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1. Introduction

Bone is a dynamic tissue in constant change; maintenance of bone mass throughout life relies
on the bone remodeling process, which continually replaces old and damaged bone with new
bone. This remodeling is necessary to maintain the structural integrity of the skeleton and
allows the maintenance of bone volume, the repair of tissue damage and homeostasis of
calcium and phosphorous metabolism. This process allows the renewal of 5% of cortical bone
and trabecular 20% in a year, and although the cortical portion makes up most of the bone
(75%), the metabolic activity is ten times greater in the trabecular since the relationship between
surface and volume is greater in this, which is achieved by an annual renewal of 5-10% of bone
volume and although this remodeling takes place throughout life, your balance is positive only
during the first three decades. The skeleton is particularly dependent on mechanical informa‐
tion to guide the resident cell population towards adaptation, maintenance and repair; a wide
range of cell types depend on mechanically induced signals to enable appropriate physiolog‐
ical responses. The bone remodeling has two main phases: a resorption phase, consisting of
the removal of old bone by osteoclasts, and a later phase of formation of new bone by osteo‐
blasts that replaces the tissue previously resorbed. While osteoclasts are derived from hema‐
topoietic precursor cells and degrade the bone matrix, osteoblasts originate from mesenchymal
stem cells, they deposit a collagenous bone matrix and orchestrate its mineralization. While
the interaction of bone cells with their mechanical environment is complex, an understanding
of mechanical regulation of bone signaling is crucial to understanding bone physiology, the
etiology of bone diseases such as osteoporosis, and to the development of interventions to
improve bone strength. The clinical importance of bone formation has stimulated a lot of
research aimed at understanding its mechanism. Much knowledge has been gained in the
recent years, especially in relation with the signaling pathways controlling osteoblast differ‐
entiation. The purpose of this chapter is to review current knowledge on biochemical and

© 2013 Parra-Torres et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



physiological mechanisms of remodeling bone, with particular attention to the role in the cell
involved, the process, regulation signals into the control and pathophysiology of bone
remodeling (diseases).

2. Cells involved in bone remodeling

Two bone cell lineages have been identified: cells of the osteoblast lineage (osteoblasts,
osteocytes and bone-lining cells) and bone resorbing cells (osteoclasts) that together with their
precursor cells and associated cells (e.g. endothelial cells, nerve cells) are organized in
specialized units called bone multi cellular units (BMU). The main function of the BMU is to
mediate a bone ‘‘rejuvenation” mechanism called ‘‘bone remodeling”. Bone remodeling
maintains the integrity of the skeleton by removing old bone of high mineral density and high
prevalence of fatigue micro-fractures through repetitive cycles of bone resorption and bone
formation [1]. This is a direct and crucial interaction that has been well established in vivo.
Once osteoblasts and osteoclasts are fully differentiated, there is a less direct relationship [2].
Despite the know close physiological interactions of the two main cellular systems in bone,
there are effectively separate and distinct origins of osteoblast (hematopoietic cell origin) and
stromal/osteoblast linages from the developing fetus onward in mammalian development;
circulating osteogenic precursor cells are blood-borne cells that express a variety of osteoblastic
markers and are able to form bone in vivo. Strong evidence suggests that cells are derived from
bone marrow and are of hematopoietic origin [3].

2.1. Osteoblast

Osteoblasts derive from mesenchymal precursor cells, which also originate, chondrocytes
(cartilage), adipocytes (bone marrow stroma), fibroblasts (periosteum), and adventitial
reticular cells (bone marrow stroma). Although the claim that bone marrow stromal cell can
also give raise chondrocytes, myoblasts, adipocytes and tendon cells, depending on the
transcription factors that regulate the pathway [4]. There are four stages that have been
identified in osteoblast differentiation: the preosteoblast, osteoblast, osteocyte and bone-lining
cell that histologically these cells stain positively for alkaline phosphatase, however, only
mature osteoblasts have the ability to produce mineralized tissue [5], and can be identified by
their cuboidal morphology and strong alkaline phosphatase positivity. The master gene that
encodes for a protein involved in the osteogenic differentiation process from mesenchymal
precursors is the nuclear transcriptional factor Runx-2 (Runt related transcription factor 2,
cbfa-1) (Figure 1) [6].

The osteoblast resides along the bone surface at sites of active bone formation. They secrete
type 1 collagen, the basic building block of bone; non-collagenous proteins including osteo‐
calcin and alkaline phosphatase, which is essential for mineral deposition [7]. The principal
function of the osteoblast is bone formation and these occur via two distinct mechanisms: the
intramembranous ossification (flat bones of the skull and most of the clavicle) and the endo‐
chondral ossification, which produces most bones, involves the transformation of mesenchyme
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into a cartilage model that resembles the shape of the bone [8]. They are also responsible for
the mineralization, although the exact mechanism by which mineralization occurs remains
unclear [9]. Mature osteoblasts have one of three fates: they undergo apoptosis, differentiate
further into osteocytes or become quiescent lining cells. Approximately 50 to 70% of osteoblasts
undergo apoptosis [10].

2.2. Osteocyte

Osteocytes are non-proliferative, terminally differentiated cells of the osteoblast lineage, how
osteoblasts transform into osteocytes is dependent on the mode of ossification (Figure 1). They
reside both in the mineralized bone matrix and in newly formed osteoid, locked inside small
lacuna spaces in the hard substance of bone are smaller than osteoblasts and have lost many
of their cytoplasmic organelles [11-13]. They compose over 90–95% of all bone cells in the adult
skeleton and are thought to respond to mechanical strain to send signals of resorption or
formation, due to their distribution throughout the bone matrix and extensive interconnec‐
tivity, osteocytes are thought to be one if not the major bone cell type responsible for sensing
mechanical strain and orchestrating signals of resorption and formation. Evidence suggests
that the primary function of the osteocyte relates to the determination and maintenance of
bone structure. Osteocytes are mechanosensors capable of transducing musculoskeletal
derived mechanical input into biological output [14], the osteocyte appears to be capable of

Figure 1. Osteoblasts derive from Mesenchymal Stem Cells. Osteoclasts derive from by the fusion of mononuclear pro‐
genitors of the monocyte/macrophage family, and Osteocytes are non-proliferative differentiated cells of the osteo‐
blast lineage.
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relating the intensity of strain signals and the distribution of the strain throughout the whole
bone into signals to regulate [15]. Microdamage in the bone matrix has been shown to initiate
bone remodeling, the osteocytes located near these sites undergo apoptosis correlated with
increased bone remodeling due to enhanced RANKL production and an increase in osteoclast
formation [16], and the osteocytes may be the major source of RANKL during bone remodeling
[17-19]. For some time it has been estimated that the average life of this cell would be 25 years.
The percentage of dead osteocytes increases with age senescence, being from 1% to 75% rise
in the eighth decade [20,21].

2.3. Osteoclast

Osteoclasts, which are the only cells capable of resorbing bone, are multinucleated giant cells
formed from by the fusion of mononuclear progenitors of the monocyte/macrophage family
in a process termed osteoclastogenesis (Figure 1) [22], they are located on endosteal surfaces
within the Haversian system and on the periosteal surface beneath the periosteum, in the bone
has only two to three per μm3 [23]. Osteoclasts are terminally differentiated myeloid cells that
are uniquely adapted to remove mineralized bone matrix. These cells have distinct morpho‐
logical and phenotypic characteristics that are routinely used to identify them, including
multinuclearity and expression of tartrate-resistant acid phosphatase and the calcitonin
receptor. Osteoclast differentiation is supported by cells of the osteoblast lineage that express
membrane-bound receptor activator (RANK) of RANKL (NF-kB ligand) and macrophage-
colony stimulating factor (M-CSF) [22]; this process is also regulated by a secreted decoy
receptor of RANKL, osteoprotegerin (OPG), which functions as a paracrine inhibitor of
osteoclast formation [24]. The balance between OPG and RANKL regulates bone resorption
and formation and one imbalance of the RANKL/OPG system have been implicated in the
pathogenesis of various primary and secondary bone malignancies [25]. In the motile state the
osteoclast migrate from the bone marrow to their resorptive site and in the resorptive phase
they exert their bone resorbing function, in each state the osteoclast display morphological
differences [26], the motile osteoclasts are flattened, non-polarised cells and they are charac‐
terised by the presence of membrane protrusions (lamellipodia), and podosome. Upon
reaching the resorptive site, osteoclasts become polarised through cytoskeletal reorganization,
results in the formation of a ruffled border, sealing zone, functional secretory domain and
basolateral membrane. The sealing zone is an osteoclast specific structure, which separates the
acidic resorptive environment from the rest of the cell, forming an organelle free area [27].

2.4. Bone-lining cells

The bone lining cells constitute a subpopulation of the osteoblast family. Bone lining cells were
characterized by their long, slender, and flattened appearance; and their association with the
bone surface at sites where a thin no mineralized collagen layer was present [28]. Although
not being osteoblasts in the sense that they produce an osteoid layer, belong to the same lineage
as osteoblasts for the following reasons: they are alkaline phosphatase positive, respond to
PTH, and are associated with the bone surface. The bone lining cells contained a low level of
labeled osteocalcin, and they have electron-dense vacuoles containing crossbanded collagen
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fibrils in the cytoplasm [28]. It has been proposed that bone lining cells play a role in bone
remodeling by preventing the inappropriate interaction of osteoclast precursors with the bone
surface. It is thought that the signals that initiate osteoclast formation may stimulate the bone
lining cells to prepare for bone resorption, through the actions of collagenase which digests a
thin layer of non-mineralized bone, revealing the mineralized matrix underneath [29,30]. The
bone lining cells migrate to form a canopy over the remodeling area, particularly at sites
adjacent to osteoclasts, creating a microenvironment (in phagocytosis of collagen at the bone
surface) for the coupling required during bone remodeling. It has been proposed that the bone
lining cells are responsible for the cell to cell interactions between RANKL and RANK receptor
on osteoclast precursors [31].

3. Bone remodeling: The process

The normal bone remodeling is a process that couples bone resorption and bone formation, it
occurs in discrete locations and involves a group of different kinds of cells and takes 2 to 5
years for an area on the bone surface to complete one bone remodeling cycle [32]. The bone
tissue is morphologically and physiologically separated from the marrow by bone lining cell;
the process of cancellous bone remodeling occurs on the surface of trabeculae at the boundary
between bone and marrow. In normal bone length of the remodeling is about 200 days, with
the majority of that time (approx. 150 days) devoted to bone formation [33]. The bone remod‐
eling takes place in the BMU and the skeleton contains millions which comprises the next:
osteoclasts that resorbing the bone, the osteoblasts that replacing the bone, the osteocytes
within the bone matrix, the bone lining cells that covering the bone surface and the capillary
blood supply. All BMU are in different stages, and the life span of individual cells in a BMU
is much shorter than that of a BMU [31,35,36]. Mechanical stress in the bone can be sensed by
osteocytes that can signal giving to lining cells to form a new BMU at cortical or cancellous
surfaces and estimates that the duration is 2-8 months [12]. The bone remodeling follows
coordination of distinct and sequential phases of this process, (Figure 2):

Activation Phase- The first stage of bone remodeling involves detection of an initiating remod‐
eling signal, the activation is a continuing process that occurs at the cutting edge of the BMU,
and this signal can take several forms as a direct mechanical strain on the bone that results in
structural damage or hormone (e.g. estrogen or PTH) action on bone cells in response to more
systemic changes in homeostasis [32]. Conceivably, osteocyte apoptosis and possible release
of osteotropic growth factors and cytokines could be attractants for blood vessels, which would
then subsequently initiate the formation of a resorptive of the bone remodeling compartment
which are a prerequisite for osteogenesis, including bone development, fracture healing, and
cortical bone remodeling that support recruitment of osteoblast progenitors to bone remod‐
eling sites, thus highlight a link between activation of bone remodeling on the cancellous bone
surfaces and activation of neighbouring bone marrow events [12,34,36,37]. The mechanical
environment to which bone cells are exposed is a dynamic milieu of biophysical stimuli that
includes strain, stress, shear, pressure, fluid flow, streaming potentials and acceleration. While
ultimately it may not be possible to separate specific effects of each of these factors, it is clear
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that several of these parameters independently have the ability to regulate cellular responses
and influence remodeling events within bone. Furthermore, components of these specific
factors (such as magnitude, frequency, and strain rate) also affect the cellular response [38].

Figure 2. Schematic presentation of trabecular and cortical bone remodeling by BMU. In trabecular, the osteoclast
create Howship´s lacunas that are refilled by osteoblast, and in the cortical bone, the osteoclast erode bone tissue and
are followed by osteoblast that refill the gap with new bone.

The osteocyte, which is uniquely situated in cortical bone to sense mechanical strain and load
generated factors (e.g., fluid flow, streaming and pressure) through a connected network of
sister cells contributes to the perception of and response to loading and unloading [12], this
canalicular network responds to unloading, or a decrease in mechanical signals, with upre‐
gulation of the proteins sclerostin and RANKL that control bone remodeling at multiple levels.
The long osteocytic processes are able to pass information between cells separated by hard
tissue [16,19]. Osteoblast linage cells and bone marrow stromal cells (BMSCs) are thought to
be the major cell types that express RANKL in support of osteoclastogenesis [39,40]; however
the actual major source of RANKL in vivo is the osteocyte [12].

Resorption Phase-  In this  phase,  the formation and activity of  osteoclasts is  controlled by
cells of the osteoblast lineage that recruit osteoclast precursors to the remodeling site with
the expression of the master osteoclastogenesis cytokines, CSF-1, RANKL, and OPG, is also
modulated in response to PTH [32,45,46].  Remodeling is  initiated by osteoclastic resorp‐
tion, which erodes a resorption lacuna, they attach to the bone surface, sealing a resorb‐
ing compartment that they acidify by secreting H+ ions, facilitating dissolution of the bone
mineral and thereby exposing the organic matrix to proteolytic enzymes that degrade it,
during resorption the bone matrix and bone mineral is digested. Some fragments can be
used as biochemical markers for overall bone resorption [43]. The depth of which varies
between 60-40 μm in young and older individuals, and the resorption period has a median
duration of  30–40 days [45].  In cortical  bone,  the BMUs proceed by osteonal tunnelling,
during  which  osteoclasts  excavate  a  canal  that  is  refilled  by  osteoblasts,  the  so-formed
Haversian  systems  are  100–200  μm  wide  and  may  become  as  long  as  10  mm;  their
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orientation is along the main loading direction trabecular, by contrast, are eroded as grooves
along the bone surface with a depth of 60–70 μm (Figure 2), [36].

Reversal Phase- This phase lasts ~9 days, occurs after the maximum eroded depth has been
achieved. In the reversal period the osteoclasts undergo apoptosis whilst osteoblasts are
recruited and begin to differentiate [44], therefore the reversal phase is a transition from
osteoclast to osteoblast activity [35]. After withdrawal of the osteoclast from the resorption pit,
bone-lining cells enter the lacuna and clean its bottom from bone matrix leftovers. This cleaning
proves to be a prerequisite for the subsequent deposition of a first layer of proteins (collage‐
nous) in the resorption pits and form a cement line (glycoprotein) that helps in attaching
osteoblasts (Figure 2), [28,41].

Formation Phase- The bone formation by the osteoblasts lasts the longest, and is slower than
bone resorption, involves new bone formation and mineralization. It was proposed that the
coupling molecules were stored in the bone matrix and liberated during bone resorption. TGF-
β appears to be a key signal for recruitment of mesenchymal stem cells to sites of bone
resorption and osteoclasts produce the coupling factors [32,45], once mesenchymal stem cells
or early osteoblast progenitors have returned to the resorption lacunae, they differentiate [28,
34,46] and the proliferating osteoblasts forming multilayers of cells. Several genes associated
with formation of the extracellular matrix (Type I collagen, fibronectin, and TGF-β) are actively
expressed and then gradually decline being maintained at a low basal level during subsequent
stages of osteoblast differentiation. Collagen type I is the primary organic component of bone
and accumulation contributes, in part, to the cessation of cell growth. When proliferation
ceases, proteins associated with bone cell phenotype are detected, e.g. alkaline phosphatase
enzyme, osteocalcin [7,47]. Bone matrix is built up of type I collagen (88%) and the remaining
10% is composed of a large number of non-collagenous proteins (e.g. osteocalcin, osteonectin,
bone sialoprotein and various proteoglycans) and lipids and glycosaminoglycans represent 1–
2% [48]. For bone to assume its final form, hydroxylapatite is incorporated into this newly
deposited osteoid [47,49]. The extracellular matrix undergoes a series of modifications in
composition and organization that renders it competent for mineralization that begins ~15 days
after osteoid has been formed, and non-collagenous proteins participate in the process of
matrix maturation, mineralization and may regulate the functional activity of bone cells. With
the onset of mineralization, several other bone expressed genes are induced to maximal levels
(bone sialoprotein, osteopontin and osteocalcin) [32,47]. The composition of bone is approxi‐
mately 10% cells, 60% mineral crystals (crystalline hydroxyapatite), and 30% organic matrix
[48]. When an equal quantity of resorbed bone has been replaced, the remodeling cycle
concludes (Figure 2).

Termination Phase- The termination signals are largely unknown, and include the terminal
differentiation of the osteoblast. The role of osteocytes is emerging [12,32]. The cells then
gradually flatten as they slow production, and finally they become quiescent lining cells. Some
of the osteoblast differentiate into osteocytes and remain in the matrix [12]. The osteocytes may
secrete inhibitory factors that slow the rate of bone formation as the resorbed cavity is nearly
filled. Bone remodeling is mediated by a balance of osteoblast and osteoclast cell activity, which
together, maintain bone mass and mineral homeostasis. Both decreased bone formation and
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increased bone resorption may result in bone loss. Therefore, the stimulation of bone formation
may be another important factor for the prevention and treatment of bone loss (Figure 2).

4. Regulation signals into the control of bone remodeling

4.1. Systemic regulation of bone remodeling

The process of bone remodeling is essential for adult bone homeostasis. This control involves
a complex mechanism compound by numerous local and systemic factors, and their expression
and release is controlled finely. The main factor that affects normal bone remodeling is the
regulation of osteoblasts and osteoclasts. Local and systemic factors can affect bone remodeling
by directly or indirectly targeting mature cells and their respective progenitor cells. The
metabolic functions of the bone are mediated by two major calcium-regulating hormones,
parathyroid hormone (PTH) and 1,25-dihydroxy vitamin D (Table 1) [50].

Bone reabsorption

(osteoclast activity)

Bone Formation

(osteoblast activity)

Parathyroid hormone (PTH) ↑ ↑*

1,25(OH)2 Vitamin D ↑ ↑*

Calcitonin ↓ ?

Estrogen ↓ ↓#

Growth hormone/IGF ↑ ↑

Thyroid hormone ↑ ↑

? = Effects are not Known

* PTH and vitamin D decrease collagen synthesis in high doses.

# Estrogen decreases bone formation by decreasing remodeling, but formation is decreased less than resorption and
bone mass increases.

Data and modified from Raisz, L. G. (1999). Physiology and pathophysiology of bone remodeling. Clinical chemistry, 45
(8B): 1353-1358.

Table 1. Local and systemic regulation of bone remodeling.

PTH is a stimulator of bone resorption and 1,25-Dihydroxy vitamin D has its greatest effect on
intestinal calcium and phosphate absorption, but it may also have direct effects on bone and
other tissues. It is probably critical for the differentiation of both osteoblasts and osteoclasts
and can stimulate bone resorption and formation under some experimental conditions. A third
hormone, calcitonin (Table 1), in contrast to PTH and 1,25(OH)2 D3, both of which increase
calcium release from the mineralized matrix, calcitonin is an inhibitor of osteoclast activity. It
is a potent inhibitor of bone resorption and is used clinically in the treatment of bone diseases.
Other systemic hormones are keys in regulating bone remodeling, such as: Growth hormone
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acting through both systemic and local insulin-like growth factor (IGF) production, can
stimulate bone formation and resorption. Glucocorticoids are necessary for bone cell differ‐
entiation during development. Indirect effects of glucocorticoids on calcium absorption and
sex hormone production may, however, increase bone resorption (Table 1). O the other hand,
probably the most important systemic hormone in maintaining normal bone turnover is
estrogen. Estrogen deficiency leads to an increase in bone remodeling in which resorption
overcome formation and bone mass decreases (Table 1). The increase in bone remodeling and
in bone resorption in the estrogen deficient state is associated with an increase in bone
formation at the tissue level [51]. Therefore, sex steroid deficiency is associated with a defect
in bone formation. Based on the available evidence, there are currently at least three key
mechanisms by which estrogen deficiency may lead to a relative deficit in bone formation
through direct effects on osteoblasts: increased apoptosis, increased oxidative stress, and an
increase in NF-kB activity (Figure 3). In addition, estrogen inhibits the activation of bone
remodeling, and this effect is most likely mediated via the osteocyte [52].

4.2. Parathyroid hormone (TH) and PTHrP signals

The parathyroid hormone (PTH) increases bone formation in bone diseases. The anabolic
effects of PTH on bone formation are mediated through the PTH/PTH-related peptide (PTHrP)
receptor-dependent mechanisms that generate multiple G protein-dependent signals (Table
1). PTH mediated cyclic AMP/protein kinase phosphorylates the osteoblast transcription factor
Runx2, which in turn upregulates the expression of osteoblast genes. Intermittent PTH also
activates ERK1/2-mitogen-activated protein kinase (MAPK) Erk1/2 and phosphatidylinositol
phosphate (PI3K) signaling, resulting in increased osteoblastogenesis and osteoblast survival
(Figure 3) [53]. PTH induces the synthesis of IGF-I that works with PTH in osteoblasts to
stimulate osteoblast proliferation and differentiation as well as indirectly regulates osteoclast
activity [54,55]. Also, PTH was inferred to interact with various local signaling molecules,
including insulin-like growth factors and Wnt antagonist sclerostin (SOST) [55-57]. It was
recently shown that, in addition to reducing SOST, PTH reduces Dkk1 expression and thereby
increases Wnt signaling, which contributes to the anabolic effect of PTH in bone [58]. This does
not exclude the possibility that PTH receptor signaling may increase bone mass and bone
remodeling by affecting Wnt signaling in other cell types. Recent data indicate that the
activation of the PTH receptor in T lymphocytes plays a role in PTH-induced bone formation
and bone mass by promoting the production of Wnt10b by these cells [59]. These observations
and the finding that PTH signaling also acts by phosphorylating the Wnt coreceptor LRP6 and
β-catenin indicate that direct and indirect crosstalks between PTH and Wnt signaling are
important mechanisms regulating bone formation.

4.3. Wnt and Wnt antagonists

Genetic studies in human and animal models suggest that the canonical Wnt/β-catenin
pathway (Table 2), together with BMP signaling and key transcription factor RUNX2(CBFA1/
AML3), has an key role in skeletal development, osteoblast differentiation and bone formation
[60,61]. Wnt/β-catenin signaling plays a significant role in promoting mesenchymal commit‐
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ment to the osteoblastic lineage during the embryonic bone development. The canonical Wnt/
β-catenin signaling activity is promoted in the forming osteoblast, and this activity promotes
osteoblast differentiation during endochondral bone formation, and the skeletal development
is affected and the osteoblast differentiation is reduced when Wnt/β-catenin signaling is
interrupted in the mesenchyme (Figure 3) [62]. The in vivo stimulation of the Wnt10b signaling
cascade in the FABP4 promoter-Wnt10b transgenic mice led to a significantly higher bone mass
because of the stimulation of osteoblastogenesis and the inhibition of adipogenesis. In addition,
the Wnt10b−/−mice had decreased trabecular bone and serum osteocalcin [63]. Recent advan‐
ces have been made in our understanding of the role of Wnt proteins in bone cell biology. It
was found that, in addition to Wnt10b [63], several other Wnt proteins (Wnt6a, Wn10a)
influence the differentiation of mesenchymal precursors into osteoblasts or adipocytes, and
thereby control bone mass [64]. The Wnt signal is modulated by various antagonists, including
secreted factors, transmembrane modulators, and intracellular signals. Dickkopf family
members (Dkk1 and Dkk2) and secreted frizzled related proteins (Sfrps) are families of
extracellular proteins that negatively modulate canonical Wnt signalling [60].

4.4. Transforming growth factor-β

The transforming growth factor-β (TGF-β) signaling pathway, is known to control bone
remodeling and maintenance. However, TGF-β exerts both positive and negative effects on
bone cells, causing bone loss or bone gain in mice. There are three isoforms of TGF-β, namely,
TGF-β1, TGF-β2, and TGF-β3. TGF-β1, known as the most abundant TGF-β isoform in the bone
tissue, has been intensively studied during bone remodeling [65]. A study on the mechanism
of TGF-β for osteoblast regulation has indicated that TGF-β1 stimulates bone matrix apposition
and osteoblast proliferation in vitro. Additional research revealed that although TGF-β1
stimulates the early differentiation of osteoblast cells, this factor suppresses the late stage of
osteoblast differentiation. These signals are transduced together by the activation of R-smads
and Cosmads as well as through the mitogen-activated protein kinase (MAPK) pathway (Table
2). A cross talk exists between the TGF-β signal and the parathyroid hormone (PTH) in the
regulation of osteoblastogenesis [66]. PTH stimulates the production of TGF-β1 and TGF-β2
in the osteoblast. In addition to regulating the osteoblastic bone formation, TGF-β1 has a key
role in regulating bone remodeling by connecting bone formation and bone resorption (Figure
3). TGF-β proteins are present in their latent form in the bone matrix, and osteoclasts can
release, as well as activate, TGF-β from the bone matrix via osteoclastic bone resorption. The
released TGF-β may in turn stimulate the osteoblastic bone formation [45].

4.5. Bone morphogenetic proteins

Bone morphogenetic proteins (BMPs), they are so named for their osteoinductive properties,
and regulate differentiation of mesenchymal cells into components of bone, cartilage or
adipose tissue. TGF-β/BMP ligand signal is mediated by serine/threonine protein kinases
(receptor types 1 and 2) and a family of receptor substrates (the Smad proteins) that move into
the nucleus. BMP signaling is important for skeletal development and maintenance of bone
mass through activation of BMP type 1A (BMPR1A) and type 1B receptors that control
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osteoblast function and bone remodeling (Table 2) [67]. Notably, BMPR1A in osteoblasts
negatively regulates bone mass and Wnt/β-catenin signaling through upregulation of the Wnt
inhibitors Sost and Dkk1 in mice [68]. Also, BMPs promote osteoblastogenesis through the
Smad and MAPK pathways, which upregulates the expression of Runx2 and Osx, and thus
stimulate the bone formation (Figure 3). BMP signaling is modulated by multiple agonists and
antagonists acting at the extracellular level, which are also important for bone remodeling and
may be potential therapeutic targets [69]. It was found that the Wnt-induced secreted protein
1 (WISP-1/CCN4) enhances BMP2-induced signaling (Smad-1/5/8 phosphorylation and
activation), resulting in increased osteogenic differentiation and bone mass in mice.

Ligand Receptors Activated pathways Target Cells

PTH PTH/PTHrP
cAMP/PCA, PKC,

PI3K/Akt, Wnt
Osteoblasts

Wnt3a LRP5/LRP6/Frizzled Wnt, PI3K/Akt Osteoblasts

TGFB TGF-B type II
cAMP/PCA, PKC,

PI3K/Akt, Wnt
Osteoblats/osteoclasts

BMP BMPR1A Wnt Osteoblasts/osteoclasts

Ephrins Eph c-Fos-NFATc1 Osteoblasts/osteoclasts

EGFR ERBB1-4 Ras-Raf-Map-Kinase

FGF2 FGFR1/2 Erk1/2, PKCa, Wnt Osteoblasts

IGF-1/IGFBP2 IGFR Akt, Wnt Osteoblats

Brain derived serotonin

(BDS)
Htr2c Wnt Osteoblasts

Wnt5a Ror2 JNK Osteoblasts/osteoclasts

Semaphorin 4D Plexin-B1 RhoA/IGF1 Osteoblasts/osteoclasts

Table 2. Signaling pathways affecting bone cells and bone remodeling.

4.6. Eph and Ephrin interactions

The interactions between Eph and Ephrin play important roles in bone cell differentiation and
patterning by exerting effects on osteoblast and osteoclast differentiation, resulting in the
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coupling of bone resorption and bone formation. Eph receptors are tyrosine kinase receptors
activated by ligands called ephrins (Eph receptor interacting proteins). Both Ephs and ephrins
are divided into two A and B groups [70]. To date, ephrinB2, a transmembrane protein
expressed on osteoclasts, and its engagement with its receptor, EphB4, on osteoblasts, lead to
bi-directional signaling between these cells; this is one of the cell-cell contact mechanisms that
mediate crosstalk between these cells. EphrinB2 (as reverse signaling), located on the surface
of osteoclast precursors, suppresses osteoclast precursor differentiation by inhibiting the
osteoclastogenic c-Fos-NFATc1 cascade (Table 2) [71]. In addition, the signaling mediated by
EphB4 (as forward signaling) located on the surface of osteoblast enhances the osteogenic
differentiation. Ephrin B1 induces osteoblast differentiation by transactivating the nuclear
location of transcriptional coactivator with PDZ-binding motif (TAZ), a co-activating protein
of Runx2. TAZ, together with Runx2, induces osteoblast-related gene expression [72]. The
functional role of the EphrinA2–EphA2 complex differs significantly in its interactions
compared with the EphrinB2– EphB4 complex. Both the reversed signaling EphrinA2 and
forward signaling EphA2 stimulate osteoclast differentiation, but EphA2 has a negative role
in bone formation by inhibiting osteoblast differentiation through the regulation of RhoA
activity (Figure 3) [71].

Figure 3. Key signaling pathways for regulating osteoblastogenesis in bone remodeling. BMPs/TGF-β, Wnt, intermit‐
tent PTH and Wnt5a-Ror2 stimulate osteoblast differentiation. Eph–Ephrin and RANKL-RANK signal mediate osteo‐
blast–osteoclast interaction. TGF-β1 secretion mediated by osteoclastic bone resorption induces BMSC migration and
bone formation. Leptin–brainstem-derived serotonin-sympathetic nervous system and Sema4D pathway suppresses
osteoblast proliferation, whereas gut-derived serotonin inhibits osteoblast proliferation.
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4.7. Epidermal growth factor receptor (EGFR)

The epidermal growth factor receptor (EGFR) is a glycoprotein on the cell surface of a variety
of cell types and is characterized by its ligand-dependent tyrosine kinase activity. After ligand
binding to the extracellular domain, the EGFRs are activated by homo- or heterodimerization
with auto- and transphosphorylation on tyrosine residues at the intracellular domain, and then
a variety of signaling pathways, such as Ras-Raf-MAP-kinase and PI-3- kinase-Akt, are
activated to influence cell behaviors, such as proliferation, differentiation, apoptosis, and
migration (Table 2) [73]. In recent years, several experiments indicate that the epidermal
growth factor receptor (EGFR) system plays important roles in skeletal biology and pathology.
This network, including a family of seven growth factors – the EGFR ligands – and the related
tyrosine kinase receptors EGFR (ERBB1), ERBB2, ERBB3 and ERBB4, regulates aspects such as
proliferation and differentiation of osteoblasts, chondrocytes and osteoclasts, parathyroid
hormone-mediated bone formation and cancer metastases in bone (Figure 3) [74]. In addition,
EGFR signaling affects osteoclasts, albeit this could be an indirect effect mediated by inhibition
of OPG expression and increased RANKL expression by osteoblasts [74]. It was recently found
that decreasing EGFR expression in pre-osteoblasts and osteoblasts in mice results in decreased
trabecular and cortical bone mass as a consequence of reduced osteoblastogenesis and
increased bone resorption [48].

4.8. Fibroblast Growth Factors (FGFs)

Signaling induced by Fibroblast Growth Factors (FGFs) regulate osteoblastogenesis and bone
formation. Multiple signaling pathways activated by FGF receptors 1 and 2 control osteoblast
proliferation, differentiation, and survival (Table 2). FGFs bind to high affinity FGF receptors
(FGFR), leading to FGFR dimerization, phosphorylation of intrinsic tyrosine residues and
activation of several signal transduction pathways [75]. Recent studies provided some insights
into specific signaling pathways induced by FGF/FGFR signaling that control osteoblasts.
Activation of ERK1/2 signaling by FGF was found to be essential for promoting cell prolifer‐
ation in osteoblast precursor cells [76]. In addition, activation of ERK1/2 is involved in FGFR2-
mediated osteoblast differentiation. Activation of ERK-MAP kinase by activating FGFR2
mutations results in increased transcriptional activity of Runx2, an essential transcription
factor involved in osteoblastogenesis, and increased osteogenic marker gene expression
(Figure 3) [77]. Recent data indicate that FGF2 stimulates osteoblast differentiation and bone
formation in part by activating Wnt signaling suggesting that Wnt signaling may mediate, at
least in part, the positive effect of FGF/FGFR signaling on bone formation in mice [78]. Besides
Wnt signaling, FGF/FGFR signaling interacts with other pathways. One interaction involves
a negative regulation of the BMP antagonist Noggin by FGF2 during skull development [79].
Another interaction involves the upregulation of the BMP2 gene by endogenous FGF/FGFR
signaling in calvarial osteoblasts. In vivo, FGF2 treatment of developing bone fronts promotes
BMP2 gene expression through the modulation of Runx2 expression [80]. These studies
support a positive role of FGF and BMP signaling crosstalks on bone formation.
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4.9. Insulin-like growth factor-I

The Insulin-like growth factor-I (IGF-I) signaling through its type 1 receptor generates a
complex signaling pathway that stimulates cell proliferation, function, and survival in
osteoblasts (Table 2) [81]. Accordingly, mice lacking functional IGF-I exhibit severe deficiency
in bone formation and a 60% deficit in peak bone mineral density (BMD) [82]. IGF-I can act in
an endocrine, paracrine or autocrine manner and is regulated by a family of six IGF binding
proteins (IGFBPs). The IGFBPs, have received considerable attention as regulators of IGF
actions. The IGFBPs have been reported to have stimulatory or inhibitory actions on the IGFs
in bone, and recent experiments have provided evidence that some of IGFBPs function
independently of IGF to increase parameters of bone formation. The IGFBPs are often found
bound to IGF-I in the circulation or complexed with IGF-I in osteoblasts. IGFBP-3 and -5 are
known stimulators of IGF-I actions, whereas IGFBP-1, -2, -4 and -6 are known inhibitors of
IGF-I action in bone. Once IGF-I binds to its receptor (type 1 IGF receptor) it initiates a complex
signaling pathway including the phosphoinositol 3-kinase (PI3-K)/3-PI-dependent kinase
(PDK)-1/Akt pathway and the Ras/Raf/mitogen-activated protein (MAP) kinase pathway
which stimulate cell function and/or survival (Figure 3) [83]. Recent findings indicate that
many of the IGFBPs and specific proteins in the IGF-I signaling pathways are also potent
anabolic factors in regulating osteoblast function and may serve as potential targets to
stimulate osteoblast function and bone formation locally.

4.10. Leptin–serotonin system pathway regulation of bone formation through gut-derived
serotonin

A new regulation mode of osteoblastic bone formation controlled by leptin-serotonin (BDS)-
sympathetic nervous system pathway has emerged in recent years. Leptin is a hormone
produced by adipocytes that, besides its function in regulating body weight and gonadal
function, can also act as an inhibitor of bone formation (Figure 3) [84]. Latest data indicates
that these leptin functions require brainstem-derived serotonin [85]. Serotonin is a bioamine
produced by neurons of the brainstem (brainstem-derived serotonin, BDS) and enterochro‐
maffin cells of the duodenum (gut-derived serotonin, GDS). BDS acts as a neurotransmitter,
while GDS as an autocrine/paracrine signal that regulates mammary gland biogenesis, liver
regeneration, and gastrointestinal tract motility [86]. There are two Tph genes that catalyze the
rate-limiting step in serotonin biosynthesis: Tph1 expressed mostly, but not only, in entero‐
chromaffin cells of the gut and is responsable for the production of peripheral serotonin [86].
Tph2 is expressed exclusively in raphe neurons of the brainstem and is responsible for the
production of serotonin in the brain [87]. Leptin inhibits BDS synthesis by decreasing the
expression of Tph2, a major enzyme involved in serotonin synthesis in brain [85]. In addition,
other data indicate, the key role of GDS in regulating bone formation as well as the relationship
between GDS, Lrp5, and bone remodeling. Lrp5 controls bone formation by inhibiting GDS
synthesis in the duodenum, and GDS directly acts on the osteoblast cells to inhibit osteoblast
proliferation and suppress bone formation (Table 2) [88]. However, recent data to argue that
Lrp5 affect bone mass mainly through local Wnt signaling pathway, and that the experiments
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did not support the Lrp5-GDS-osteoblast model because they found that there was no
relevance between GDS and bone mass in their mouse model system [89].

4.11. New signals in bone remodeling

More recently, other signaling pathways that link regulation of the osteoclasts and osteoblasts
have been identified. Osteoblast-lineage cells expressed Wnt5a, whereas osteoclast precursors
expressed Ror2. Connection between these two cells leads to Wnt5a-Ror2 signaling between
osteoblast-lineage cells and osteoclast precursors enhanced osteoclastogenesis, through
increased RANK expression mediated by JNK signaling. A soluble form of Ror2 acted as a
decoy receptor of Wnt5a and abrogated bone destruction in the mouse model, suggesting that
the Wnt5a-Ror2 pathway is crucial for osteoclastogenesis in physiological and pathological
environments and may represent a therapeutic target for bone diseases (Figure 3) [90]. Finally,
a recent study reported that semaphorin 4D (Sema4D), previously shown to be an axon
guidance molecule, expressed by osteoclasts and which potently inhibits bone formation [91].
Several studies have suggested that axon-guidance molecules, such as the semaphorins and
ephrins, are involved in the cell-cell communication that occurs between osteoclasts and
osteoblasts. The Binding of Sema4D to its receptor Plexin-B1 in osteoblasts resulted in the
activation of the small GTPase RhoA, which inhibits bone formation by suppressing insulin-
like growth factor-1 IGF-1 signaling and by modulating osteoblast motility. Notably, the
suppression of Sema4D using a specific antibody was found to markedly prevent bone loss in
a model of postmenopausal osteoporosis (Table 2) [91]. This finding identifies a new link
between osteoclasts and osteoblast signaling, and suggests that suppression of the Sema4D-
Plexin-B1-RhoA signaling axis may provide a new therapeutic target for reducing bone loss
and development of bone-increasing drugs.

5. Pathophysiology of bone remodeling (diseases)

Several lines of evidence have established that the cells that remodel the skeleton under
physiological conditions are the same cells that mediate these processes in pathologic states.
Mature bone consists of: an organic matrix (osteoid) composed mainly of type 1 collagen
formed by osteoblasts; a mineral phase which contains the bulk of the body's reserve of calcium
and phosphorus in crystalline form (hydroxyapatite) and deposited in close relation to the
collagen fibers; bone cells; and a blood supply with sufficient levels of calcium and phosphate
to mineralize the osteoid matrix. Bone turnover and remodeling occurs throughout life and
involves the two-coupled processes of bone formation by osteoblasts and bone resorption by
osteoclasts and perhaps osteolytic osteocytes. Abnormalities of bone remodeling can produce
a variety of skeletal disorders (Table 3). The metabolic bone diseases may reflect disturbances
in the organic matrix, the mineral phase, the cellular processes of remodeling, and the
endocrine, nutritional, and other factors that regulate skeletal and mineral homeostasis. These
disorders may be hereditary or acquired and usually affect the entire bony skeleton. The
acquired metabolic bone diseases are the more common and include: osteoporosis, osteoma‐
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lacia, the skeletal changes of hyperparathyroidism and chronic renal failure (renal osteodys‐
trophy), and Paget’s disease [48,50].

5.1. Osteoporosis

Osteoporosis is a common disease of bone remodeling characterized by low bone mass and
defects in the microarchitecture of bone tissue; it causes bone fragility and an increased
vulnerability to fractures. The loss of bone mass and strength can be contributed to by (a) failure
to reach an optimal peak bone mass as a young adult, (b) excessive resorption of bone after
peak mass has been achieved, or (c) an impaired bone formation response during remodeling.
Osteoporosis, is traditionally classified into primary and secondary types. Primary osteopo‐
rosis is the most common metabolic disorder of the skeleton and has been divided into two
subtypes: type I osteoporosis and type II osteoporosis, on the basis of possible differences in
etiology. Type I osteoporosis or postmenopausal osteoporosis is a common bone disorder in
postmenopausal women and is caused primarily by estrogen deficiency resulting from
menopause, whereas type II osteoporosis or age-related osteoporosis is associated primarily
with aging in both women and men (Table 3). In contrast, secondary osteoporosis refers to
bone disorders that are secondary complications of various other medical conditions, conse‐
quences of changes in physical activity, or adverse results of therapeutic interventions for
certain disorders [92].

Osteoporosis

Primary

Menopause Associated

Age related

Secondary

Glucocorticoid induced

Immobilization induced

Renal osteodystrophy

Paget’s disease

Osteopetrosis

Table 3. Diseases of bone remodeling.

5.2. Postmenopausal osteoporosis

Postmenopausal osteoporosis is a common disease with a spectrum ranging from asympto‐
matic bone loss to disabling hip fracture (Table 3). The pathogenesis of postmenopausal
osteoporosis is caused primarily by the decline in estrogen levels associated with menopause
[93]. Since the establishment of a central role for estrogen deficiency in the pathogenesis of
postmenopausal osteoporosis, enormous effort has been focused on elucidating the mecha‐
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nisms by which estrogens exert their bone-sparing effects. Since the discovery of the RANKL/
RANK/OPG axis, it has become clear that estrogen also exerts bone-sparing effects by targeting
this regulatory axis. Specifically, estrogen stimulates the expression of OPG in mouse osteo‐
blasts and stromal cells [94]. Moreover, the expression of RANKL was elevated on the surface
of bone marrow cells, such as osteoblasts and lymphocytes, from postmenopausal women with
osteoporosis compared with cells from premenopausal controls [94]; this finding indicates that
RANKL plays an important role in the pathogenesis of postmenopausal osteoporosis.

5.3. Age-related osteoporosis

As the global population ages, the prevalence of age-related osteoporosis (e.g., postmeno‐
pausal osteoporosis, male osteoporosis) and related fractures is likely to increase consider‐
ably (Table 3). Recent studies indicate that significant trabecular bone loss begins as early
as the twenties in men and women long before any major hormonal changes [95]. In women,
however, bone loss accelerates for 5 to 10 years after menopause due to the rapid decline
in estrogen levels; after this phase, bone loss continues at approximately the same rate as
in  elderly  males.  Thus,  the  pathogenesis  of  osteoporosis  in  women  involves  primarily
osteoclasts  (bone  resorption)  and  results  from  changes  in  estrogen  and  FSH  levels  at
menopause and age related,  is  centered on osteoblasts  (bone formation),  and engages a
number of distinct factors associated with the aging process in both men and women. Thus,
age-related  changes  in  the  activity  of  either  cell  type  may lead  to  bone  loss  [96].  Age-
related osteoporosis in men also has a multifactorial etiology. The decreased bone forma‐
tion  caused  by  changes  in  ROS,  IGF-1,  and  PTH  levels  associated  with  aging  plays  a
predominant role in the pathogenesis of age-related osteoporosis in men. However, age-
related changes in the levels of sex steroids, including both estrogen and androgen, also
contribute to the pathogenesis of age-related osteoporosis in men [97].

5.4. Glucocorticoid-induced osteoporosis

Glucocorticoids (GCs) are potent immunomodulatory drugs that are commonly used to treat
a variety of inflammatory conditions and autoimmune disorders. GCs increase bone resorption
and reduce bone formation (Table 3) [98]. Pharmacological doses of GCs induce osteoporosis
primarily by altering normal bone remodeling. GCs exert deleterious effects on the differen‐
tiation, function, and survival of multiple cell types involved in the remodeling process. GCs
have profound effects on osteoblast differentiation and function. As in other target tissues,
glucocorticoids exert their effects on gene expression via cytoplasmic glucocorticoid type 2
receptors. In adult bone, functional glucocorticoid receptors are found in pre-osteoblast/
stromal cells, osteoblasts (the cells that produce bone matrix), but not in osteoclasts [99].
Instead, glucocorticoids stimulate osteoclast proliferation by suppressing synthesis of osteo‐
protegerin, an inhibitor of osteoclast differentiation from hematopoietic cells of the macro‐
phage lineage, and by stimulating production of the receptor activator of nuclear factor kappa-
B (RANK), which is required for osteoclastogenesis. High glucocorticoid levels also stimulate
RANKL synthesis by pre-osteoblast/stromal cells, supporting osteoclast differentiation and
net bone resorption [100].
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5.5. Immobilization-induced osteoporosis

One of the major functions of bone remodeling is to adapt bone material and structural
properties to the mechanical demands that are placed on the skeleton, including mechanical
loading and weight bearing (Table 3). The importance of the mechanical balance of bone has
been more recently stressed by the research on the effect of weightlessness on bone, and by
the introduction of the concept of "mechanostat" in the pathogenesis of osteoporotic conditions.
Immobilization osteoporosis has clinical (fractures, sometimes hypercalcemia, urinary
lithiasis) and radiological features. Immobilization has an effect on bone modeling and
remodeling, through an increased activation of remodeling loci, and a decrease of the osteo‐
blastic stimulus. For ordinary individuals, the skeleton is developed in childhood and then
constantly remodeled throughout adulthood to maintain mechanical strength that can
sufficiently support normal weight bearing and routine physical activities. However, for
individuals such as athletes, the mechanical needs increase for certain regions of the skeleton;
consequently, bone modeling results in the formation of stronger bone to replace old bone that
could not adequately meet the increased mechanical demands [101].

5.6. Renal osteodystrophy

Renal osteodystrophy the term used to describe a heterogeneous group of metabolic bone
diseases that accompany chronic kidney disease, is a multifactorial disorder of bone remod‐
eling (Table 3). The bone disorders in renal osteodystrophy include: osteomalacia of adults
and rickets of children (so-called "renal rickets"); osteitis fibrosa and other bone changes of
secondary hyperparathyroidism; osteopenia; and osteosclerosis. Renal osteodystrophy is an
alteration of bone morphology in patients with CKD (Chronic Kidney Disease). The patho‐
physiology of renal osteodystrophy is complex and clearly reflects the importance of PTH and
vitamin D on bone turnover and related pathological abnormalities. The bone changes are
brought about by the abnormal metabolism of vitamin D, the overproduction of parathyroid
hormone (PTH), and chronic metabolic acidosis. The diminished renal mass leads to a
decreased renal conversion of 25-hydroxyvitamin D into 1,25-dihydroxyvitamin D, the active
metabolite of vitamin D, resulting in diminished intestinal absorption of calcium, hypocalce‐
mia, and defective bone mineralization characterized by the presence of wide osteoid seams,
osteomalacia in adults, and rickets in children [102].

5.7. Paget’s disease

Paget’s disease is known as a bone remodeling disorder and that involves abnormal bone
destruction and regrowth, which results in deformity. In Paget’s disease, the bone remodeling
process is disregulated (Table 3). New bone is placed where it is not needed, and old bone is
removed where it is needed. This disregulation can distort the normal skeletal architecture
[103]. Paget’s disease is most commonly diagnosed in the sixth decade, and increases in
prevalence as age increases. Paget's disease is very uncommon in individuals under 40 years
of age. The most common bones affected by Paget’s disease are the pelvis, femur, spine, skull,
and tibia. Paget’s disease is believed to be a primary disorder of increased osteoclast bone
resorption with a secondary marked increase in osteoblast activity and new bone formation.
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The cause of Paget’s disease is not entirely known, but it is thought to be caused in part from
a childhood virus. A virus particle, known as a paramyxovirus nucleocapsid, has been
identified within the bone cells of individuals with Paget’s disease. This virus particle is not
found in normal bone. Genetics plays a role, several genes have been implicated; however, the
most commonly described mutation is a gene that encodes an ubiquitin-binding protein that
plays a role in NF-κB signaling [104].

5.8. Osteopetrosis

There are several syndromes of osteopetrosis or osteosclerosis in which bone resorption is
defective because of impaired formation of osteoclasts or loss of osteoclast function (Table 3).
In these disorders, bone modeling as well as remodeling are impaired, and the architecture of
the skeleton can be quite abnormal [105]. Osteopetrosis is a congenital disease that interferes
with the formation of the bone marrow, and causes abnormal bone development, blindness,
rickets, abnormal tooth development and fragile bones. It results from a defect in cells called
osteoclasts, which are necessary for the formation of the bone marrow. In patients with
osteopetrosis, osteoclasts not function properly, and no cavity is formed to the bone marrow
[106]. The subclassification of these disorders is based upon the mode of inheritance, age of
onset, severity, and clinical symptoms [107]. The pathophysiology of osteopetrosis involves
mutations that affect osteoclast function. The three most important mutations are: carbonic
anhydrase II, proton pump, and chloride channel [48].

6. Conclusions

Bone is a specialized and dynamic tissue, in constant change. It has a complex structure and
undergoes constant remodeling. The basic multicellular unit of bone, which comprises
osteocytes, osteoclasts and osteoblasts, conducts the remodeling process. In the last years, more
knowledge in bone cell biology and genetic studies, have been helped in our understanding
of the essential signaling pathways that control bone remodeling and bone mass. They act in
a coordinated manner to form or resorb bone. Recent advances in molecular biology and a
thorough understanding of the remodeling process bone, many molecules have been discov‐
ered that have important roles in bone biology and novel signaling pathways regulating bone
remodeling have also been identified. Now understand how PTH, Wnt signaling, and growth
factors may trigger anabolic effects in bone. The explosion of this knowledge may serve as a
basis for the development of novel therapeutic approaches targeted on the identified signaling
molecules enable us to define the abnormalities in cells of the osteoblastic and osteoclastic
lineages that lead to bone disease with the hope to the diagnosis and treatment of bone
remodeling disorders. With this knowledge, can expect the development of even more
therapies to evolve from a better understanding of the complex molecular aspects of bone
remodeling.
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