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1. Introduction

Although the history of diesel engines extends back to the end of the nineteenth century and
in spite of the predominant position such engines now hold in various applications, they are
still subject of intensive research and development. Economic pressure, safety critical aspects,
compulsory onboard diagnosis as well as the reduction of emission limits lead to continuous
advances in the development of combustion engines.

Condition monitoring and fault diagnosis represent a valuable set of methods designed to
ensure that the engine stays in good condition during its lifecycle, [7] and [13]. Diagnosis
in the context of diesel engines is not new and various approaches have been proposed in
the past years, however, recent technical and computational advances and environmental
legislation have stimulated the development of more efficient and robust techniques. In
addition, the number of electronic components such as sensors or actuators and the
complexity of engine control units (ECUs) are steadily increasing. Meanwhile, most of the
software running on the main ECU is responsible for condition monitoring of sensor signals,
monitoring parameter ranges, detecting short/open circuits, and verifying control deviations.
However, these kinds of condition monitoring systems (CMS) are not designed to detect and
clearly identify different engine failures, sensor drifts and to predict developing failures, i.e. to
asses degradation of certain components right in time. Especially the reliable detection and
separation of engine malfunctions is of major importance in various fields of industry in order
to predict and to plan maintenance intervals.

Diesel engines usually consist of a fuel injection system, pistons, rings, liners, an inlet
and exhaust system, heat exchangers, a lubrication system, bearings and an ECU. For the
design of an efficient CMS it is essential to know as much as possible about the underlying
thermodynamical processes and possible faults and malfunctions. This information can be
seen as a-priori knowledge and can be used to increase the robustness of fault detection
algorithms.

©2013Watzenig et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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In the following, common diesel engine faults and fault mechanisms, and their causes are
listed.

• power loss caused by misfire and blow-by.

• emission change caused by loss of compression, turbocharger malfunction, blocked fuel
filter, incorrect injector timing, poor diesel fuel, incorrect fuel air ratio, air intake filter
blocked, incorrect piston topping, or ECU malfunction etc.

• lubricating system fault due to incorrect oil pressure and oil deterioration

• thermal overload as a result of one or a combination of leaking injection valves, piston
ring-cylinder wear or failure, eroded injector holes, too low injection pressure, high engine
friction, misfire, leaking intake or exhaust manifold/valves, high coolant or lubricant
temperature etc.

• leaks in the fuel injection system, lubrication system, or air intake

• wear of the piston caused by either corrosion or abrasion, or both

• noise and vibration caused by the impact of one engine part against another (mechanical
noise), vibrations resulting from combustion, intake and exhaust noise

• other faults like knocking, filter faults, fuel contamination and aeration

The main challenge in engine fault detection is the ambiguity between faults and causes.
Certain engine faults may be caused by a combination of causes (with different weightage).
The assessment of engine states from sparse measurement data as well as a reliable assignment
of failure effects and causes are an active research field. The problems relating to marine diesel
engines, especially medium- and high-speed engines, are due mainly to their large size and
their high operating speed. Occurring faults of marine diesel engines which are on the high
seas for several months may lead to expensive holding times. On the other hand, additional
sensors and measurement equipment for condition monitoring are usually undesirable since
engines have to be modified to place those additional sensors. Such additional sensors are e.g.
viscosity sensors to sense oil degradation as described by [12] and [1], or acoustical sensors to
determine faults based on acoustical pressure and vibration signals measurements as can be
found in [5], [11], and [2].

A topical review on different fault diagnosis methods for condition monitoring can be found
in [7]. Both standard methods (Fourier analysis of pressure, torque, power, crankshaft
speed and vibration signals) and advanced methods (neural networks, fuzzy techniques)
are encountered and briefly described. [14] discuss the detection of a single fault in a
statistical framework (hypotheses testing) by measuring acoustic emission energy signals
and applying an independent component analysis. However, most methods usually rely on
heuristic knowledge and on a data training phase as well as on the specification of threshold
levels in order to assign states as faulty or non-faulty. Since the last decade, a paradigm
shift from classical signal processing and feature extraction to computationally expensive
model-based CMS can be observed. In contrast to classical condition monitoring, model-based
methods can manage distributed and multiple correlated parameters, as described by [16] and
[13]. They cover a wide variety of states since the engine behavior is described in terms of
physical relationships and hence, parameters that influence certain parts of the first principles
equations can be isolated or at least correlations can be determined. Three different methods
to estimate the compression ratio from simulated cylinder pressure traces are presented in [8]

218 Diesel Engine – Combustion, Emissions and Condition Monitoring



Model-Based Condition and State Monitoring of Large Marine Diesel Engines 3

and compared in terms of estimation accuracy and computation time. By reconstructing only
one single failure based on polytropic compression and expansion of the cylinder pressure
significant results have been reported. However, the detection of multiple failures from
in-cylinder pressure measurements is still an open issue. Different Fuzzy-based methods also
provide remarkable results for detecting only one single fault such as in [3], [4], [17], and [18].

In this work the main focus is on a robust model-based identification and separation of two
common failure modes of large marine diesel engines by accurately modeling the underlying
thermodynamic process. These two failures, which cause very similar changes in the cylinder
pressure, are

• changes in the compression ratio primarily leading to emission and power changes

• increased blow-by mainly resulting in a loss of power.

Following a model-based approach, it is possible to identify the above mentioned failures
and to clearly separate them given uncertain measurement data with low sampling rate (1◦ of
crank angle). By measuring only cylinder pressure traces of every cylinder, the symptoms
due to faults are determined, [8]. Two different approaches – ratiometric and nonlinear
parameter estimation – are investigated, validated with measured data and compared to each
other in terms of performance, accuracy, and robustness given sensor drift and uncertain
measurements, [15].

2. The thermodynamical process model

Various approaches to model diesel engines have been proposed in literature, however, the
main focus is on small-size engines that are commonly used in the automotive industry.
The typical differential equations that represent the thermodynamic processes, i.e. the
interrelationship between system pressure, temperature and mass can be found in [6], [9],
and [10].

Since in this work, identification of blow-by and compression ratio is of primary interest, a
simplified thermodynamical model capable of running in real-time is developed. Note that
a list of symbols used in the following equations is given at the end of this chapter. The
main reason for compression losses are referred to as damages of the piston crown during
the combustion phase leading up to an increasing volume V0 in the top dead center (TDC) of
the piston. In the equation for the volume V in the cylinder the constant volume fraction
V0 is represented by the term h0 · A with h0 being the compression parameter and A the
cross-sectional area of the cylinder. In the time-varying fraction of the volume equation ω
denotes the instantaneous angular velocity of the crankshaft and ΔV the maximum volume
deviation related to the movement of the piston. By also taking into account the ratio λ of the
crank radius to the length of the connecting rod regarding to the equation of a standard crank
mechanism the equation for the volume and its time derivative can be summarized as follows

V = h0 · A +
ΔV

2

[

(1 − cos(ωt)) +
1
λ
·
(

1 −
√

1 − λ2 sin2(ωt)

)]

(1)

dV

dt
=

ΔV

2
· ω · sin(ωt)

⎛

⎝1 +
λ cos(ωt)

√

1 − λ2 sin2(ωt)

⎞

⎠ (2)

219Model-Based Condition and State Monitoring of Large Marine Diesel Engines



4 Will-be-set-by-IN-TECH

For the length of the connceting rod being large compared to the crank radius the terms
including λ in Equation (1) and (2) can be neglected.

The time derivative of the mass fraction passing by the piston is described by

dm

dt
= k̃

1√
T

p (3)

with k̃ denoting the parameter for blow-by. For simplicity, for the healthy state of the cylinder
it is assumed that the effect of blow-by as well as wear of the piston can be neglected. Because
of the fact that blow-by is rapidly increasing when it comes to a tear-off of the oil film between
piston and liner due to the loss of the sealing function of the oil the simple model of k̃ as a
constant is not sufficient. To model this nonlinear behavior a sigmoid function described by

k̃(p) =
k̃max

1 + e−a(p−b)
(4)

is used where b describes the pressure when 50% of the maximum blow-by is reached and a
denotes the ascending slope of the sigmoid function as illustrated in Figure 1, [15]. For the
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Figure 1. Sigmoid function to describe the nonlinear behavior of blow-by related to the cylinder
pressure. The rapid increase of the mass passing by the cylinder results from the tear-off of the oil film at
the piston crown.

complete thermodynamical description the equations for the temperature T as well as the
in-cylinder pressure p represented by

dT

dt
= Tin − p

mcv

dV

dT
− kVα1 Tα2 pα3

mCv
(5)

dp

dt
=

(

RT
dm

dt
+ R

dT

dt
m − p

dV

dt

)

1
V

(6)

are needed containing the isochore heat capacitance Cv and the rapid increase of the
temperature in the cylinder during the combustion phase Tin in Equation 5 and the ideal gas
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constant R in Equation 6. Since during our investigations only the failure parameters during
the compression phase are of interest, Tin can be neglected. Regarding our assumption of
the healthy state of the diesel engine with blow-by and piston wear being negligible the pair
[h0 k̃] = [0.15 0] for the compression and blow-by parameter has been identified.

NOMENCLATURE

h0 compression parameter m
A cylinder cross–sectional area m2

V cylinder volume m3

ΔV maximum volume deviation m3

m mass of the mixture kg
T temperatur of the mixture ◦K
p cylinder pressure bar
R ideal gas constant J/(mol·K)
cv isochore heat capacitance J/(kg·K)
k̃ blow–by parameter
k constant

α1 power of volume
α2 power of temperature
α3 power of pressure

3. Measurement noise model

In order to obtain the goals of reliability and estimation robustness common perturbations
of the cylinder pressure signal like detection uncertainties of the TDC, pressure offset p0,
and measurement noise nk have to be analyzed and characterized. While the TDC offset
is corrected by the manufacturer and the pressure offset can be included in the nonlinear
parameter estimation approach, the task lies in finding an adequate probability density
function (PDF) of the measurement noise. According to Figure 2 the measurement noise is
modeled using a Gaussian PDF represented by

p(x) =
1√

2πσ2
exp

[

− (x − μ)2

2σ2

]

, −∞ < x < ∞ (7)

where μ denotes the mean and σ2 the variance of the random variable x. Figure 2 shows the
noise data extracted from several measurements of the cylinder pressure together with the
Gaussian distribution N (0, σ2). Therefore, there exists no additional offset in the pressure
signal due to measurement noise. The range of the analysis window of [−90, − 40] degrees
to the TDC for the determination of the noise PDF was selected according to the reasonable
signal to noise ratio (SNR) in this area.

4. Condition monitoring algorithms

Within this section two different model-based algorithms for condition monitoring of large
diesel engine states are introduced and discussed. In the following both failures types –
increased blow-by and decreased compression ratio – are denoted as errors. Thus the term
compression error is used for a decreased compression ratio.
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Figure 2. Histogram of the measurement noise (repeated measurements) compared to a Gaussian PDF
(both curves are normalized by 1/

√

(2πσ2)).

4.1. Ratiometric approach

The main advantages of using a ratiometric approach lie in the independency of a pressure
offset in the measurement data and therefore there is one disturbance variable less to be
determined, the simple implementation of the method and the calculation speed. In Figure 3
all parameters for the determination of the ratiometric parameter

q =
Pmax − Pmin

P2 − P1
(8)

are displayed together with two typical traces of the in-cylinder pressure of a large diesel
engine. The dashed curve represents the healthy state whereas the solid curve reflects a
cylinder state with increased compression error. The ratiometric parameter q allows to find
dependencies between the error parameters h0 and k̃ and the position of the analysis window
[ε1, ε2] within the compression phase. Due to the fact that blow-by has a strong nonlinear
behavior causing its main influence only at hight pressures near the TDC, two analysis
windows were used with the lower window being placed before and the upper window
behind the inflection point of the cylinder pressure trace. To gain additional information the
pressure traces in the two intervals of interest are approximated by polynomials of the form

P(θ) = P1 + a1θ + a2θ2 + a3θ3 . (9)

As before, the healthy state (0% error) of the engine is described by the pair
[

h0 k̃
]

= [0.15 0].
Additionally, the maximum error (100% error) is defined by

[

h0 k̃
]

=
[

0.16 − 2 × 10−5
]

. The
procedure is described by a case study with simulated data with 70% compression and 10%
blow-by error. (see Figures 4 to 6).

The first parameter to be evaluated is the ratiometric parameter q. As can be seen in Figure 4, q
alone is not sufficient to distinguish between the two failure modes. Therefore the additional
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Figure 3. Typical cylinder pressure traces representing a healthy state (dashed) and a cylinder with
increased compression error (solid). The analysis window δ(γ) is applied within the well-defined
compression phase in order to avoid the influence of combustion effects as well as measurement noise at
low signal levels.

parameters slope a1 and curvature a2 need to be evaluated for failure separation. As can be
seen in Figure 5 the compression failure is overestimated by ∼ 10% and a separation of the two
failure modes is still not possible, respectively. The evaluation of the curvature information
a2 depicted in Figure 6 allows the distinction between compression and blow-by error but the
compression error is still overestimated. Because of the small values of a2 the disturbance of
the curve by measurement noise with σ = 0.047354 bar becomes visible. In this sensitivity
to measurement noise lies the main drawback for this method. Therefore, for the utilization
of the ratiometric principle on real measurement data, Equation 8 for the calculation of the
ratiometric parameter has to be modified to

qmod(θ) =
Pdefect

Phealthy
(10)

with Pdefect representing a cylinder with either blow-by or compression failure.

In Figure 7 the different curvature of qmod can be determined. As can be seen the greatest
differences occur at crank angles close to the TDC which are partly outside of the observation
window limited by the upper bound of −8◦ to the TDC.

In Table 1 the coefficients according to Equation 9 are summarized for three cylinders with
known failure sources of two different engines excluding the pressure offset. Here the
different signs for the coefficients a1 and a3 for blow-by and compression failure have to be
noted.

occurred failures a1 a2 a3

increased blow-by −3.99 × 10−4 −3.57× 10−6 −1.09 × 10−8

changed compression ratio 5.38 × 10−3 −4.99× 10−4 1.62 × 10−5

3.32 × 10−3 −3.98× 10−4 1.29 × 10−5

Table 1. Coefficients of the fitting polynomial.
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Figure 4. Ratiometric parameter q for the lower analysis window [−60◦, − 30◦ ] to TDC (q = 3.1587). The
lines for compression and blow-by error are proceeding too close for a failure separation.
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Figure 5. Slope parameter a1 for the lower analysis window [−60◦, − 30◦ ] to TDC (a1 = 3.180 × 10−2).
The lines for compression and blow-by error are still too close together for a separation of the failure
modes.

Due to the limitations and the fact that the ratiometric approach only allows a qualitative
statement led to the development of a nonlinear parameter estimation approach.

224 Diesel Engine – Combustion, Emissions and Condition Monitoring



Model-Based Condition and State Monitoring of Large Marine Diesel Engines 9

0 10 20 30 40 50 60 70 80 90 100
2.3

2.35

2.4

2.45

2.5

2.55
x 10

−5 analysis window [−60◦,− 30◦], σ = 0.047354 bar

cu
rv

a
tu

re
a
2

error in %

 

 

increased compression error

increased blow–by

Figure 6. Curvature parameter a2 for the lower analysis window [−60◦ , − 30◦] to TDC
(a2 = 2.447 × 10−5). Because there is only one failure mode in the allowed range a2 allows the separation
between blow-by and compression error.

−60 −50 −40 −30 −20 −10 0
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

crank angle to TDC in o

P
d
ef

ec
t/

P
h
ea

lt
h
y

 

 

blow–by error measured
blow–by error fit
compression error measured
compression error fit

Figure 7. Comparison of the ratio Pdefect/Phealthy for an engine showing blow-by error and

compression error respectively showing different curvature in their slopes especially in the interval
[−40◦ , 0◦ ].

4.2. Nonlinear parameter estimation

The proposed approach aims at finding a parameter vector θ = [h0 k̃ p0]
T which is comprised

of the compression ratio h0, the blow-by parameter k̃ and the pressure offset p0 by minimizing
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the L2-norm of the error ‖e‖2
2 → min between measured data and computed cylinder pressure

in a nonlinear least squares sense for each cycle. The block diagram is shown in Figure 8.
The disturbance of the data ỹk due to measurement noise nk is considered by an additional
summation node with the output yk representing the corrupted data. The thermodynamic

model
uk
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yk

yk
^

system
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. || 2|| 2

nk

yk

~

Figure 8. Block diagram of the parameter identification of large diesel engines. The index k indicates the
iterative nature of the optimization procedure. By minimizing the residual error between measured and
calculated cylinder pressure, the optimal parameter configuration for blow-by and compression ratio is
found. Based on the a priori known limits of the parameters, the engine state can be assessed and
monitored.

model is calibrated for a measured healthy state prior to the parameter identification by
adapting the parameter vector u = [α1 α2 α3 R cv k]T. The parameter identification problem
consists of finding the set of parameters θ ∈ R

n that minimizes the target function f (θ) at a
single point. The inequality constraints simultaneously have to be satisfied at this single point
where both the target and constraint functions depend on the parameter vector. The objective
is to find a parameter configuration that satisfies

min
θ

f (θ) = min
θ

‖yk − ŷk(θ)‖
2
2

s.t. bl ≤ θ ≤ bu

(11)

where yk denotes the measured cylinder pressure and ŷk(θ) represents the estimated cylinder
pressure based on the thermodynamic model. The bounds bl and bu are the lower and
the upper bound for the unknown parameter vector, i.e. the imposed constraints on the
parameters to be reconstructed from measured data.

In order to mask out undesired effects of the starting combustion close to the TDC and the low
SNR at small cylinder pressures, a window function δ(γ) is applied to the measured cylinder
pressure yk according to Equations (12) and (13). The proposed rectangular window is mainly
restricted to the compression phase. If the entire signal yk is provided to the parameter
identification problem, a robust detection and identification of blow-by and compression
ratio failures is impossible since various other effects influence the cylinder pressure during
combustion.

zk = δ(γ)yk (12)

δ(γ) =

{

1 if ε1 ≤ γ ≤ ε2
0 else

(13)

where γ ∈ [0 360] denotes the crank angle in degrees. The lower and upper bound for the
analysis window are given by ε1 = TDC − 120◦ and ε2 = TDC − 8◦ . The model-based
estimation of θ is based on the windowed signal zk by solving the constrained nonlinear
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optimization problem (11). Signal parts with low signal magnitude as well as the signal
part that corresponds to the combustion phase depicted in Figure 3 are cut off for the
estimation procedure. The dashed curve representing the healthy state is used to calibrate
the thermodynamical model by adapting the model parameter vector u.

5. Condition monitoring results

In the following, results for two measured data sets of different engines containing single
blow-by and single compression ratio failure are presented. For the evaluation of the source of
defect the engines were disassembled by the manufacturer. The reason for lower compression
ratios was identified as burn-off of the piston crown whereas increased blow-by occurred due
to defects of the crankcase cover gasket. The model limits for the parameters to be estimated
are h0 = [0.15 0.16] and k̃ = [0 − 2 × 10−5] corresponding to [0% 100%] of failure. The main
objective is to identify and to quantify the occurring failures. Figure 9 illustrates the pressure
traces of a five cylinder diesel engine, respectively.
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Figure 9. Measured cylinder pressure traces representing a healthy state and cylinders with increased
compression error of one specific engine.

In both cases the sources of defect were known. Because blow-by errors often lead to severe
damages of the engine most of the time the crankcase cover gaskets are replaced before the
error occurs and therefore there exist only a few data sets where blow-by is documented.

Figure 10 shows such a case for one cylinder of a seven cylinder diesel engine. As can be
seen the single pressure traces are close together up to the TDC. As the observation window is
limited by −8◦ to the TDC, the area with the greatest change in the cylinder pressure cannot
be used which makes the detection and separation of the interesting failures a challenging
task. For quantification the model limits for the parameters to be estimated are again h0 =
[0.15 0.16] for compression and k̃ = [0 − 2 × 10−5] for blow-by corresponding to [0% 100%]
of failure. Table 2 summarizes the results of the estimated parameter vector θ with varying
upper bound ε2 of the analysis window. The first block indicates increased blow-by given the
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Figure 10. Measured cylinder pressure representing a healthy state and one cylinder with increased
blow-by of a different engine. The sources of defect were in both cases documented by the manufacturer
after disassembly of the machine.

desired compression ratio while in the second block a changed compression ratio is clearly
identified.

occurred failures γ−TDC h0 k̃

increased blow-by −8◦ 0.150 −1.84× 10−5

−9◦ 0.150 −1.67× 10−5

−10◦ 0.150 −1.99× 10−5

changed compression ratio −8◦ 0.154 −3.01× 10−15

−9◦ 0.154 −2.72× 10−15

−10◦ 0.154 −1.72× 10−15

Table 2. Results for estimated blow-by and compression ratio.

The blow-by estimate remains very small denoting that blow-by has not increased. In
addition, the nonlinear approach exhibits a robust parameter estimation behavior given
uncertainties in TDC within a certain range.

6. Conclusions

This book chapter addresses different methods for robust detection of increased blow-by and
compression faults from measured cylinder pressure traces of large marine diesel engines.
By modeling the underlying thermodynamic process, including prior knowledge about the
system, and characterizing the measurement noise, faults can be detected and isolated from
each other even in the presence of sensor drift.

The ratiometric approach allows only qualitative statements and can not clearly distinguish
between the two failure modes blow-by and compression losses. The main drawbacks of
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the algorithm are its sensitivity to measurement noise and the fact that crank angles close
to the TDC are required to see a proper curvature in the ratio of the pressure. On the other
hand, the method is very fast due to its simplicity and independent to a pressure offset in the
measurement signal. In contrast, the nonlinear parameter estimation methodology features
higher accuracy in estimation results and allows to distinguish between certain types of faults,
however, introducing a greater modeling effort and computational costs.

The applicability of the model-based approaches is verified by measurement data given
information about the sources of defect of the engine. Due to the low sampling interval of 1◦ of
the crank angle the condition monitoring system (CMS) exhibits real-time performance. The
robustness is investigated by analyzing the statistics of the estimated parameters of blow-by
and compression ratio. Furthermore, the influence of the upper limit of the analysis window
close to the TDC is examined. The detection of these failures can be used in order to predict
maintenance intervals. Based on cylinder pressure traces the proposed methods feature the
applicability to other domains including large trucks, rail vehicles, and stationary power
stations.
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