctional syndromes that affect over
10 million individuals in North America [3-9]. To date, artificial joint replacement is considered
the standard therapeutic procedure for degenerated TM]J, but this treatment approach has a
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high cost and non-predictive outcome [10]. According to the Canadian Joint Replacement
Registry, a total of 97,671 patients had different joint replacements between years 2007-2010
[11].It has been reported that about 10% showed foreign body response to TM] metal replace-
ment with allergic reaction to metal [12]. Consequently, developing effective methods to
replace articular condyle are of paramount importance to current/modern society. This book
chapter discusses in detail contemporary methods and future directions of mandibular
condylar reconstruction.

3. Mesenchymal stem cells

Mesenchymal stem cells (MSCs) are increasingly being used in joint tissue engineering
research [13-19]. Tissue engineering ofmandibular condyle as a whole has been proposed in
the literature; however an in-vivo utilization of this technique is in need of further investigation
based upon compelling evidence from pilot data [15-22]. Some limitations to MSCs based
therapy include the extended time needed in the laboratory to expand them and differentiate
them into chondrogenic and osteogenic lineages. An improved approach to enhance the
expansion and differentiation of MSCs is highly demanded. Also, understanding MSCs
differentiation process and their characterization must be achieved before they can be used
safely and effectively in articular joint replacement.

The current approach used to tissue engineer articular constructs involves conditioning with
some type of mechanical stress. Existing mechanical conditioning techniques to enhance
engineered tissues are in the form of bioreactors, BioFlex mechanical modulation technologies
(Flexercell), and Instron machines. However, these approaches are short of clinical application
should the engineered tissue require more mechanical modulation after in-vivo implantation
for functional use.

4. Low intensity pulsed ultrasound

Low intensity pulsed ultrasound (LIPUS) therapy stimulates stem cell growth and differen-
tiation [20,23-24]. We have shown in a pilot study in rabbits that LIPUS may enhance tissue
engineered mandibular condyles. This compelling preliminary data needs to be validated in
a statistically determined study design. Moreover, there is increasing supporting data in the
literature that the stimulatory effect of LIPUS on cell expansion and differentiation is dose
dependent. The LIPUS is considered the preferred method of mechanical stimulation, also
known as “preferred bioreactor” [25].

5. Articular condyle

An articular condyle consists of articular cartilage and subchondral bone (Fig. 1) [20]. Despite
a common developmental origin from mesenchyme, the articular cartilage and subchondral
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bone have two distinct adult tissue phenotypes with few common morphological features.
However, both tissues are structurally integrated and function in harmony to withstand
mechanical loading up to several times the body’s weight [26].

Figure 1. Photomicrographs of the histological examination of normal condyle showing fibrocartilage (black arrow)
hypertrophic zone (white arrow) and subchondoral bone (hollow arrow) (Bar =100 um)[20].

In osteochondral defects, bone regeneration can readily occur in the presence of an adequate
blood supply up to a certain bony defect size. In contrast, articular cartilage has a poor capacity
for self-regeneration. Furthermore, once articular cartilage is damaged, it undergoes degen-
erative events such as loss and/or destruction of key structural components, including type II
collagen and proteoglycans. The poor capacity of cartilage for self-regeneration is likely
attributed to the paucity of tissue-forming cells (i.e., chondrocytes) [27] and the lack of access
to systemically available mesenchymal stem cells because the cartilage tissue is avascular.
Thus, the self-regenerating capacity of articular cartilage is limited due to the sparsely available
chondroprogenitor cells and/or the scant local mesenchymal stem cells that are habitual
residents. Importantly, the articular cartilage is devoid of a nerve supply. Thus, articular
cartilage injuries are often not accompanied by joint pain until the damage has progressed to
involve the subchondral bone, which contains rich nerve supply [28]. In many of these
disorders, structural damage of the TM] necessitates surgical replacement.

6. TM] replacement

The current TM] replacement techniques utilize bone/cartilage grafts, muscles and artificial
materials [9, 29-30]. Despite certain level of reported clinical success, autografts are associated
with donor site morbidity such as discomfort in ambulation, sensorial loss over the donor
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region, scars, and contour deformity when bone is harvested from the iliac bone. Also,
predictability of clinical outcome of autografts is reported to be substandard with graft
overgrowth in 10% of patients and undergrowth in 57% of patients, and a relatively high
incidence of re-operation with 23% of patients requiring re-grafting [31-34].Alternatively,
alloplastic and xenoplastic grafts are associated with potential transmission of pathogens and
immunorejection [35-37].The failure rate of using alloplastic grafts to reconstruct the TMJ has
been reported to reach 30% [38]. To date, there is no consistent clinically-effective and safe
method to replace the TMJ or mandibular condyle.

7. Biological replacement of mandibular condyle

Biological replacement efforts for reconstruction of the mandibular/articular condyles have
included using osteoblasts and chondroblasts/chondrogenic cells from different tissue/cell
sources [15-22,38-41]. However, these efforts have been limited by several obstacles including;:
a) scarcity of stem cells with the capacity to differentiate into chondrogenic and osteogenic
cells, b) different bone ingrowth patterns [37], c) different rates of the scaffold degradation
compared to matrix production [15], and d) inferior mechanical properties of the regenerative
tissue for clinical use [40]. Moreover, the integration of tissue engineered constructs for
osteochondpral repair requires an inordinate amount of time (3-6 months in rabbit femur heads
[21],6-12 months in horses [41], and up to 9 months in sheep [19]). Regeneration of articular
joints utilizing a cell-free scaffold by cell homing to the area shows some success [18]. However,
this process did not provide full articular condyle replacement. In addition, this proof of
principle lasted 9 weeks to obtain some articular joint regeneration in rabbits, which translates
to 9 to 12 months in humans, given the difference in metabolism between the two species [42].
This lengthy time of manipulation can be complicated by tissue culture problems such as
infection. Another attempt to tissue engineer mandibular condyle using porcine stem cells
demonstrated bone formation in-vitro; however there was no attempt or success in translating
this technique into in-vivo utilization [43]. A similar recent study demonstrated the possibility
of tissue engineering a complete mandibular condyle in-vitro; however in-vivo utilization of
this technique has yet to be studied[44]. Interestingly, this study highlighted the importance
of bioreactor in stem cell expansion and differentiation [44]. It was first reported that tissue
engineered osteochondral constructs from MSCs can be shaped into human-size mandibular
condyles while maintaining the shape and size after extended period of in-vivo implantation
[15,17,18]. Not only these constructs demonstrate MSCs-driven formation of osteochondral
tissue-like histologically, but also both tissue types showed good histological integration
attributed to the use of the same scaffolding material in both layers, and thus avoiding the
potential fibrous tissue infiltration between the two layers usually observed in composite
constructs [15,17,18].0ur team was the first to report on the possibility of engineering condyles
from stem cells [15,17,18] (Figure 2).
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Figure 2. Appearance of a tissue engineered osteochondral construct holding the shape and dimensions of a human
mandibular condyle during harvest after 12 weeks of subcutaneous implantation in the dorsum of immunodeficient
mouse.

Although most of the recent studies, including ours, are focused on engineering scaffolds
in the shape of mandibular or articular condyles [15,17,18,44], future research is needed to
implement tissue engineered condyles into clinical application and to demonstrate function-
al integration. It is well known that inadequate mechanical strength is considered a major
impediment to cartilage tissue engineering [45,46]. The material properties of tissue-
engineered cartilage constructs are in the range of kilopascals [47], which are orders of
magnitude lower than normal articular cartilage (in the range of megapascals) [48-53].
Different techniques have attempted to improve the quality of tissue-engineered articular
joints. Pulsed electromagnetic fields (PEMF) have been shown to increase chondrocyte and
osteoblast-like cell proliferation [54,55]. Bioreactors including LIPUS enhance the material
properties of tissue-engineered cartilage constructs [25,56,57]. Cyclic compressive loading
induces phenotypic changes in cartilaginous and osseous tissues in cell culture, scaffolds,
and in-vivo [58-70]. Also, mechanical stimulation enhances the expression of vascular
endothelial growth factor (VEGF) which is important for angiogenesis and bone forma-
tion in the mandibular condyles [71]. These important discoveries support the potential for
clinical application of different forms of mechanical stimulation to enhance tissue-engi-
neered joint tissues.

8. Low intensity pulsed ultrasound (LIPUS)

Low intensity pulsed ultrasound (LIPUS) is a form of mechanical stimulation that has been
used to enhance healing of fractured bone and other tissues. Details about the current literature
and the potential use of LIPUS for better autologous stem cell based mandibular condyle
(ASCMC) will be discussed below. Itis clear that there is a vital need for an approach to enhance
stem cell expansion and differentiation for tissue engineering of articular condyles. LIPUS can
be an effective tool to enhance tissue-engineering of mandibular condyles for many reasons.
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Importantly, LIPUS is the preferred method of mechanical stimulation, also reported as
“preferred bioreactor” [25] as it enhances angiogenesis [20, 72-76].This is especially relevant
because vasculature is required to integrate the engineered tissue with the native surrounding
tissues [77]. Recent studies showed that LIPUS enhances stem cell expansion and differentia-
tion in tissue culture [78,79]. Also, LIPUS has been shown to enhance periosteal cell expansion
[79] and stimulate bone marrow stem cells (BMSCs) expansion and differentiation into
chondrogenic lineage [78,80-83].The matrix production and proliferation of the intervertebral
disc cells in culture has been shown to be enhance by LIPUS [82]. In addition, LIPUS enhances
osteoblast matrix formation [796,83] and minimizes apoptosis of human stem cells in-vitro [84].
The optimum LIPUS application time in bone fracture healing has been identified [85];
however, the optimum LIPUS treatment timing in articular condyle replacement is yet to be
studied.Despite recent studies that have shown that the stimulatory effect of LIPUS in tissue
culture is dose-dependent (treatment time) [23,24,75,78,86-88], the use of LIPUS has not
resulted in any severe adverse events in tissue culture [88], human or animal models [89-92].
Our research has demonstrated that LIPUS can enhance stem cell expansion in monolayers
[20-23-24] (Figure 3).There was an increase in cell number after LIPUS application for 20
minutes per day for 3 weeks. A future projectcan aim to optimize using LIPUS to enhance cell
proliferation to a significant level that may justify its routine use in tissue engineering.

Cell count

400

300 T |

200 I l control

100 l ; HLIPUS
0

100 | Week1l Week2 Week3

Figure 3. Rat BMSC count after treatment with 20 minutes per day for three weeks.It can be seen that LIPUS enhances
cell count compared to untreated BMSCs by (20 minutes per day for three weeks). This reflects that LIPUS stimulates
BMSC expansion and this stimulatory effect is treatment time-dependent. This experiment was performed three times
and the presented data represents the average and standard error of nine samples [three trials in triplicate]. There is a
significant difference in cell number at week 3 between the control and LIPUS treated BMSCs (P<0.05) [23].
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In addition, LIPUS enhances expression of bone morphogenetic proteins from pluripotent cells
[88]. Moreover, we have shown that LIPUS application for 20 minutes per day for 4 weeks
increased the expression of collagen II and osteopontin expression in osteogenic-induced
differentiation of stem cells (P<0.05)[Figure 4 and Table A] [20].

[
(-]
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B Osteopontin

gene GAPDH
© = N W & U1 & N B ©

Gene expression relative to the reference

uUPUS Control

Figure 4. gPCR results of LIPUS treated (20 minutes/day) osteogenic differentiated BMSCs for four weeks and con-
trols. LIPUS treated osteogenic cells expressed more osteopontin and collagen type Il genes (normalized to GAPDH)
which is indicative of enhancing osteogenic differentiation of BMSCs affected by LIPUS. Both graphs represent results
of performing gPCR on nine samples (three trials in triplicate). This increase in Collagen Il and Osteopontin by LIPUS is
statistically significant (P< 0.005)[20].

Gene of interest Average + Standard deviation
P
LIPUS Control
Collagen i 83+04 6.4+0.5 0.009*
Osteopontin 7.7 +0.02 57+0.3 0.004*

Table 1. Collagen Il and osteopontin gene expression in vitro as evaluated by qPCR. Gene expression is presented as
percentage to the reference gene GAPDH. Non parametric analysis (Mann-Whitney U) shows a statistical significant
increase in Collagen Il and Osteopontin gene expression by LIPUS when compared to non LIPUS treated samples [20].

Also, LIPUS application to gingival stem cells statistically increased the gene expression of
alkaline phosphatase (ALP) in tissue culture (Figure 5) [88].
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Figure 5.Alkaline phosphatase (ALP) gene expression was increased by daily treatment of
GFs with 10 minutes LIPUS for 4 weeks as evaluated by qPCR. Data represents average of
tive replicates with the error bar representing standard deviation [885].

Our preliminary data indicated that LIPUS application enhanced osteogenic and chondrogenic
differentiation of bone marrow stem cells in collagen sponges in-vitro (Figure 6) as determined
by histochemical staining (safranin O for chondrogenic differentiation and von Kossa staining
for osteogenic differentiation) [20].

Figure 5. In-vitro chondrogenesis and osteogenesis of BMSCs in samples of collagen scaffolds. A: Positive reaction to
safranin O (red staining) of BMSC-derived chondrogenic cell chondrogenic tissue formation in the control [no LIPUS]
scaffolds following four-week treatment with chondrogenic medium, B: Increased (red staining) positive reaction to
safranin O of the BMSC-derived chondrogenic cells treated with LIPUS and chondrogenic medium for four weeks. C:
Positive but weak reaction to Von Kossa silver staining (black staining) of BMSC-derived osteogenic cells in the control
[no LIPUS] scaffolds following four-week treatment with osteogenic medium. D: Increased positive reaction to Von
Kossa silver staining (black staining) of the BMSC-derived chondrogenic cells treated with LIPUS treatment and osteo-
genic medium for four weeks. More mineralization nodules are observed with LIPUS treatment. Bar is 100 um [20].

Finally, we have shown that LIPUS enhances tissue-engineered mandibular condyles in a pilot
study invivo [20](Figures 7-13). This was confirmed qualitatively by MicroCT scanning,
histological evaluations (safranin O and Von Kossa staining) (Figures 9-12) as well as quanti-
tatively by histomorphometric analysis (Figure 13).

Figure 6. MicroCT scanning of: (A) Group 1 (TEMC + LIPUS); (B) Group 2 (TEMC no LIPUS) (C) Group 3 (scaffold with no
cells + LIPUS) and (D) scaffold with no cells and with no LIPUS. In each rabbit, the yellow arrow refers to normal con-
dyle and the white arrow refers to the experimental site (either TEMC or empty scaffold). It can be seen that LIPUS
enhanced TEMC as indicated by close morphology of the LIPUS-assisted TEMC compared to the normal condyle (A).
The condylar healing was not as pronounced when there were cells present in the scaffold but no LIPUS was applied
(B). LIPUS did enhance some healing of the amputated condyle site even without a scaffold (C). The negative control
(empty scaffold and no LIPUS) showed no signs of healing (D). Note: TEMC consisted of a scaffold and chondrogenic
and osteogenic cells [20].
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Figure 7. Photomicrographs of the histological examination of (A) normal condyle; (B) LIPUS-assisted TEMC in group
1; (C) TEMC with no LIPUS; (D) empty scaffold with LIPUS; and (E) empty scaffold without LIPUS. The LIPUS-enhanced
TEMC (B) has comparable histological features to the normal condyle (A), and TEMC without LIPUS (C) shows some
structural integration between the chondrogenic and osteogenic parts of the TEMCs. The empty scaffolds (D, E) show
inflammatory cell invasion without bone or cartilage formation. Black arrows refer to fibrocartilage area, white arrows

refer to condylarcartilage or new cartilage formed by TEMC areas, and empty arrows refer to condylar bone or new
bone formed by the TEMC. Scale bar: 100 mm [20].

Figure 8. Photomicrographs of safranin O stained histological slides of (A) normal condyle; (B) LIPUS assisted TEMC;
(C) TEMC with no LIPUS; (D) Empty scaffold with LIPUS; and (E) empty scaffold without LIPUS. It can be seen that the
cartilaginous part of the normal condyle and TEMC have comparable safranin O staining that indicates improved
chondrogenesis with LIPUS compared to either empty scaffolds (D and E). TEMC with no LIPUS still shows some reac-
tion to safranin O staining but not like TEMC and LIPUS (Magnification = 16 X) [20].

Figure 9. Photomicrographs of Von Kossa stained histological slides of (A) Normal condyle; (B) LIPUS assisted TEMC;
(C) TEMC with no LIPUS; (D) Empty scaffold with LIPUS and (E) Empty scaffold without LIPUS.LIPUS assisted TEMC and
normal condyle show comparable Von Kossa silver staining of the bone underlying the cartilage/chondrogenic part of

the condyle/TEMC. In empty scaffold implanted condyles, minimum or no mineralization nodules can be seen by Von
Kossa silver staining. Bar is 100 um [20].
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Figure 10. Histomorphomteric Analysis of the TEMC + LIPUS or empty scaffolds + LIPUS [20].

(b)

(©) (d)

(a)

Figure 11. A: Rabbits after condylectomy [white arrow indicates condylectomy site]. B: Condyle after dissection [white
arrow refers to the cartilage part and black arrow refers to the bony part of the condyle], C: Collagen sponge contain-
ing chondrogenic [white arrow] and osteogenic [black arrow] cells; D: TEMC [black arrow] fixed in place with white
bone cement [white arrow]. (Photos from pilot study [20])
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Figure 12. LIPUS: application to the rabbit while it is restrained [20].

8.1. Mechanical stress and intracellular signaling

There is growing evidence in the literature that integrins are promising candidates for sensing
extracellular matrix-derived mechanical stimuli and converting them into biochemical signals
[93-96]. Integrin-associated signaling pathways include an increase in tyrosine phosphoryla-
tion of several signaling proteins, activation of serine/threonine kinases, and alterations in
cellular phospholipid and calcium levels [97-98]. These events are associated with the forma-
tion of focal adhesions, which contain structural proteins such as Src, and Shc. Focal adhesions
act as a bridge to link integrin cytoplasmic domain to the cytoskeleton and activate integrin-
associated signaling pathways, such as the mitogen-activated protein kinase (MAPK) pathway
[99] and the Rho pathway [100-101]. Rho and its downstream target Rho kinase/Rho-associated
coiled-coil-containing protein kinase (ROCK) [102] are involved in the reorganization of
cytoskeletal components [99], [102-103]. It has been recently reported that 31 integrin plays
predominant roles for shear-induced signaling and gene expression in osteoblast-like MG63
cells on FN, COL1, and Laminin (LM) and that av(33 also plays significant roles for such
responses in cells on fibronectin (FN). The (31 integrin-Shc association leads to the activation
of ERK, which is critical for shear induction of bone formation-related genes in osteoblast-like
cells [103]. Moreover, a5@1 integrin is expressed by chondrocytes [104] and it plays an
important role in mechanically enhanced cartilage tissue engineering. Furthermore, integrins
were found to be responsible for ultrasound-induced cell proliferation. It has been suggested
that integrins act as mechanotransducers to transmit acoustic pulsed energy into intracellular
biochemical signals inducing cell proliferation [105]. It has been reported recently that LIPUS
activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of
chondrocytes [106] as well as increases FAK, ERK-1/2, and IRS-1 expression of intact rat bone
cells [107]. This has yet to be investigated in MSC derived chondrocytes and in osteoblasts-like
cells.

9. Conclusion

The literature supports that mechanical stress, for example LIPUS have a stimulatory effect on
stem cell expansion and differentiation as well as enhancing stem cell matrix production in-
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vitro and in a pilot study in-vivo in rabbits. However, these results need to be validated in a
large scale in-vivo.We are now poised to prove these effects in a large scale study. Although
the optimum mechanical stimulation, for example LIPUS treatment time, for bone fracture
healing is well documented, the corollary for enhancing autologous stem cell based replace-
ment of mandibular condyles has not been investigated. This represents a major gap of
knowledge in the field of tissue engineering considering the numerous positive utilizations of
mechanical stimulation as well as LIPUS reported in the literature. Overall, the current
literature and knowledge developed through our and others’ research has the potential to
increase our understanding of the details of LIPUS induced chondrogenesis and osteogenesis
and how to utilize LIPUS to enhance articular joint replacement using MSCs. Furthermore,
this knowledge could give rise to a novel cell-based therapy for replacement of mandibular
condyles as well as other tissue types.
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