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1. Introduction

The chromatin basic structure named nucleosome contains 147 DNA base pairs wounded
1.65  times  around an  octamer  of  histone  proteins  which  consist  of  two copies  of  H2A,
H2B, H3, and H4, separated by linker regions of 20-110 nucleotides. Nucleosome assem‐
bly in the nucleus proceeds in two stages. At first, hetero-tetramer H3/H4 integrates into
the DNA and at the second stage the heterodimer H2A/H2B is added. Nucleosomes are
further condensed into 30 nm fibers through the incorporation of histone H1, located in
the  linker  regions,  achieving an additional  250-fold  structural  compaction in  metaphase
chromosomes.  Nucleosome packaging restricts  protein  binding and obstructs  DNA-tem‐
plated  reactions.  Therefore,  local  modulation  of  DNA  accessibility  is  necessary  for  the
fundamental  processes  of  transcription,  replication  and  DNA  repair  to  occur.  In  this
sense, chromatin structure is not static but subject to changes at every level of its hierar‐
chy.  Nucleosomes are considered dynamic and instructive particles  that  are involved in
practically all chromosomal processes, being subjected to highly ordered changes consid‐
ered as  epigenetic  information,  which  modulates  DNA accessibility  [1,  2].  Nucleosomes
exhibit  three  dynamic properties:  a)  covalent  histone post-translational  modifications,  b)
change of composition due to removal of histones and c) movement along DNA. The lat‐
ter two are carried out by ATP-dependent chromatin remodeling complexes [3].  Histone
post-translational  modifications  (PTMs)  such  as  the  addition  of  acetyl,  methyl,  phos‐
phate, ubiquitin, and sumo groups change the properties of histones, modifying histone-
DNA  or  histone-histone  interactions  [4].  Modifying  complexes  add  or  remove  covalent
modifications  on  particular  residues  of  the  N-  and  C-terminal  domains  of  histone  pro‐
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teins,  altering  the  structure  of  chromatin  and creating  “flags”  which  can  be  recognized
by different regulatory proteins. Many chromatin-associated proteins contain protein do‐
mains that bind these moieties such as the bromodomain that recognizes acetylated resi‐
dues and chromodomains,  Tudor,  Plant Homeo Domain (PHD) fingers,  Malignant brain
tumor (MBT) domains that bind to methylated lysines or arginines [5].

In  the  regulation  of  gene  expression  a  “code  of  histones”  has  been  determined,  where
different PTMs allow the recruitment of different factors specifying determined functions
on  chromatin  [2].  Certain  histone  modifications  can  even  induce  or  inhibit  the  appear‐
ance of other modifications in adjacent aminoacidic residues [6]. ATP-dependent chroma‐
tin remodeling factors use ATP hydrolysis to slide or unwrap DNA. These multi-subunit
complexes can also catalyze eviction of  histone octamers to  promote histone variant  re‐
placement [7]. Eukaryotic cells also contain alternative versions of the canonical histones,
differing  in  the  aminoacidic  sequences.  One  of  these  isoforms  is  histone  H2AX,  which
differs from the canonical H2A histone by the presence of a short C-terminal tail. Nucle‐
osomes  containing  canonical  histones  are  formed  during  replication,  and  non-canonical
histones replace canonical ones in the course of DNA metabolic processes not associated
with replication,  such as transcription and repair.  Other protein complexes participating
in the process of nucleosome assembly/disassembly such as histones chaperones like the
chromatin  assembly  factor  1  (CAF-1),  composed  by  three  subunits:  p150,  p60  and  p48,
which has been suggested to play a pivotal role in chromatin assembly after DNA repli‐
cation  and  repair  [8].  During  DNA replication,  CAF-1  complex  binds  to  newly  synthe‐
sized  histone  H3  and  H4  and  deposits  the  histone  tetramers  onto  replicating  DNA  to
form  the  chromatin  precursor  in  a  PCNA-dependent  manner.  The  replicated  precursor
then serves as the template for deposition of either old or new histone H2A and H2B.

In  response  to  both  DNA damage  and  replication  stress,  a  signal  transduction  cascade
known as  the  checkpoint  response is  activated.  This  phenomenon is  also  referred to  as
the DNA damage response. It is becoming clear that DNA damage sensors can recognize
the  chromatin-associated  signals  of  DNA  damage.  This  information  is  then  transmitted
via signal transducers,  including diffusible protein kinases, to effector molecules such as
the checkpoint kinases that mediate the physiological response of the cell  to DNA dam‐
age,  which ultimately  promotes  efficient  repair  and cell  survival.  The primary target  of
this pathway is the arrest or slowing of the cell cycle, providing time for DNA repair to
take  place.  Depending  on  the  type  of  DNA  damage  induced,  different  repair  mecha‐
nisms can be activated,  such as  non-homologous end joining and homologous recombi‐
nation in case of double strand breaks induction and excision repair mechanisms in case
of nucleotide or base damage. As for DNA transcription, a regulatory role of the epige‐
netic code in DNA repair has been proposed [3, 4, 9, 10]. Chromatin remodeling process‐
es  not  only  influence  access  to  DNA  but  also  serves  as  a  docking  site  for  repair  and
signaling proteins [7,  10-12].  Chromatin plays a pivotal role in regulating DNA-associat‐
ed processes  and it  is  itself  subject  of  regulation by the DNA-damage response.  In  this
chapter,  we summarize the current knowledge on the involvement of chromatin remod‐
eling processes in nucleotide excision repair in mammalian cells.
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2. Chromatin structure after UVC-induced DNA damage

Endogenous and exogenous DNA damaging agents modify DNA. One of the most common
environmental stresses that produce lesions in DNA is UV light. UVC irradiation induces
cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts (6-4PP)
which result in an abnormal DNA structure that signals the lesion [7], [13-15]. However, they
can be distributed differently along the chromatin structure. CPDs are mainly found in the
minor groove of DNA facing away from the histone surface and 6-4PPs are preferentially
formed in linker DNA but can also be seen throughout the histone core region. This indicates
that nucleosomes can actually confer partial protection against this type of DNA damage.
Moreover, an in vitro study in specific sites with mono-nucleosomes showed that elimination
of UVC-induced lesions is highly inhibited by nucleosomes [16, 17]. Chromatin plays a role
not only in the spectrum of DNA damage formation but also in the repair of these lesions. In
this respect, it has been shown that chromatin structure has an inhibitory effect on the repair
of both CPDs and 6–4PPs [18]. For instance, excision activity in the nucleosome core center is
nearly sevenfold lower than that in free DNA [15].

Access to these lesions in chromatin can be achieved mainly by the action of ATP-dependent
chromatin remodeling factors and the addition of post-translational modifications on histones
[19], which could facilitate their removal. However, like DNA repair enzymes, both chromatin
remodeling proteins and histone modification factors require initial localization to damaged
sites, but the mechanism by which UVC-damaged DNA in chromatin is recognized by these
factors and how damaged from undamaged chromatin can be distinguished remain unclear.
A recent study using reconstituted nucleosomes containing DNA with CPDs or 6–4PPs
showed that the presence of these lesions does not affect the reconstitution of nucleosomes in
vitro, but the dynamic equilibrium of DNA unwrapping-rewrapping around the nucleosome
switches toward the unwrapped state. These in vitro experiments suggest that intrinsic
nucleosome dynamics, specially increased unwrapping of the DNA around damaged nucle‐
osomes, facilitate the access of factors involved in recognizing damage and/or those involved
in chromatin remodeling. Therefore, once remodeling factors are recruited to the damaged
nucleosomes, disruption of local chromatin structure could initiate the recruitment of the
multiple repair proteins [14]. Nevertheless, it is important to take into account that in vivo, in
the context of all chromatin factors, the recognition step of the photolesions may be more
complex. Apart from the DNA distortion, other factors also actively contribute to reveal and
mark lesion sites for recruitment of the repair machinery.

3. Nucleotide excision repair in chromatin

Nucleotide excision repair (NER) system is more efficient in naked DNA than in chromatin
and it is inhibited by the presence of nucleosomes and heterochromatin, which limit the access
of repair proteins to DNA [20]. Thus, for NER to recognize, excise and repair DNA damage
efficiently, chromatin needs to be adapted [21]. Therefore, a chromatin rearrangement is a
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necessary step in the access of repair proteins to DNA damage sites and led to the ‘‘access,
repair, restore’’ model of NER in chromatin. This model suggests that early chromatin
remodeling steps and/or intrinsic dynamic changes in chromatin may allow the access of repair
complexes to damaged sites, followed by restoration of the original nucleosomal organization
after DNA repair [1, 22]. In NER, lesions that are located in linker regions are more accessible
for binding by the recognizing proteins. A plausible scenario for DNA repair implies that the
lesion is recognized and eliminated in the most accessible sites for repair proteins. Therefore,
nucleosome modification and initiation of chromatin relaxation around the repair site start at
considerable distances from the initiation point of DNA repair. As a result, other lesions,
particularly those in the core of nucleosomes, become more accessible. Thus, proteins respon‐
sible for recognizing UVC-induced DNA lesions can recognize and bind them even if they are
located in the core of the nucleosome [23, 24].

Figure 1. Nucleotide excision repair in the chromatin context. Nucleotide damage induced by UVC (CPDs and 6-4-PPs)
is represented on a 11 nm chromatin fiber. Main proteins acting during the cellular response to UVC-induced damage
are presented: (i) key proteins implicated in nucleotide excision repair (NER) (TCR and GGR) in mammalian cells (grey);
(ii) chromatin assembly or remodeling factors recruited by chromatin modifications (violet) and histone chaperons in‐
volved in NER (orange); (iii) sensor proteins belonging to TCR (CSA, CSB, RNApolII) or GGR (XPC-HHR23B, XPE-UV-DDB)
(pink); and histone modifying enzymes responsible for post-translational covalent modifications (PTMs): histone acetyl
transferases (HATs) (blue), enzymes that conjugate ubiquitin moieties (green) and kinases (light-blue). Known PTMs
appearing in response to UVC-induced damage are highlighted in green on top of the figure. See text for more details
concerning the activities of every protein. Ac: acetylation, Ph: Phosphorylation, Ub: ubiquitylation, K: lysine, S: serine, T:
threonine.
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NER removes a wide range of bulky DNA adducts that distort the double helix of DNA,
including those induced by UVC. NER system can be divided into two pathways:  tran‐
scriptional coupled repair (TCR) pathway, that repairs lesions that occur in transcription‐
ally  active  genes  and  global  genome  repair  (GGR)  that  acts  into  lesions  in  non
transcribed DNA [1,  25,  26].  Both pathways involves  the  action of  about  20-30 proteins
(Figure 1) in a “cut-and-paste-like” mechanism [26, 27] divided in five steps: a) lesion de‐
tection;  b)  recruitment  of  TFIIH-XPB-XPD  complex,  which  directs  DNA  unwinding
around the damaged nucleotide; c) recruitment of ERCC1- XPF, XPG, XPA and RPA that
induce 5’ and 3’ breaks around the lesion and remove the damaged nucleotide; d) DNA
synthesis  directed  by  DNA  polymerase  δ/ε,  PCNA  and  other  accessory  factors  and  e)
strand ligation (ligase I/III) [1, 26]. Both pathways use the same cellular machinery in all
steps except from lesion recognition. At this initial step, in TCR CSA and CSB direct the
basic  repair  machinery  to  RNA  polymerase  II  stalled  at  the  lesion  [28].  On  the  other
hand, in GGR damage site recognition is carried out by XPC-hHR23B and UV-DDB/XPE
complexes  [13,  25,  29-31].  The defect  in  one of  the  NER proteins  is  the  consequence  of
three rare recessive syndromes: Xeroderma pigmentosum (XP), Cockayne syndrome (CS)
and the photosensitive brittle hair disorder trichothiodystrophy (TTD) [26, 31, 32].

Apart from ATP-dependent chromatin remodeling factors and histone modifications, repair
factors themselves could cause chromatin rearrangements. Particularly good candidates for
this type of function in the NER system are the transcription-coupled repair factor CSB, which
has homology to SWI/SNF chromatin remodeling proteins, and the TFIIH complex that
contains the helicase subunits XPD and XPB [33]. However, a non-mutually exclusive sugges‐
tion is that global chromatin relaxation increases accessibility over the whole genome in
response to damage in order to expose the individual damage sites for recognition [34]. After
removal of the DNA lesion and completion of new DNA synthesis by DNA polymerase and
DNA ligase, the original structure of chromatin is restored by the action of CAF-1 [22, 31]. The
recruitment of mammalian CAF-1 is restricted to damaged sites and depends on NER, binding
concomitantly with repair synthesis [8]. Chromatin restoration does not simply recycle
histones, but also incorporate new histones and histones with distinct post-translational
modifications into chromatin. For example, new histone H3.1, deposited during DNA
replication, is incorporated into chromatin as a marker of sites of UVC-induced DNA damage
repaired by NER [35].

4. Histone covalent modifications in NER

One of the most important chromatin remodeling processes that occur during NER is histone
covalent modification, which constitutes a reversible process. The most frequent histone tail
modification is the histone acetylation/deacetylation process, which is controlled by histone
acetyltransferases (HAT) and histone deacetylases (HDAC), determining either gene activa‐
tion or inactivation, respectively. Meanwhile, histone methylation is carried out by histone
methyl-transferases (HMT) and histone demethylases (HDM) are used for the reverse reaction.
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Finally, kinases like ATR are responsible for histone phosphorylation, and histone ubiquiti‐
nation is driven by histone ubiquitin ligases.

4.1. Histone acetylation

The acetylation of the ε-amino group of lysine (K) side chains is a major histone modification
involved in numerous cellular processes, such as transcription and DNA repair. Acetylation
neutralizes the lysines positive charge and this action may consequently weaken the electro‐
static interactions between histones and DNA. Thus, acetylated histones could enhance
chromatin accessibility by reducing the attractive force between the nucleosome core and
negatively charged DNA. For this reason, histone acetylation is often associated with a more
‘‘open’’ chromatin conformation. UVC irradiation induces global and local changes in
chromatin structure in order to increase accessibility for repair proteins and hence a proper
NER occurs [34]. Early studies demonstrated that acetylated nucleosomes enhance NER
efficiency [36]. In this respect, UVC-induced acetylation of H3 K9 and H4 K16 has been
observed [37, 38]. H3 K9 acetylation after UVC irradiation requires the recruitment of the
transcription factor E2F1, which interacts with the HAT GCN5. In fact, inactivation of GCN5
in human cells decreases recruitment of NER factors to damaged sites, which demonstrates
that GCN5 is important for a timely and efficient NER [38]. Besides, UV-DDB complex (DDB1–
DDB2) recruits two HATs, such as CBP/p300 and STAGA (a SAGA-like complex containing
GCN5L) [39, 40], whose activities induce chromatin remodeling to allow recruitment of the
repair complexes at the UVC-induced damage sites. By the same token, it has also been
observed that p33ING2, a member of the inhibitor of growth (ING) family proteins, enhances
NER in a p53-dependent manner by inducing chromatin relaxation following UVC irradiation,
increased acetylation of histone H4 and recruitment of NER factors to sites of damage [41].
Actually, it has also been observed that CBP/p300 is recruited to UVC damaged sites in a p53-
dependent manner via its interaction with CSB, accompanied by an increase in H3 acetylation
[34, 42]. Hence, increased histone acetylation at the NER site is likely to contribute to the p53-
induced chromatin relaxation that is induced by DNA damage, suggesting that the function
of UVC-induced histone acetylation is to promote opening up on the chromatin to facilitate
repair. However, employing the in situ nick translation technique, we have observed that
chromatin decondensation is also induced in p53 mutant Chinese hamster (CHO) cell lines,
either proficient or deficient in TCR (simile Cockayne’s Syndrome B or CSB cells), and that this
chromatin decondensation process is related to histone acetylation (data not published yet).
Actually, it seems that the extent and type of histone acetylation may vary depending on the
structure of chromatin associated with repair sites and the type of NER pathway (GGR or TCR).
On the other hand, we have demonstrated in Chinese hamster chromosomes that acetylated
histone H4 regions are preferred sites for radiation- and endonucleases-induced chromosome
lesions [43, 44]. Altogether, these results could indicate that certain chromatin modifications
can take place independently of NER, acting as a signal for the recruitment of chromatin
remodeling factors. Moreover, it has been proposed that H3 K56 deacetylation is an early event
triggered by DNA damage upon UVC irradiation in mammalian cells [45]. According to this,
DNA damage results in the prompt deacetylation of H3 K56, which contribute to the recruit‐
ment of different factors including chromatin remodelers to relax the chromatin structure for
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allowing easy access to the NER complex and cell cycle checkpoints. Upon successful com‐
pletion of DNA repair, the histone chaperone anti-silencing function1A (ASF1A) is recruited
in an ATM-dependent manner, facilitating the recruitment of HATs needed for the restoration
of native H3 K56 acetylation status, but the molecular mechanism of ASF1A recruitment is not
clear yet [45]. Finally, High mobility group protein B1 (HMGB1), a multifunctional protein
that, influences chromatin structure and remodeling by binding to the internucleosomal linker
regions in chromatin [46] and facilitating nucleosome sliding [47], has been shown to affect
DNA damage-induced chromatin remodeling. It was observed that after UVC irradiation of
the HMGB1 knockout MEFs cells, their ability to remove UVC-induced DNA damage and the
increasing of histone acetylation was significantly affected [48]. This distortion may assist the
NER system in recognizing the damage [49] and facilitating repair of the lesion. HMGB1 also
affects chromatin remodeling after DNA damage, so its binding to the lesion could increase
the accessibility of repair factors to the site of DNA damage.

4.2. Histone phosphorylation

The phosphorylation of serine (S), threonine (T), and tyrosine (Y) residues has been docu‐
mented on all core and most variant histones. Phosphorylation alters the charge of the protein,
affecting its ionic properties and influencing the overall structure and function of the local
chromatin environment [50]. Although there is no evidence that PI3K enzymes could be
activated by DNA lesions repaired by NER, when DNA replication fork is stalled, NER protein
foci are formed, creating single strand breaks (SSBs) which can be covered by RPA/ATRIP and
activate the kinase activity of ATR [51]. However, these NER intermediates (SSBs arising from
excised lesions) can activate ATR, even outside S-phase [52]. Several histone phosphorylation
changes after UVC irradiation have been observed, such as H2AX histone variant which is
phosphorylated at S139 (named gamma-H2AX) [52]. H2AX phosphorylation upon UVC in
non-S-phase cells depends on ATR and active processing of the lesion by the NER machinery
[53], suggesting that NER-intermediates trigger this response. The notion that gamma-H2AX
formation occurs in response to NER and that NER is proficient in H2AX-deficient cells,
suggests that this modification mainly plays a role in checkpoint activation during the repair
of UVC lesion. Besides, S2, S18 and S122 H2A residues play important roles in survival
following UVC exposure [54]. Two aminoacidic residues of histone H3, S10 and T11, appear
to be a target of differential phosphorylation during NER. H3 S10 and H3 T11 in mouse are
dephosphorylated by UVC irradiation and rephosphorylated after DNA damage repair.
Hypophosphorylation of H3 S10 and H3 T11 are associated with transcription repression, and
this histone modification might be one of the mechanisms that cells employ to inhibit tran‐
scription at UVC-damaged sites [25].

4.3. Histone methylation

Histone methylation is carried out by a group of enzymes called histone methyltransferases
HMT, which covalently modify the lysine and arginine (R) residues of histones by transferring
one, two or three methyl groups to the ε-amino group of lysine residues or to the guanidino
group of arginine residues [6]. Methylation, unlike acetylation and phosphorylation, does not
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alter the overall charge of histones. Histone methylation in combination with acetylation
creates specific modification signatures which can influence transcription [55, 56]. Lysine
methylation has a different impact on transcription, depending on the positions and degree of
methylation (mono-, di-, tri-methylation). Methylation of H3 lysine (H3 K4 and 36) is associ‐
ated with transcribed domains, whereas methylation of H3 K9, H3 K27 and H4 K20 appears
to correlate with transcriptional repression. Human Chd1 binds to methylated H3 K4 through
its tandem chromodomains, linking the recognition of histone modifications to non-covalent
chromatin remodeling [57]. In contrast, methylated H3 K9 and H3 K27 are recognized by
heterochromatin protein 1 (HP1) and polycomb repressive complexes (PRC). Different from
histone acetylation, which has been known to be implicated in NER for a long time, histone
methylation was found to be implicated in NER recently [58, 59]. The knockdown of the best
known methyltransferase of histone H3 K79 (called Dot1 in yeast or DOT1L in mammals),
results in complete loss of methylation on this site either in yeast [60], flies [61] or mice [62].
In mammaliam cells, several enzymes target histone H4 K20 methylation. Mouse cells lacking
the Suv4-20h histone methyltransferase have only mono-methylated but essentially no di- and
tri-methylated H4 K20. These mutant mouse cells are sensitive to DNA damaging agents,
including UV and defective in repair of DSBs [63]. However, if methylation of histone H4 K20
also plays a role in NER is unknown. Moreover, there is not much knowledge about its role in
DNA repair in mammalian cells. Finally, it has not been determined yet if global histone
methylation levels change in response to DNA damage, although it is well known that they
affect cell cycle checkpoints through interactions with checkpoint components.

4.4. Histone ubiquitination

All of the previously described histone modifications result in relatively small molecular
changes in the aminoacid side chains. In contrast, ubiquitination results in a much larger
covalent modification. Ubiquitin itself is a 76-amino acid polypeptide that is attached to histone
lysines via the sequential action of three enzymes, E1-activating, E2-conjugating and E3-
ligating enzymes [6]. Histones H2B, H3 and H4 are constitutively ubiquitinated, but at very
low levels (0.3% of the total H3, 0.1% for H4) [64]. In an effort to purify and characterize histone
ubiquitin ligases, it was found an ubiquitin ligase activity capable of ubiquitinating all histones
in vitro [65]. The ligase was later characterized as CUL4–DDB–ROC1 complex, an enzyme that
is known for ubiquitinating DDB2 and XPC at UVC damaged sites [66, 67]. A small fraction
of histone H3 and H4 (0.3% and 0.1%, respectively) is found ubiquitinated in vivo and siRNA
mediated knockdown of CUL4A, B and DDB1 decreases the H3 and H4 ubiquitination levels.
In addition, the dynamics of CUL4–DDB–ROC1-mediated H3 and H4 ubiquitination is similar
to that of XPC. Actually, further biochemical studies indicate that the H3 and H4 ubiquitination
weakens the interaction between histones and DNA, and facilitates the recruitment of XPC
repair factor to damaged DNA [65]. These studies point out the role of H3 and H4 ubiquiti‐
nation in chromatin disassembly at the sites of UVC lesions. However Takedachi et al. [68]
found that ubiquitination of H3 and H2B by the CUL4A complex was not sufficient to
destabilize the nucleosome and proposed that ubiquitination around damaged sites functions
as a signal that enhances the recruitment of XPA repair protein to lesions. Moreover, as well
as H2B, H3 and H4, H2A displays some constitutive ubiquitination being the primary targets
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K119 and K120. H2A ubiquitination by UBC13/RNF8 ubiquitin ligase complex also occurs at
the sites of UVC-induced DNA damage [69]. Depletion of these enzymes causes UVC hyper‐
sensitivity, without affecting NER, suggesting that UBC13 and RNF8 are involved in the UVC-
induced DNA damage response. It has also been reported the recruitment of uH2A to sites of
DNA damage as a post-excision repair event, in which transiently disrupted chromatin is
restored through repair synthesis-coupled chromatin assembly [31], showing that the forma‐
tion of uH2A foci do not involve pre-incision events mediated by Cul4A-DDB ubiquitin ligase,
but require successful NER through either GGR or TCR subpathway. In this respect, it was
recently shown that monoubiquitination of H2A K119 and K120 by DDB1-CUL4BDDB2 is critical
for destabilization of the photolesion-containing nucleosomes, leading to eviction of H2A from
the nucleosome, and that the partial eviction of H3 from the nucleosomes also depends on
ubiquitinated H2A K119/K120. Furthermore, nucleosomal structure has consequences for the
binding of E3 ligase complex; polyubiquitinated DDB2 is only released from the destabilized
nucleosome, presumably releasing space around the lesion to load the NER pre-incision
complex and proceed with repair. These results reveal how post-translational modification of
H2A at the site of a photolesion initiates the repair process, which affects the stability of the
genome [70].

5. ATP-dependent chromatin remodeling during NER

Chromatin remodeling complexes (CRCs) in contrast to PTMs utilize the energy of ATP to
disrupt nucleosome DNA contacts, move nucleosomes along DNA and remove or exchange
nucleosomes [71]. Thus, they make DNA/chromatin available to proteins that need to access
DNA or histones during cellular processes [72]. A large array of different chromatin-remod‐
eling complexes has been identified, which play important roles in controlling gene expression
by regulating recruitment and access of transcription factors [73]. ATP-dependent chromatin
remodelers belong to the SWI2/SNF2 (switching/sucrose non fermenting) superfamily and can
be divided into several subfamilies on the basis of their ATPase domain structure and protein
motifs outside the ATPase domain [74]. Among the different complexes identified in different
species, four structurally related families have been described: SWI/SNF (switching defective/
sucrose non fermenting), INO80 (inositol requiring 80), CHD (chromodomain, helicase, DNA
binding) and ISWI (imitation SWI). Each family is defined by its characteristic catalytic ATPase
core enzyme from the SWI2/SNF2 [5]. The essential role of these enzymes is reflected in the
fact that many of them are required for diverse but specific aspects of embryonic development
including pluripotency, cardiac development, dendritic morphogenesis and self-renewal of
neural stem cells. However, in adults, deletion or mutation of these proteins often leads to
apoptosis or tumorigenesis as a consequence of dysregulated cell cycle control. In recent years,
it has become clear that ATP-dependent chromatin remodeling factors not only are involved
in transcription regulation, but also play an important role in a number of DNA repair
pathways including double strand break repair, base excision repair as well as nucleotide
excision repair (NER) [71]. UVC damage itself enhances unwrapping of nucleosomes, which
normally exist in a dynamic equilibrium between wrapping and unwrapping [75]. This
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enhanced “DNA breathing” may assist the repair of lesions in chromatin by increasing the
time window for repair factor access and their binding to lesions might further unwrap the
DNA [14]. ATP-dependent chromatin remodeling may play a role in opening the chromatin
structure for access during DNA damage repair, facilitating the early step of NER in the
recognition of the damage [76]. In this respect, three SWI2/SNF2 subfamilies have been
implicated in the cell response to UVC radiation as it is shown in Table 1 [71, 77]. Several factors
have been implicated on stimulating the repair of UVC-induced DNA damage by increasing
chromatin accessibility. Numerous studies showed that there is an association between histone
hyperacetylation and chromatin relaxation in response to UVC-irradiation that enhances NER
[76]. GCN5-mediated acetylation of histone H3 contribute to the recruitment of the SWI/SNF
chromatin remodeling complex via the bromodomains of BRG1 or hBRM [38]. CSB/ERCC6,
one of the major TCR proteins, contains a SWI2/SNF2 ATPase domain, which is essential for
recruitment of the protein to chromatin [78]. CSB is able to remodel chromatin in vitro in an
ATP-dependent manner and is required for the recruitment of NER factors to sites of TCR [42,
79], suggesting that repair enzymes and remodeling complexes may work in concert to allow
access of DNA lesions to the repair machinery.

FAMILY COMPLEX ATPase ROLE IN NER

SWI/SNF BAF SMARCA4/BRG1,

SMARCA2/BRM

Stimulates the removal of 6–4PPs and

CPDs in a UVC-dependent histone H3

hyperacetylation manner [71]
PBAF SMARCA4/BRG1,

SMARCA2/BRM

INO80 INO80 INO80 Promotes the removal of UVC lesions

(CPDs,6–4PPs) by NER in not transcribed

regions [71]TRRAP/Tip601 EP400/p400

ISWI ACF SMARCA5/hSNF2H Not fully understood [71]

CHRAC SMARCA5/hSNF2H

WICH SMARCA5/hSNF2H

NURF SMARCA1/hSNF2L

OTHER ERCC6/CSB Remodels chromatin in vitro in an ATP-

dependent manner. Required for the

recruitment of NER factors to sites of TCR

[73]

Table 1. Mammalian ATP-dependent chromatin remodeling complexes identified as taking part in nucleotide
excision repair.
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5.1. SWI/SNF

The SWI/SNF chromatin-remodeling complex plays essential roles in a variety of cellular
processes including differentiation, proliferation and DNA repair. Loss of SWI/SNF subunits
has been reported in a number of malignant cell lines and tumors, and a large number of
experimental observations suggest that this complex functions as a tumor suppressor [80].
Interestingly, inactivation of the SWI/SNF-like BRG1/BRM-associated factors (BAF) complexes
renders human cells sensitive to DNA damaging agents, such as UVC and ionizing radiation
[81]. The mammalian SWI/SNF complexes contain either of two ATPase subunits, BRM
(brahma) or BRG1 (Brahma Related Gene). Both of them form a discrete complex by interacting
with other BAFs and may have distinct roles in cellular processes [65, 81].

Several studies have indicated that the SWI/SNF complex plays an essential role in the removal
of UVC-damage by NER [82]. In mammals, the SWI/SNF ATPase subunit BRG1/SMARCA4
stimulates efficient repair of CPDs but not of 6-4PPs. For Example, BRG1 interacts with XPC
and it is recruited to an UVC lesion in a DDB2 [83] and XPC [76] dependent manner. BRG1, in
turn, modulates UVC-induced chromatin remodeling and XPC stability and subsequently
promotes damage excision and repair synthesis by facilitating the recruitment of XPG and
PCNA to the damage site [76], suggesting the essential role of Brg1 in prompt elimination of
UVC-induced DNA damage by NER in mammalian cells. Finally, BRG1 may also transcrip‐
tionally regulate the UVC-induced G1/S checkpoint, as loss of BRG1 leads to increased UVC-
induced apoptosis [81]. Besides BRG1, the mammalian SWI/SNF subunit SNF5/SMARCB1 also
interacts with XPC. Inactivation of SNF5 causes UVC hypersensitivity and inefficient CPD
removal [82]. Intriguingly, BRG1/BRM, but none of the other subunits, is also important to the
UVC response in germ cells, suggesting that the involvement of individual SWI/SNF subunits
may differ between cell types. Interestingly, UVC hypersensitivity resulting from BRG1
inactivation depends on the presence of the checkpoint protein TP53, extending the complexity
of the involvement of BRG1 in UVC-induced DNA damage response [83]. Several lines of
evidence suggest that recruitment of factors like SWI/SNF and their functional participation
help to recruit downstream factors for processing DNA damage.

5.2. INO80

The INO80 family of CRCs function in a diverse array of cellular processes, including DNA
repair, cell cycle checkpoint and telomeric stability [84, 85]. The INO80 complex also contains
three actin-related proteins (ARPs). ARP5 and ARP8 are specific to the INO80 complex.
Deletion of either INO80-specific ARP compromises the ATPase activity of the remaining
complex and gives rise to DNA-damage-sensitive phenotypes indistinguishable to the INO80
null mutant [86]. Purification of human INO80 revealed a complex with virtually identical core
components and a role in transcription [87, 88], indicating that the INO80 complex is highly
conserved within eukaryotes [89]. The role for various remodeling activities is likely to
promote the timely repair of lesions, rather than being an essential component for lesion
removal. For example, some observations suggest that loss of remodeling activity leads to
attenuation of photolesion repair, but not a complete impairment. Thus, it supports the idea
that INO80 carry out an important chromatin remodeling activity for an efficient NER [74].
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The link between INO80 and NER function may reflect the underlying mechanism for the UVC
hypersensitivity of INO80 mutant cells and the broadening connections between chromatin
remodeling and DNA repair in general [89]. The mammalian INO80 complex functions during
earlier NER steps facilitating the recruitment of early NER factors such as XPC and XPA and,
in contrast to yeast, it localizes to DNA damage independently of XPC [89]. Furthermore,
INO80 facilitates efficient 6-4PPs and CPDs removal and together with the Arp5/ ACTR5
subunit, interacts with the NER initiation factor DDB1, but not with XPC. These discrepancies
may reflect interspecies differences, but may also point out multiple functions of INO80
chromatin remodeling during NER that are experimentally difficult to dissect. INO80 may
function to facilitate damage detection as well as to restore chromatin after damage has been
repaired [5]. A recent study shows that the INO80 complex plays an important role in
facilitating NER by providing access to lesion processing factors, suggesting a functional
connection between INO80-dependent chromatin remodeling and NER [89].

5.3. ISWI

ISWI complexes are a second major category of ATP-dependent chromatin remodeling
complexes. In mammals, two ISWI-homologs, named SNF2H and SNF2L, have been descri‐
bed. While most of the complexes contain SNFH; up to now, SNF2L has only been found in
the human NURF complex [90, 91]. Subunits related to ACF1 are similar to these ISWI-
containing remodeling complexes, which contain PHD and bromodomains [92]. Snf2h is a
gene essential for the early development of mammalian embryos, suggesting that ISWI
complexes [93] may be required for cell proliferation [94]. Besides, ISWI cooperates with
histone chaperones in the assembly and remodeling of chromatin [95]. These complexes
accumulate at sites of heterochromatin concomitant with their replication, suggesting a role
for ISWI chromatin remodeling functions in replication of DNA in highly condensed chroma‐
tin [96]. ISWI complexes also may have a role in facilitating repair and recombination of DNA
in chromatin. Several experiments have suggested that ISWI-mediated chromatin remodeling
also functions to regulate NER, although its precise role remains unknown [5]. Moreover,
SNF2H interacts with CSB [97], and the ACF1 subunit is recruited to UVC-induced DNA
damage [98]. Knockdown of the mammalian ISWI ATPase SNF2H/SMARCA5 or its auxiliary
factor ACF1/BAZ1A also leads to mild UVC sensitivity [99]. However, further experimental
evidence is required to understand how ISWI chromatin remodeling functions in the UVC-
DNA damage response.

6. Discussion and perspectives

When DNA is damaged, the chromatin, far from acting as an inhibitory barrier to lesion
removal, can actively signal its presence, promoting the overall physiological response of the
cell to damage, which stimulates the removal of the DNA damage itself. By the same token,
the most challenging step in NER is the recognition of DNA lesions in their chromatin context.
Nucleosomes on damaged DNA inhibit efficient NER and a functional connection between
chromatin remodeling and the initiation steps of NER has been described [18].
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In this respect, the relevance of the histone acetylation balance and some ATP-dependent
chromatin remodeling complexes to facilitate the early damage-recognition step of NER has
been demonstrated, since changes in chromatin conformation could interfere with the correct
interactions between repair proteins and DNA lesions which are immersed in a dynamic
chromatin structure [38, 76, 100]. Besides, neuronal survival has been related to the balance
between HAT and HDAC activities [101]. For example, it has been shown that in the presence
of histone deacetylase inhibitors, normal neuron cells increase the frequency of apoptosis.
Moreover, in transgenic mice, carrying neurodegeneration diseases characterized by histone
hypoacetylation, their neurodegeneration phenotypes can be diminished in the presence of
HDAC inhibitors [102, 103]. By the same token, alterations in the acetylation/deacetylation
balance by changes in HATs or HDACs activities have been associated with the development
of different cancers [104].

Another interesting issue in favor of the relevance of chromatin remodeling is the fact that
transcription coupled repair (TCR) seems not to be responsible for the higher UVC sensitivity
evidenced through the increased frequency of chromosomal aberrations observed in Cock‐
ayne’s Syndrome (CS) simile cells exposed to UVC [105]. In this respect, we have found that
chromosome breakpoints were distributed more random in CS simile cells than in normal ones
instead of being concentrated on the transcribed chromosome regions as expected [106]. Since
DNA accessibility for DNA repair proteins is limited in nucleosomes [16, 75], different
chromatin organization after UVC exposure in CS simile cells could influence the distribution
of CPDs in eu- and heterochromatic regions as well as their removal by TCR, leading to
increased frequencies of chromosomal aberrations in these cells.

Although many of the chromatin remodeling factors observed in yeast have also been found
in mammals, different functions have been attributed to some of them (i.e. H3K56 acetylation
and INO80 mentioned previously), indicating that in spite of being quite well evolutionary
conserved, they could have another function in mammals. Moreover, due to the multifunc‐
tional role of chromatin remodeling complexes become still very difficult to arise questions
such as by which mechanism the damage is sensed or how the cell is able to choose a particular
repair pathway, by which mechanisms chromatin remodelers are directed to a specific repair
pathway or by which mechanisms chromatin reassembly takes place. Therefore, it is clear that
we just begin to understand the DNA repair in the context of chromatin and, therefore, further
work it is needed to elucidate either the individual functions or the coordinated activities of
chromatin remodeling in all DNA repair pathways.

Abbreviations and acronyms

6-4PP Pyrimidine 6-4 pyrimidone photoproducts

ARPs Actin-related proteins

ASF1A Histone chaperone anti-silencing function1A

ATM Ataxia telangiectasia mutated
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ATR Ataxia-telangiectasia Rad3-related

ATRIP ATR interacting protein

BAF BRG1/BRM-associated factors

BRG1 Brahma Related Gene

BRM Brahma

CAF-1 Chromatin assembly factor 1

CBP Creb-binding protein

CPDs Cyclobutane pyrimidine dimers

CRCs Chromatin remodeling complexes

CS Cockayne syndrome

CSB Cockayne syndrome group B protein

CUL4–DDB–ROC1 Culin 4- DNA damage-binding protein- RING finger protein

CHD Chromodomain

CHO Chinese hamster cell lines

E2F1 Transcription factor

ERCC1 Excision repair cross complementing 1

ERCC6 Excision repair cross complementing 6

GCN5 General control non-derepressible 5

GGR Global genome repair

HAT Histone acetyltransferases

HDAC Histone deacetylases

HDM Histone demethylases

hHR23B Human homologue of the yeast protein RAD23

HMGB1 High mobility group protein B1

HMT Histone methyl-transferases

HP1 Heterochromatin protein 1

ING Inhibitor of growth

INO80 Inositol requiring 80

ISWI Imitation SWI

K Lysine

MBT Malignant brain tumor

NER Nucleotide excision repair

NURF Nucleosome remodeling factor

p300 Histone acetyltransferase named p300

p53 Tumor supressor p53 gene

PCNA Proliferating cell nuclear antigen

PHD Plant Homeo Domain

PI3K Phosphoinositide 3-kinase

PTMs Histone post-translational modifications

R Arginine

RNF8 Ring finger protein 8

RPA Replication protein A

S Serine

SMARCA4 Transcription activator BRG1
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SNF2H and SNF2L ISWI-homologs

SNF5/SMARCB1 Mammalian SWI/SNF subunit

SSBs Single strand breaks

STAGA SAGA-like complex containing GCN5L

SWI/SNF Switching defective/sucrose non fermenting

SWI2/SNF2 Switching/sucrose non fermenting

T Threonine

TCR Transcriptional coupled repair

TFIIH Transcription factor II H

TP53 Tumor suppressor protein 53

TTD Trichothiodystrophy

UBC13 Ubiquitin-conjugating enzyme

UVC Ultraviolet light C

UV-DDB UV-damaged DNA binding protein consisting of two subunits (DDB1 and DDB2)

XP Xeroderma pigmentosum

XPA Xeroderma Pigmentosum group A

XPB Xeroderma Pigmentosum group B

XPC Xeroderma Pigmentosum group C

XPD Xeroderma Pigmentosum group D

XPE Xeroderma Pigmentosum group E

XPF Xeroderma Pigmentosum group F

XPG Xeroderma Pigmentosum group G

Y Tyrosine
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