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1. Introduction 

Brazil and the United States produce ethanol mainly from sugarcane and starch from corn 

and other grains, respectively, but neither resource are sufficient to make a major impact on 

world petroleum usage. The so-called first generation (1G) biofuel industry appears 

unsustainable in view of the potential stress that their production places on food 

commodities. On the other hand, second generation (2G) biofuels produced from cheaper 

and abundant plant biomass residues, has been viewed as one plausible solution to this 

problem [1]. Cellulose and hemicellulose fractions from lignocellulosic residues make up 

more than two-thirds of the typical biomass composition and their conversion into ethanol 

(or other chemicals) by an economical, environmental and feasible fermentation process 

would be possible due to the increasing power of modern biotechnology and (bio)-process 

engineering [2].  

Brazil is the major sugar cane producer worldwide (ca. 600 million ton per year). After 

sugarcane milling for sucrose extraction, a lignocellulosic residue (sugarcane bagasse) is 

available at a proportion of ca. 125 kg of dried bagasse per ton of processed sugarcane. 

Therefore, sugarcane bagasse is a suitable feedstock for second generation ethanol coupled 

to the first generation plants already in operation, minimizing logistic and energetic costs. 

State-owned energy group Petrobras is one of the Brazilian groups leading the development 

of second generation technologies, estimating that commercial production could begin by 

2015. Other organizations making significant contributions to next generation biofuels in 

Brazil include the Brazilian Sugarcane Technology Centre (CTC), operating a pilot plant for 

the production of ethanol from bagasse in Piracicaba (Sao Paulo) [3]. Recently, GraalBio 

(Grupo Brasileiro Graal) has stated publically that will start production of bioethanol from 

sugarcane bagasse in one plant located at the Northeast region of the country. 
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Pretreatment, hydrolysis and fermentation can be performed by various approaches. 

According to a CTC protocol, the process of manufacturing ethanol from bagasse is divided 

into the following steps. First, the bagasse is pretreated via steam explosion (with or without 

a mild acid condition) to increase the enzyme accessibility to the cellulose and promoting 

the hemicellulose hydrolysis with a pentose stream. The lignin and cellulose solid fraction is 

subjected to cellulose hydrolysis, generating a hexose-rich stream (mainly composed of 

glucose, manose and galactose). The final solid residue (lignin and the remaining recalcitrant 

cellulose) is used for heating and steam generation. The hexose fraction is mixed with 1G cane 

molasses (as a source of minerals, vitamins and aminoacids) and fermented by regular 

Saccharomyces cerevisiae industrial strains (not genetically modified) using the same 

fermentation and distillation facilities of the Brazilian ethanol plants. The pentose fraction will 

be used as substrate for other biotechnological purposes, including ethanol fermentation.    

Researchers are focusing on cutting the cost of the enzymes and the pretreatment process, as 

well as reducing energy input. Production of ethanol from sugarcane bagasse will have to 

compete with the use of bagasse for electricity cogeneration. Depending on the efficiency of 

the cogeneration plant, about half of the bagasse is required to produce captive energy in the 

form of steam and energy at the sugar and ethanol facility. It is estimated that the surplus 

bagasse could increase the Brazilian ethanol production by roughly 50% [3]. 

2. Lignocellulosic residues 

Lignocellulosic residues are composed by three main components: cellulose, hemicellulose 

and lignin. Cellulose and hemicellulose are polyssacharydes composed by units of sugar 

molecules [4]. Sugarcane bagasse is composed of around 50% cellulose, 25% hemicellulose 

and 25% lignin. It has been proposed that because of its low ash content (around 2-3%), this 

product offers numerous advantages in comparison to other crop residues (such as rice 

straw and wheat straw) when used for bio-processessing purposes. Additionally, in 

comparison to other agricultural residues, bagasse is considered a richer solar energy 

reservoir due to its higher yields on mass/area of cultivation (about 80 t/ha in comparison to 

about 1, 2, and 20 t/ha for wheat, other grasses and trees, respectively) [5]. 

2.1. Cellulose 

Cellulose is composed of microfibrils formed by glucose molecules linked by β-1,4, being 

each glucose molecule reversed in relation to each other. The union of microfibrils form a 

linear and semicrystalline structure. The linearity of the structure enables a strong bond 

between the microfibrils. The crystallinity confers resistance to hydrolysis due to absence of 

water in the structure and the strong bond between the glucose chains prevents hydrolases 

act on the links β -1,4 [1]. 

2.2. Hemicellulose 

Hemicellulose is a polysaccharide made of polymers formed by units of xylose, arabinose, 

galactose, manose and other sugars, that present crosslinking with glycans. Hemicellulose 
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can bind to cellulose microfibrils by hydrogen bonds, forming a protection that prevents the 

contact between microfibrils to each other and yielding a cohesive network. Xyloglucan is 

the major hemicellulose in many primary cell walls. Nevertheless, in secondary cell wall, 

which predominate in the plant biomass, the hemicelluloses are typically more xylans and 

arabino-xylans. Typically, hemicellulose comprises between 20 to 50% of the lignocellulose 

polysaccharides, and therefore contributes significantly to the production of liquid biofuels 

[1]. Sugarcane bagasse contain approximately 25-30% hemicelluloses [13,14]. 

2.3. Lignin 

Lignin is a phenolic polymer made of phenylpropanoid units [13], which has the function to 

seal the secondary cell wall of plants. Besides providing waterproofing and mechanical 

reinforcement to the cell wall, lignin forms a formidable barrier to microbial digestion. 

Lignin is undoubtedly the most important feature underlying plant biomass architecture. 

Sugarcane bagasse and leaves contain approximately 18-20% lignin [13]. The phenolic 

structure of this polymer confers a material that is highly resistant to enzymatic digestion. 

Its disruption represents the main target of pretreatments before enzymatic hydrolysis. 

3. Pretreatment  

The pretreatment process is performed in order to separate the carbohydrate fraction of 

bagasse and other residues from the lignin matrix. Another function is to minimize chemical 

destruction of the monomeric sugars [6]. During pretreatment the inner surface area of 

substrate particles is enlarged by partial solubilization of hemicellulose and lignin.. This is 

achieved by various physical and/or chemical methods [5]. However, it has been generally 

accepted that acid pretreatment is the method of choice in several model processes [7]. One 

of the most cost-effective pretreatments is the use of diluted acid (usually between 0.5 and 

3% sulphuric acid) at moderate temperatures. Albeit lignin is not removed by this process, 

its disruption renders a significant increase in sugar yield when compared to other 

processes [1]. Regarding sugarcane bagasse several attempts have been made to optimize 

the release of the carbohydrate fraction from the lignin matrix, including dilute acid 

pretreatment, steam explosion, liquid hot water, alkali, peracetic acid and also the so called 

ammonia fiber expansion (AFEX). 

4. Hydrolysis 

Cellulose and hemicellulose fractions released from pretreatment has to be converted into 

glucose and other monomeric sugars. This can be achieved by both chemically- or 

enzymatically- oriented hydrolysis [7, 8]. 

4.1. Chemical hydrolysis 

Whitin chemical hydrolysis, acid hydrolysis is the most used and it can be performed with 

several types of acids, including sulphurous, sulphuric, hydrochloric, hydrofluoric, 
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phosphoric, nitric and formic acid. While processes involving concentrated acids are usually 

operated at low temperatures, the large amount of acids required may result in problems 

associated with equipment corrosion and energy demand for acid recovery. These processes 

typically involve the use of 60-90% concentrated sulfuric acid. The primary advantage of the 

concentrated acid process in realtion to diluted acid hydrolysis is the high sugar recovery 

efficiency, which can be on the order of 90% for both xylose and glucose. Concentrated acid 

hydrolysis disrupts the hydrogen bonds between cellulose chains, converting it into a 

completely amorphous state [8]. 

On the other hand, during dilute acid hydrolysis temperatures of 200–240°C at 1.5% acid 

concentrations are required to hydrolyze the crystalline cellulose. Besides that, pressures of 

15 psi to 75 psi, and reaction time in the range of 30 min to 2 h are employed. During this 

conditions degradation of monomeric sugars into toxic compounds and other non-desired 

products are inevitable [9]. The main advantage of dilute acid hydrolysis in comparison to 

concentrated acid hydrolysis is the relatively low acid consumption. However, high 

temperatures required to achieve acceptable rates of conversion of cellulose to glucose 

results in equipment corrosion [4]. 

4.2. Enzymatic hydrolysis 

Differently from acid hydrolysis, biodegradation of sugarcane bagasse by cellulolytic 

enzymes can be performed at much lower temperatures (around 50°C or even lower). 

Moreover conversion of cellulose and hemicellulose polymers into their constituent sugars 

is very specific and toxic degradation products are unlikely to be formed. However, a 

pretreatment step is required for enzymatic hydrolysis, since the native cellulose structure is 

well protected by the matrix compound of hemicellulose and lignin [4]. 

Cellulase is the general term for the enzymatic complex able to degrade cellulose into 

glucose molecules. The mechanism action accepted for hydrolysis of cellulose are based on 

synergistic activity between endoglucanase (EC 3.2.1.4), exoglucanase (or cellobiohydrolase 

(EC 3.2.1.91)), and β-glucosidase (EC 3.2.1.21). The first enzyme cleaves the bounds β-1,4-

glucosidic of cellulose chains to produce shorter cello-dextrins. Exoglucanase release 

cellobiose or glucose from cellulose and cello-dextrin chains and, finally β-glucosidases 

hydrolyze cellobiose to glucose. The intramolecular β-1,4-glucosidic linkages are cleaved by 

endoglucanases randomly. Endoglucanases and exoglucanases have different modes of 

action. While endoglucanase hydrolyze intramolecular cleavages, exoglucanases hydrolyze 

long chains from the ends. More specifically, exoglucanases or cellobiohydrolases have 

action on the reducing (CBH I) and non-reducing (CBH II) cellulose chain ends to liberate 

glucose and cellobiose. These enzymes acts on insoluble cellulose, then their activity are 

often measured using microcrystalline cellulose. Lastly, β-glucosidases or cellobioase 

hydrolyze cellobiose to glucose. They are important to the process of hydrolysis because 

they removed cellobiose to the aqueous phase that is an inhibitor to the action of 

endoglucanases and exoglucanases [10]. 
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The multi-complex enzymatic cocktail known as cellulase and hemicellulase can be 

produced by a variety of saprophytic microorganisms. Trichoderma and Aspergillus are the 

genera most used to produce cellulases. Among them, one of the most productive of 

biomass degrading enzymes is the filamentous fungus Trichoderma reesei. It cellulolytic 

arsenal is composed by a mixture of endoglucanases and exoglucanases that act 

synergistically to break down cellulose to cellobiose. Two β-glucosidases have been 

identified that are implicated in hydrolyzing cellobiose to glucose. An additional protein, 

swollenin, has been described that disrupts crystalline cellulose structures, presumably 

making polysaccharides more accessible to hydrolysis. The four most abundant components 

of T. reesei cellulase together constitute more than 50% of the protein produced by the cell 

under inducing conditions [9, 15]. Cellulases are essential for the biorefinery concept. In 

order to reduce the costs and increase production of commercial enzymes, the use of 

cheaper raw materials as substrate for enzyme production and focus on a product with a 

high stability and specific activity are mandatory. Apart from bioethanol, there are several 

applications to these enzymes, such as in textile, detergent, food, and in the pulp and paper 

industries. 

5. Enzyme production using sugarcane bagasse 

Cultivation of microorganisms in agroindustrial residues (such as bagasse) aiming the 

production of enzymes can be divided into two types: processes based on liquid 

fermentation or submerged fermentation (SmF), and processes based on solid-state 

fermentation (SSF) [5]. In several SSF processes bagasse has been used as the solid substrate. 

In the majority of the processes bagasse has been used as the carbon (energy) source, but in 

some others it has been used as the solid inert support. Cellulases have been extensively 

studied in SSF using sugarcane bagasse. It has been reported the production of cellulases 

from different fungal strains [5]. 

Several processes have been reported for the production of enzymes using bagasse in SmF. 

One of the most widely studied aspects of bagasse application has been on cellulolytic 

enzyme production. Generally basidiomycetes have been employed for this purpose, in 

view of their high extracellular cellulase production. A recent example was the use of 

Trichoderma reesei QM-9414 for cellulase and biomass production from bagasse. 

Additionally, white-rot fungi were successfully used for the degradation of long-fiber 

bagasse. Most of the strains caused an increase in the relative concentration of residual 

cellulose, indicating that hemicellulose was the preferred carbon source [5]. 

6. Processes for ethanol production 

Ethanol production from lignocellulosic residues is performed by fermentation of a mixture 

of sugars in the presence of inhibiting compounds, such as low molecular weight organic 

acids, furan derivatives, phenolics, and inorganic compounds released and formed during 

pretreatment and/or hydrolysis of the raw material. Ethanol fermentation of pentose sugars 

(xylose, arabinose) constitutes a challenge for efficient ethanol production from these 



 

Biomass Now – Cultivation and Utilization 352 

residues, because only a limited number of bacteria, yeasts, and fungi can convert pentose 

(xylose, arabinose), as wells as other monomers released from hemicelluloses (mannose, 

galactose) into ethanol with a satisfactory yield and productivity [8]. Hydrolysis and 

fermentation processes can be designed in various configurations, being performed 

separately, known as separate hydrolysis and fermentation (SHF) or simultaneously, known 

as simultaneous saccharification and fermentation (SSF) processes. 

When hydrolysis of pretreated cellulosic biomass is performed with enzymes, these 

biocatalysts (endoglucanase, exoglucanase, and β-glucosidase) can be strongly inhibited by 

hydrolysis products, such as glucose, xylose, cellobiose, and other oligosaccharides. 

Therefore, SSF plays an important role to circumvent enzyme inhibition by accumulation of 

these sugars. Moreover, because accumulation of ethanol in the fermenters does not inhibit 

cellulases as much as high concentrations of sugars, SSF stands out as an important strategy 

for increasing the overall rate of cellulose to ethanol conversion. Some inhibitors present in 

the liquid fraction of the pretreated lignocellulosic biomass also have a significant and 

negative impact on enzymatic hydrolysis. Due to the decrease in sugar inhibition during 

enzymatic hydrolysis in SSF, the detoxifying effect of fermentation, and the positive effect of 

some inhibitors present in the pretreatment hydrolysate (e.g. acetic acid) on the 

fermentation, SSF can be an advantageous process when compared to SHF [8]. Another 

important advantage is a reduction in the sensitivity to infection in SSF when compared to 

SHF. However, this was demonstrated by Stenberg and co-authors [12] that this is not 

always the case. It was observed that SSF was more sensitive to infections than SHF. A 

major disadvantage of SSF is the difficulty in recycling and reusing the yeast since it will be 

mixed with the lignin residue and recalcitrant cellulose. 

In SHF, hydrolysis of cellulosic biomass and the fermentation step are carried out in different 

units [8], and the solid fraction of pretreated lignocellulosic material undergoes hydrolysis 

(saccharification) in a separate tank by addition of acids/alkali or enzymes. Once hydrolysis is 

completed, the resulting cellulose hydrolysate is fermented and the sugars converted to 

ethanol. S. cerevisiae is the most employed microorganism for fermenting the hydrolysates of 

lignocellulosic biomass. This yeast ferments the hexoses contained in the hydrolysate but not 

the pentoses. Several strategies (screening biodiversity, metabolic and evolutionary 

engineering of microorganisms) have been attempted to overcome this metabolic limitation. 

One of the main features of SHF process is that each step can be performed at its optimal 

operating conditions (especially temperature and pH) as opposed to SSF [7].Therefore, in 

SHF each step can be carried out under optimal conditions, i.e. enzymatic hydrolysis at 45-

50°C and fermentation at 30-32°C. Additionally, it is possible to run fermentation in 

continuous mode with cell recycling. The major drawback of SHF, as mentioned before, is 

that the sugars released during hydrolysis might inhibit the enzymes. It must be stressed 

out that ethanol produced can also act as an inhibitor in hydrolysis but not as strongly as the 

sugars. A second advantage of SSF over SHF is the process integration obtained when 

hydrolysis and fermentation are performed in one single reactor, which reduces the number 

of reactors needed. 



 
Towards the Production of Second Generation Ethanol from Sugarcane Bagasse in Brazil 353 

Experimental data from ethanol output using sugarcane bagasse as the substrate is being 

released in the literature. Vásquez et al. (2007) [13] described a process in which 30 g/L of 

ethanol was produced in 10h fermentation by S. cerevisiae (baker’s yeast) at an initial cell 

concentration of 4 g/L (dry weight basis) using non-supplemented bagasse hydrolysate at 

37°C. The hydrolysate was obtained by a combination of acid/alkali pre-treatment, followed 

by enzymatic hydrolysis. Krishnan et al. (2010) [14] reported 34 and 36 g/L of ethanol on 

AFEX-treated bagasse and cane leaf residue, respectively, using recombinant S. cerevisiae 

and 6% (w/w) glucan loading during enzymatic hydrolysis. Overall the whole process 

produced around 20kg of ethanol per 100kg of each bagasse or cane leaf, and was 

performed during 250h including pretreatment, hydrolysis and fermentation. According to 

the authors this is the first complete mass balance on bagasse and cane leaf. 

In view of the growing concern over climate change and energy supply, biofuels have 

received positive support from the public opinion. However, growing concern over first 

generation biofuels in terms of their impact on food prices and land usage has led to an 

increasing bad reputation towards biofuels lately. The struggle of ‘land vs fuel’ will be 

driven by the predicted 10 times increase in biofuels until 2050. The result is that biofuels are 

starting to generate resistance, particularly in poor countries, and from a number of activist 

non-governmental organizations with environmental agendas. This is highly unfortunate as 

it is clear that liquid biofuels hold the potential to provide a more sustainable source of 

energy for the transportation sector, if produced sensibly. Since replacement of fossil fuels 

will take place soon, a way to avoid these negative effects from first generation biofuels 

(mainly produced from potential food sources) is to make lignocellulosic derived fuels 

available within the shortest possible time. It is known that this process involves an 

unprecedented challenge, as the technology to produce these replacement fuels is still being 

developed [1]. Fuels derived from cellulosic biomass are essential in order to overcome our 

excessive dependence on petroleum for liquid fuels and also address the build-up of 

greenhouse gases that cause global climate change [2]. 
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