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1. Introduction

Obesity is defined as a high body mass index (BMI) with a large amount of adiposity. A
chronic excess energy intake above energy expenditure leads to abnormal or excessive fat
accumulation. Normally, humans and other mammals have an extraordinary ability to
match food intake to energy expenditure over long periods so that body weight and
adiposity are maintained at near-constant levels. The precise mechanism of the natural
course of obesity is yet unclear. After findings on the hypothalamus as the center of ener-
gy regulation in 1940’s, the central nervous system came to the forefront of attention in
the pathophysiology of obesity. Recent global epidemic of obesity is one of the largest
health problems in the world. Clinical studies have revealed that obesity is comorbid with
several forms of mental disorder [3-5]. Epidemiological studies show that obesity is
strongly related to cognitive impairment, including Alzheimer’s disease and mood disor-
der [6, 7]. Obesity is also positively correlated with several other forms of mental disorder
in general population samples. These findings suggest that obesity can affect mental func-
tion and change neural plasticity. Also, such mental disorder might cause further progres-
sion of obesity. Moreover, there is the possibility that mental disorder acts as a trigger of
the development of obesity. Understanding the bidirectional interaction of obesity and
mental disorder should help prevent and treat obesity. This review is aimed at highlight-
ing the mental functions related to obesity, from basic research including our recent
works to clinical findings.
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2. Definition of obesity

2.1. Definition of obesity in the world

The International Association for the study of Obesity (IASO)/International Obesity Taskforce
(IOTF) analysis (2010) estimates that approximately 1.0 billion adults are currently overweight,
and a further 475 million are obese in the world today [8].

Being overweight or obesity are defined as having abnormal or excessive fat accumulation that
presents a risk to health. The World Health Organization (WHO) defines obesity for adults
based on overweight and obesity ranges determined by body mass index (BMI), a person’s
weight (in kilograms) divided by the square of height (in meters). An adult with a BMI under
18.5 kg/m?is considered underweight. An adult with a BMI between 18.5 kg/m? and 24.9 kg/m?
is considered to be in the normal range. An adult with a BMI between 25 kg/m? and 29.9 kg/m?
isconsidered overweight. Anadult witha BMI of 30 kg/m? or higheris considered obese. Among
the obese, an adult with a BMI between 30kg/m? and 34.9 kg/m? is considered to be obese class
I, between 35kg/m? and 39.9 kg/m? to be obese class II, and an adult with a BMI of 40 kg/m? or
higher to be obese class III [9]. BMI provides the most useful population-level measure of being
overweight and obesity asitis the same for both sexes and for all ages of adults. However, WHO
points out that it should be considered as a rough guide because it may not correspond to the
same degree of fatness in different individuals. Moreover, it is well known that there is ethnic
diversity in the physiology of obesity. The appropriateness of WHO criteria in non-Caucasian
populations has been questioned. It was reported that South Asian, East Asian, and African-
American developed diabetes at a higher rate, at an earlier age, and at lower ranges of BMI than
their white counterparts [10]. In 2000, The Asia-Pacific Perspective: Redefining Obesity and Its
Treatment recommended different ranges for the Asia-Pacific regions based on risk factors and
morbidities. They suggested that in Asians, the cut-offs for being overweight should be 23 kg/
m? and obesity 25 kg/m?, which are lower than the WHO criteria [11].

2.2. Definition of obesity in East Asia

Substantial differences in national and local environments with genetic variances produce the
wide variation in obesity prevalence in the world. The prevalence of obesity in adults is lower
in East Asia including Japan compared with the USA [12]. In East Asia, China, Japan, South
Korea and Taiwan have their own criteria of overweight and obesity. In Japan, according to
the Japan Society for the Study of Obesity 2011 (JASSO), the BMI values considered as being
underweight or in the normal range are the same as the WHO criteria [13]. However, an adult
with a BMI of 25 kg/m? or higher is considered obese in Japan. Among the obese, an adult with
a BMI between 25 kg/m? and 29.9 kg/m? is considered to be obese grade 1, between 30kg/m?
and 34.9 kg/m? to be obese grade 2, between 35kg/m? and 39.9 kg/m? to be obese grade 3, and
a BMI of 40 kg/m? or higher to be obese grade 4 in Japan. An adult with a BMI of 35 kg/m? or
higher is considered to have morbid obesity in Japan. In China, an adult with a BMI of 24 kg/
m? or higher is considered to be overweight, and an adult with a BMI of 28 kg/m? or higher is
considered to be obese [14]. In South Korea, an adult with a BMI of 25 kg/m? or higher is
considered to be obese [15]. In Taiwan, an adult with a BMI of 24 kg/m? or higher is considered
to be overweight, and an adult with a BMI of 27 kg/m? or higher is considered to be obese [16].
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3. Pathophysiology of obesity

3.1. Mortality and complications

The BMI classification scheme for weight status is based on data obtained from large epide-
miological studies that evaluate the relationship between BMI and mortality [17]. Epidemio-
logical studies consistently suggested that lowest overall mortality in adults is associated with
a BMI in the range of 20 to 23 kg/m? [18]. A very high degree of obesity (BMI = 35 kg/m?) seems
likely to be linked to higher mortality rates, but the relationship between more modest degrees
of being overweight and mortality is unclear [4, 18-21]. On the other hand, the positive
correlation between obesity and many health problems both independently and in association
with other diseases are clearly observed. In adults, the health complications associated with
obesity increase linearly with increasing BMI until the age of 75 years [18, 22]. Both men and
women who have a BMI = 30 kg/m? are considered obese and are generally at higher risk for
adverse health events than are those who are considered to be overweight. In particular,
obesity is associated with the development of type 2 diabetes mellitus, coronary heart disease,
an increased incidence of certain forms of cancer (colon, breast, esophageal, uterine, ovarian,
kidney, and pancreatic), respiratory complications (obstructive sleep apnea), and osteoarthritis
of large and small joints [23]. Also, high prevalence of cognitive impairment and mental
disorder is observed in obesity [3-6, 24 ].

3.2. Clinical aspects related to psychiatry in obesity

From the viewpoint of the endocrinologist, obesity is often comorbid with eating disorders,
especially binge-eating disorder, which is thought to be present in 20-40% of obese patients [25].
Many lines of evidence suggest that obesity and depression often comorbid and might be
functionally related to each other [3, 26-30]. High rates of obesity among individuals with binge
eating disorder, bipolar disorder, major depressive disorder, anxiety disorders, schizophre-
nia, personality disorders, and other diagnoses were also observed [3, 5,27, 31]. Thelink between
such mental disorder and obesity is likely to be bidirectional: obesity canlead to mental disorder
and, in turn, mental disorder can be an obstacle to treatments of obesity and attaining long-
term weight-loss goals, thereby contributing to weight gain [25]. Evidence also indicates that
obesity negatively impacts on prognosis of many kind of illness. These relationships appear to
be especially strong for women and individuals with more severe obesity (BMI 235 kg/m?) [5].
Associations between obesity and psychiatric illness are also documented in men but in more
moderately overweight individuals [5]. Obesity is also associated with significant psychoso-
cial impairment. Obese individuals are subject to weight-based stigmatization in a variety of
settings, and generally report poorer quality of life compared with lean individuals [4, 5].

From the viewpoint of the psychiatrist, obesity is defined as eating disorder. Anorexia nervosa,
bulimianervosa, eating disorders not otherwise specified, and obesity are categorized as eating
disorder according to the Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV TR
[32]. Most of the patients of anorexia nervosa and bulimia nervosa are women. Even with the
gender specificity, eating disorders are thought to share dysregulation of common neuronal
pathways with obesity [33]. Some population of obesity is characterized as mental disorder
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with “compulsive food consumption” similar to drug addiction and suggested to be included
as a mental disorder in the DSM-V [5]. The pathophysiology of anorexia nervosa draws
attention as it is thought to be the opposite phenotype of obesity [Figure 1]. Functional
magnetic resonance image (fMRI) study showed that brain reward circuits are more responsive
to unexpected food stimuli and more sensitive in dopamine-related pathways in anorexia
nervosa, but are less responsive and less sensitive in obese women [33]. Moreover, a recent
fMRI study suggested that self starvation in anorexia nervosa may be driven by inappropri-
ately assigned desire and pleasure associated with food restriction, somehow related to
dependence [34]. They might perpetuate and reinforce the desire to not eat to change persistent
stress, such as low self-esteem and social rejection into a positively experienced state [35].
Bulimia nervosa is another severe eating disorder characterized by the presence of episodic
binge eating followed by extreme behaviors to avoid weight gain, such as self-induced
vomiting, use of laxative or excessive exercise [32]. Individuals with bulimia nervosa present
with fear of gaining weight, as well as food and body weight-related preoccupations, are at
normal or often high-normal weight. While they are eating, they feel pleasure and arousal
followed by guilt and remorse. These abnormal eating behaviors observed in anorexia nervosa
and bulimia nervosa are also difficult to treat and contain life-long risk of relapse [36].

Food

\

Reward

Pleasure/Hedonic

¢/ A

Obesity Anorexia Nervosa
Motivated and reinforced Motivated and reinforced
consumption of palatable food starving

Fear for Hunger Hedonic for Hunger

Figure 1. Postulated shared mechanisms related to reward circuits of anorexia nervosa and obesity. The sense
of hunger regulated by reward circuits might be the key component of obesity and anorexia nervosa.
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How about the personality of obesity? Psychological processes contribute to an individual’s
body shape. Body weight reflects our behaviors and lifestyle and contributes to the way we
perceive ourselves and others. Personality traits are defined by cognitive, emotional, and
behavioral patterns that are likely to contribute to unhealthy weight and difficulties with
weight management. It is quite difficult to clarify personal traits, but there are many clinical
studies on the personality of obesity using certain questionnaires [37-41]. Overweight indi-
viduals are prone to depressive state, have a poor body image, are evaluated negatively by
others, and are ascribed traits based on their body size [42-45]. From the Baltimore Longitu-
dinal Study of Aging (BLSA), which is a longitudinal study of more than 50 years on a large
number of people (n =1,988), high neuroticism and low conscientiousness, which are related
to difficulty with impulse control, were associated with weight fluctuations [40]. Low agree-
ableness and impulsivity-related traits predicted a greater increase in BMI across the adult life
span in the same study [40]. Personality traits are reported to be a useful tool for predicting
diet-induced weight loss and management, which may offer ways to achieve appropriate
weight loss and management strategies for individuals [46-47].

To date, however, there is no evidence to support a direct interaction between obesity and
these personality traits. It is not clear that how these mental disorders and personality traits
are related to the natural course of obesity.

3.3. Brain inflammation and obesity

Adiposity causes chronic low-grade systemic inflammation, which in conjunction with a high
calorie diet may contribute to diseases associated with obesity [48-49]. A growing body of
evidence implicates immune cell-mediated tissue inflammation as an important mechanism
linking obesity to insulin resistance in metabolically active organs, such as the liver, skeletal
muscle, and adipose tissue [48-49]. Peripheral inflammation passes through or bypasses the
blood-brain barrier [50-51], and stimulation of neural afferents at the site of local peripheral
inflammation induces an inflammatory reaction within the central nervous system [52-53]. The
saturated free fatty acids, palmitic acids and lauric acid, have been shown to trigger inflam-
mation in cultured macrophages [54]. Saturated long-chain fatty acids were demonstrated to
activate inflammatory signaling in astrocytes [55]. Microglia, macrophage-like cells of the
central nervous system that are activated by pro-inflammatory signals causing local produc-
tion of specific interleukins and cytokines, play a pivotal role in brain inflammation [48-49, 53,
55-57]. Experimental studies in animals have confirmed neurologic vulnerability to obesity
and a high-fat diet and further demonstrated that diet-induced metabolic dysfunction leads
to increased brain inflammation, reactive gliosis, and vulnerability to injury, especially in the
hypothalamus [49, 56, 58-59]. Hypothalamic inflammation contributes to obesity pathogenesis
through the development of central leptin resistance [49, 56]. Leptin resistance is a physiolog-
ical condition in which high concentrations of leptin neither reduce food intake nor increase
energy expenditure, as observed in obese humans and a rodent model of diet-induced obesity
(DIO) [60]. Leptin resistance is considered to be a central dogma for obesity [61]. Immune-
related molecules, including proinflammatory cytokines, IL-18, TNF-a, and IL-6, altered
expression levels of many genes in the hypothalamus [49, 56, 58]. Activation of both Jnk and
the inhibitor of nuclear factor kappa-B kinase subunit B(IKK()/ nuclear factor-xB (NF-«xB)
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pathway as well as induction of endoplasmic reticulum stress underlie these responses and
parallel the onset of reduced hypothalamic leptin sensitivity in rodent models of DIO [56, 58].
High-fat feeding increases suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine
phosphatase-1B (PTP1B) in the rodent hypothalamus [56, 58, 62]. Up-regulation of SOCS3, a
member of a protein family originally characterized as negative feedback regulators of
inflammation, inhibits insulin and leptin signaling by direct binding to their cognate receptors
and targeting insulin receptor substrate (IRS) proteins for proteasomal degaradation [58]. The
PTP1B is a signal termination molecule that inhibits both leptin and insulin signaling, also
thought to be involved in leptin resistance [58, 62]. Diet-induced PTP1B overexpression in
multiple tissues including the hypothalamus in obesity is regulated by inflammation [62].
Recent studies with animals and humans have shown that other brain structures, such as the
hippocampus and orbitofrontal cortex, are also affected [53, 57, 63-64]. These inflammatory
changes induced by obesity and high-fat diet might be reversible from the results of animal
studies. Resveratrol, an adenosine monophosphate-activated protein kinase (AMPK) activator
and potent anti-inflammatory agent, attenuated peripheral and central inflammation in the
hippocampus and improved memory deficit in mice fed a high-fat diet [57]. In another study,
moderate and regular treadmill running exercise markedly decreased hypothalamic inflam-
mation in high-fat diet fed mice [59]. Evidence of brain inflammation in human obesity has
been accumulating based on biologic data and imaging studies by using MRI [46, 56].

4. Mental disorders of obesity

4.1. Depression and other mood disorders

Obesity is associated with an increased risk of developing depression and a higher likelihood
of current depression [3, 27-30]. Most obese individuals tend to have higher scores in depres-
sion, the projected increase in the rates of being overweight and obesity in future years could
generate a parallel increase in obesity-related depression. According to the DSM-1V, an episode
of major depressive disorder can be classified clinically as depression with melancholic
features and depression with atypical features. Unlike melancholic depression, which is
characterized by a loss of appetite or weight, atypical depression and seasonal depression are
characterized by decreased activity and increased appetite and weight. Obesity among these
groups is sometimes a result of the ingestion of “palatable food”, which contains high amounts
of fat and sugar [65]. Also, major depression in female adolescence is linked with an increased
risk of obesity in adulthood [66]. To explain this mutual relationship between obesity and
depression, the focus of research has been on hormones and neuropeptides, which have been
implicated in both energy regulation and cognition/mood [67]. Among them, the involvement
of leptin has been the subject of much attention as it has been implicated in depression
associated with obesity [1]. Leptin is reported to induce an antidepressant-like activity in the
hippocampus, which is considered to be an important region for regulation of the depressive
state, but not in the hypothalamus of rats [68]. Decreased plasma or CSF leptin levels were
observed in major depressive disorder patient group compared with controls independent of
BMI [69-70]. These findings suggested that impairment of leptin action might contribute the
physiology of depression. In obese rodents and humans, a high concentration of plasma leptin
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is observed with a blunted effect of leptin in suppressing food intake and increasing energy
expenditure, which is termed “leptin resistance” [61]. Based on these observations, we
postulated that the development of depression associated with obesity might be due in part
to impaired leptin activity in the hippocampus.

Here we review our recent study on the central leptin action in depression associated with
obesity [1]. The forced swimming test (FST) is widely accepted as a task that induces depressive
behavior in depression research and has good reliability and high predictive validity for
assessment of the depressive state and the detection of potential antidepressant-like activity
in experimental animals. In this test, animals display “despair” behavior as observed as
immobility and escape-oriented behaviors, in particular, by swimming [71-72]. Normal mice
fed a control diet (CD) displayed such immobility and stress-induced despair in the FST.
Subcutaneous administration of leptin significantly decreased the immobility time compared
with saline treatment [Figure 2(A); 1]. Icv injection of leptin significantly decreased the
immobility time of CD mice in the FST [Figure 2(B); 1]. DIO mice fed a 60% high-fat diet (HFD)
for 16 weeks exhibited more depressive behavior compared with CD mice without exaggerated
response of plasma corticosterone levels [Figure 2(C); 1]. Subcutaneous administration of
leptin did not decrease the prolonged immobility time in DIO mice [Figure 2(D); 1]. Icv
injection of leptin did not decrease the immobility time of DIO mice in the FST [1]. Moreover,
in response to leptin, DIO mice did not exhibit an increase in the number of c-Fos-immunor-
eactive cells in the hippocampus, whereas leptin administration in CD mice has a significantly
increased number of c-Fos immunoreactive cells in the hippocampus [1]. To examine whether
the increased immobility time of DIO mice in the FST can be restored by diet substitution from
HEFD to CD, the diet of the DIO mice was changed from HFD to CD for the next 3 weeks. This
led to significant reductions in body weight and fat weight and to the normalization of plasma
levels of glucose, insulin, and leptin [1]. The immobility time in the FST in mice now given CD
was significantly decreased and identical to that of the CD mice [1]. Moreover, subcutaneous
administration of leptin significantly decreased the immobility time of FST in mice switched
to CD [1]. These results are compatible with a previous report that diet substitution from HFD
to CD in DIO mice restores leptin sensitivity as an anorexigenic action [73]. Brain-derived
neurotrophic factor (BDNF) in the hippocampus is considered to play an important role in
control of the depressive state. Injection of BDNF into the hippocampus in experimental
animals has antidepressant effects in the FST, and this antidepressant effect induced by BDNF
is inhibited by K252a, an inhibitor of the BDNF receptor tyrosine kinase B (TrkB) [74]. Low
BDNF levels are reported in the hippocampus of humans with depression [75]. These findings
support the hypothesis that decreased BDNF/TrkB signaling may induce depression. In our
study, the hippocampal BDNF concentrations in DIO mice were significantly decreased
compared with those of CD mice [Figure 2(E); 1]. Subcutaneous administration of leptin
significantly increased BDNF concentrations in the hippocampus of CD mice but not in DIO
mice [Figure 2(E); 1]. In summary, as shown in Figure 2F, in the lean state, leptin helps maintain
normal body weight by acting on the arcuate nucleus of the hypothalamus (ARC), and
provides an antidepressant-like action via hippocampal BDNF, whereas in the obese state,
impaired leptin action even with a high concentration in plasma, may lead to rodent and
human obesity occurring together with depression [Figure 2(F); 1].
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Figure 2. Central leptin action in depression associated with obesity (A) Effect of subcutaneous administration of
leptin (0.3, 1, 3 mg/kg) and desipramine (DMI) (7.5 mg/kg) in CD mice on immobility time in the FST. (B) Effect of intra-
cerebroventricular administration of leptin (1 ug/2 ul per mouse) on immobility time in CD mice in the FST. (C) Depres-
sive behavior in DIO mice in the FST. (D) Antidepressant effects of subcutaneous administration of leptin (0.3, 1, 3
mg/kg) and DMI (7.5 mg/kg) in DIO mice. (E) Effect of subcutaneous administration of leptin (3 mg/kg) in CD and DIO
mice on the hippocampal BDNF concentrations. (F) The schematic diagram of normal body weight regulation and anti-
depressant-like effect of leptin in lean, and overweight/obese and depression resulting in leptin resistance in obesity.
Data points represent the mean + SEM. Significantly different: *p <0.05, **p <0.01. CD mice: control mice given CE-2 as
a control diet (CLEA Japan, Inc., Tokyo, Japan), DIO mice: diet-induced obese mice given a high-fat diet (HFD) (no.
D12492; Research Diets, Inc., New Brunswick, NJ) containing 60% fat of total calories, predominantly in the form of lard.
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Given the high comorbidity of metabolic disorders, such as diabetes and obesity, with
depression, several lines of evidence suggest that insulin signaling in the brain is also an
important regulator. Clinical investigations show the relationship between insulin resistance
and depression, but the underlying mechanisms are still unclear [76-77]. Ghrelin is also play
a potential role in defense against the consequences of stress, including stress-induced
depression and anxiety and prevent their manifestation in experimental animals [82]. These
findings suggest that both leptin and ghrelin involve in mood regulation and might have
antidepressant-like effect. The target differences being treated by leptin or ghrelin in human
depression are not known, yet.

What kind of treatment is effective on depression associated with obesity? One clinical study
demonstrated the efficacy of a treatment combining behavioral weight management and
cognitive behavioral therapy for obese adults with depression [81]. According to systematic
review and meta-analysis on intentional weight loss and changes in symptoms of depression,
obese individuals in weight loss trials experienced reduction in depression symptoms [80].
This finding is compatible with our experimental data [1].

4.2. Cognitive impairment and Alzheimer’s disease

Epidemiologic studies have demonstrated that the incidence of cognitive impairment is higher
in obese individuals than in individuals with normal body weight [6, 24]. From the study of
Anstey et al., risks of cognitive impairment appeared to be highest for those with underweight
and obese BMI in midlife [81]. Increasing evidence suggests that obesity is associated with
impairment of certain cognitive functions, such as executive function, attention, visuomotor
skills, and memory [6, 82]. A higher prevalence of attention deficit hyperactivity disorder,
Alzheimer’s disease and other cognitive impairment, cortical atrophy, and white matter
disease is observed in obese individuals [83-84]. The mechanisms by which obesity results in
cognitive impairment, however, are uncertain. Postulated mechanisms include the effects of
hyperglycemia, hyperinsulinemia, poor sleep with obstructive sleep apnea, and vascular
damage to the central nervous system [7, 85]. Moreover, adiposity is thought to have a direct
effect on neuronal degradation [24]. C reactive protein, as well as inflammatory markers, is
increased in subjects with greater adiposity and is associated with later-life cognitive impair-
ment [86]. White matter lesions and cerebral atrophy are more common in adults with a high
BMI, and midlife measures of central obesity predict poor performance on tests measuring
executive function and visuomotor skills [83-84, 87. In animal studies, chronic dietary fat
intake, especially saturated fatty acid intake, contributes to deficits in hippocampus- and
amygdala-dependent learning and memory in rodents with diet-induced obesity by changes
in neuronal plasticity [2, 88]. Neural plasticity, long-term structural alterations of synapses,
are regulated by several synaptic molecules including neurotrophic factors, such as BDNF,
and have been demonstrated to be essential for hippocampal functions [89].

In our recent study, cognitive behaviors in DIO mice in fear-conditioning test including both
contextual and cued elements that preferentially depend on the hippocampus and amygdala,
respectively, was significantly impaired [Figure 3(A); 2]. Fear-conditioning test is the method
which assesses memory and learing by freezing behavior induced by electric foot shock.
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Freezing was defined as the absence of all movement except for respiration. BDNF content in
the cerebral cortex and hippocampus of DIO mice was significantly lower than that in CD mice
[Figure 3(B); 2]. Its receptor, full-length TrkB in the amygdala of DIO mice was significantly
decreased compared to that in CD mice, although not in the cerebral cortex, hippocampus and
hypothalamus [Figure 3(C); 2]. By contrast, neurotrophin-3 (NT-3), which is reported to act in
the opposite direction to BDNF on neurite outgrowth and neural activities, was present at
significantly higher levels in the hippocampus, amygdala and hypothalamus of DIO mice than
that in CD mice [90-91, Figure 3(B); 2]. Its receptor, full-length TrkC, was not significantly
different between CD and DIO mice [Figure 3(C); 2].

Severallinesofelectrophysiologicaland behavioralevidence demonstrate thatleptinand insulin
enhance hippocampal synaptic plasticity and improve learning and memory [7, 92]. Electrophy-
siological studies in genetically obese Zucker rats with leptin-receptor deficiency demonstrat-
ed thatlong-term potentiation (LTP) of the hippocampal CA1 region, which is closely related to
learning and the formation of memory and is regulated by N-methyl-D-aspartate (NMDA) and
2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors, is markedly
impaired compared to that of lean rats [93]. Streptozotocin-treated insulin deficient rats are
reported to exhibit impaired cognition in the water maze test, which is dependent on the
hippocampus [94]. Therefore, itis likely thatimpairment of the actions of leptin or insulin might
be attributable to cognitive deficits in obesity and diabetes mellitus [61, 95].

5. Dysregulation of hunger in obesity

5.1. Metabolic hunger

Food intake and energy expenditure are controlled by complex, redundant, and distributed
neural systems that reflect the fundamental biologic importance of an adequate nutrient
supply and energy balance. Metabolic hunger is regulated by a homeostatic metabolic status
designed to preserve energy balance and maintain minimal levels of adiposity. The hypothal-
amus and caudal brainstem play crucial roles in this homeostatic function. The hypothalamus
serves to integrate nutrition and information from orexigenic and anorexigenic peptides that
are sensitive to circulating leptin and other hormones [96-97]. The role of the hypothalamus
in regulating food intake and body weight was established in 1940 by the classic experiments
of Hetherington and Ranson [98]. Their destruction experiments demonstrated that the
ventromedial hypothalamus resulted in hyperphagia and obesity [98]. Anand and Brobeck, in
1951, demonstrated that lesions of the lateral hypothalamus caused loss of feeding, inanition,
and even death by starvation [99]. Thus, the concept arose of the lateral hypothalamic are
serving as a “feeding center” and the ventromedial nucleus as a “satiety center” [100].

After more than 60 years since the Hetherington and Ranson experiments, much more
precise mechanisms and the network between peripheral signals and the brain have been
elucidated [97, 101]. Input signals such as sight, smell and taste allow the brain to decide
whether or not it should engage in ingestive behavior. Once put into the mouth, foods elicit
taste and mechanical sensations that send neural signals via mainly vagal afferents to the
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Figure 3. Impairment of fear-conditioning responses and changes of brain neurotrophic factors in diet-induced
obese mice. (A) Fear-conditioning responses in CD (closed circles) and DIO (open circles) mice. Freezing percentages of
CD and DIO mice in the contextual conditioning test were measured every minute for 5 min. Freezing percentages of CD
and DIO mice in the cued conditioning test were measured every minute for 3 min. (B) Content of brain-derived neuro-
trophic factor (BDNF) and neurotrophin-3 (NT-3) in the cerebral cortex, hippocampus, amygdala and hypothalamus in
CD and DIO mice. (C) Expression of full-length TrkB and TrkC in the cerebral cortex, hippocampus, amygdala and hypo-
thalamus in CD and DIO mice. Data points represent the mean + SEM. Significantly different from CD mice: * p <0.05, **
p <0.01. GAPDH: glyceraldehyde3-phosphate dehydrogenase.
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brainstem and/or hormonal signals through the bloodstream to the brain [97]. Gut-to-
brain communication is increasingly recognized as playing an important role not just in the
determination of meal size but also in overall food intake [97]. Once absorbed, macronu-
trients are partitioned into either storage or immediate metabolism in various tissues [97].
The information from peripheral tissue including the gastric tract is relayed to the brain,
especially to the hypothalamus and the brainstem by hormones [leptin, insulin, amylin,
peptide YY (PYY), ghrelin, glucagon-like peptide-1 (GLP-1), and cholecystokinin (CCK)]
and nutrient signals [glucose, free fatty acid, and amino acid] [97, 101]. Leptin, insulin and
amylin deliver long-term afferent signals, PYY, GLP-1, and CCK deliver short-term meal
related afferent signals and work for satiation, and ghrelin stimulate feeding. Vagal afferent
neurons, whose cell bodies lie in the nodose ganglia, relay information from enteroendo-
crine cells of the intestinal epithelium and the enteric nervous system directly to the nucleus
of the solitary tract in the brainstem [102]. During periods of hunger, the hypothalamus
regulates the activity of the autonomic nervous system to promote fat release from white
adipose tissue and trigger glucogenesis in the liver. These changes in peripheral nutrient
levels lead to a decrease in the levels of thyroid hormones, insulin and leptin, and to an
increase in the level of ghrelin and corticosteroids, which increase food-seeking behavior
through their effect on the brain [101]. Through these pathways, an almost stable body
weight can be maintained even under unpredictable and unstable environments.

The ARC in the hypothalamus is the gateway of above hormones and signals in the brain [97,
101, 103]. From the ARC, the first-order neuronal network was observed of anorexigenic
neuropeptides, proopiomelanocortin (POMC) and cocaine-amphetamine rerated transcript
(CART), orexigenic neuropeptide, NPY and Agouti-related protein (AgRP) to other nuclei in
the hypothalamus, the paraventricular hypothalamus (PVN), lateral hypothalamus (LH), and
ventromedial hypothalamus (VMH) [97, 103]. These nuclei have a second-order neuronal
network of output projection to other sites of the brain which regulate endocrine responses,
autonomic responses, cognitive processing response plan, procurement actions, reward
memory, aversive memory, social screen, competing behaviors, oro-and locomotor control,
and autonomic control of peripheral tissue [97, 103]. Among these nucleus in the hypothala-
mus, LH works as a relaying point, connecting the hypothalamus with mesolimbic dopamine
system and higher brain functions. Melanin-concentrating hormone in the LH projects to the
Nucleus accumbense (NAc) and many other brain areas including the amygdala, hippocam-
pus, and cerebral cortex, and orexin in the LH project to the ventral tegmental area (VTA) and
many other brain areas including the amygdala, hippocampus, and cerebral cortex [104]. From
recent studies, first order neurons, which receive peripheral information and regulate food
intake, are suspected to be present in other regions of the hypothalamus and extra-hypothal-
amus [1, 97, 105, 106]. Many hormones and neuropeptides, which were previously thought to
energy regulator, have turned to regulate other higher brain functions, too.

In human obesity, genetic predisposition is expressed mainly on the central melanocortin
system. Downstream targets of the central melanocortin system are implicated in food intake,
meal choice, satiety and energy expenditure [107]. POMC is a large precursor protein that is
processed into a variety of smaller products, including alpha melanocyte stimulating hormone
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(a-MSH)), is an endogenous ligand of melanocortin 3 receptor (MC3R) and melanocortin 4
receptor (MC4R) in the brain [108]. AgRP is an inverse agonist of the brain MC3R and MC4R,
completely dependent on the melanocortin receptors for its action, has an orexigenic effect on
food intake and decreases energy expenditure [109]. Mutations in the MC4R in humans, the
most commonly known monogenic cause of human obesity, have been associated with obesity,
hyperphagia, tall -stature and hyperinsulinemia [110-113]. Common variants near MC4R were
reported to influence fat mass, weight and obesity risk at the population level from genome-
wide association data from people of European descent [114]. Mutations in MC3R have been
associated with obesity, hyper leptinemia and relative hypephagia [115]. Mutations in POMC
and AgRP have been also reported in human obesity [116-118]. Mutation of leptin, which target
is thought to be mainly the melanocortin circuitry in the brain, leptin receptor, and prohormone
convertase-I were also reported in humans with severe early-onset obesity and intense
hyperphagia [118-121]. The findings that HFD altered levels of POMC, AgRP and MC4R
mRNA expression in the hypothalamus and changed the response to melanocortin agonist in
experimental animals [122-123], speculate that dysregulation of melanocortin system may also
happen in human obesity.

5.2. Hedonic hunger

Several lines of evidence have indicated that energy regulations are also modulated by extra-
hypothalamic brain areas originally related to regulation of emotion and cognition, such as
the NAc, amygdala, hippocampus and cerebral cortex [124]. These findings suggest that
maintaining energy homeostasis and regulating emotion and cognition share common brain
regions, as well as bidirectional interaction between energy regulation and emotional/
cognitive functions. The regulation of food intake by the hypothalamus interacts with reward
and motivational neurocircuity to modify eating behavior. Such a cognitive-hedonic pathway
permits us to adjust our feeding behavior to environment & lifestyle, palatability, liking/
wanting/emotion, cues, availability, physical activity, and fuel availability [97]. Reward
circuitry, which is mainly regulated by the midbrain dopamine system from the VTA to the
NAg, is the main pathway of hedonic hunger. This system is the main pathway in drug
addiction and part of the motivational system that regulates responses to natural reinforcers
such as drink, sex, social interaction and food [125]. This dopamine neuron express kopioid
receptors and receive projection of y-aminobutyric acid (GABA) and dynorphin from the NAc
[125]. Dopamine signaling within mesolimbic neurons mediates the willingness to engage in
rewarding behaviors or “wanting”, whereas the pleasure associated with a particular reward
or “liking” is attributed to mesolimbic opioid action [126]. Memory and learning, mood, Top/
Down inhibition, interoception, gustatory integration, and salience attribution interact with
the reward circuitry [Figure 4; 105]. Top/Down inhibition of feeding depends heavily on the
prefrontal cortex, including orbitofrontal cortex and cingulate gyrus [105]. The amygdala
ascribes emotional attributes including fear, together with memory and learning circuitry, and
generates conditioned responses [2]. The hippocampus is also involved in emotion, memory
and learning circuitry [2, 105].
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Figure 4. Schematic diagram potential interactions between metabolic hunger and hedonic hunger which reg-
ulate food intake. Food intake is controlled by complex neural system that reflects the fundamental biological impor-
tance of adequate nutrient supply and balance. Metabolic hunger regulated by homeostatic metabolic status
designed to preserve energy balance and protect minimal levels adiposity. The hypothalamus plays crucial roles in the
metabolic hunger. Reward circuit which is mainly regulated by the midbrain dopamine system from the VTA to NAg, is
the main pathway of hedonic hunger. Memory and learning and mood interact with reward circuits. Circulating sig-
nals of energy availability, leptin, ghrelin, glucose, and insulin are thought to regulate food intake mainly via the hypo-
thalamus, but recent studies show that they also regulate food intake via many extra-hypothalamic regions. VTA:
ventral tegmental area, NAc: nucleus accumbense.

Chronic excessive consumption of palatable foods predisposes some individuals to obesity via
an increased likelihood and reinforcement of overeating. Excessive activity of hedonic hunger
in obesity might lead to the ingestion of more food, independent of metabolic hunger. Several
recent models have emphasized the role of the dysregulation of hedonic hunger in the
development and maintenance of obesity. Such “compulsive food consumption” was recently
explained by an analogy to drug addiction as previously described [Figure 5]. Drug addiction
is defined as the loss of control over drug use, or the compulsive seeking and taking of drugs
despite adverse consequences [125]. Once formed, an addiction can be a life-long condition in
which individuals show intense drug craving and increased risk for relapse after years and
even decades of abstinence [125]. This means that addiction involves extremely stable changes
in the brain that are responsible for these long-lived behavioral abnormalities [125]. The
hypothesis of obesity treating as an analogy of drug addiction is supported by evidence for a
food addiction diagnosis according to the Yale Food Addiction Scales [127-129] and fMRI in
humans [92]. There are several questionnaires for the assessment of food addiction. Such
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questionnaires include the “3Cs” of addiction, compulsive use, attempts to cut down, contin-
ued use despite consequences, among others [127]. The most common symptoms were (1)
persistent desire or repeated unsuccessful attempts to cut down, (2) continued use despite
problems, and (3) much time spent to obtain food, eat, or recover from eating [127]. Meule et
al reported that prevalence of food addiction diagnoses differed between weight classes such
that overweight and obese participants had higher prevalence than normal weight participants
[Figure 6; 128]. These “compulsive food consumption” is difficult to modify, and even if weight
loss is achieved, the neural plasticity “fixed” by palatable food leads individuals to crave
palatable food and thus substantially regain weight. “Fear of hunger” which accelerates
“hedonic eating of palatable food” might cause compulsive food consumption in obesity [35].
Moreover, a weakened Top/Down inhibition signal for food cravings and inadequate sensing
of ingested nutrients resulting in hyperphagia of obesity has been detected in fMRI studies
[105]. Also, from the finding that obese patients have been shown to have decreased D2
receptor level in striatum by positron emission tomography (PET) imaging, obesity has been
described as a reward deficiency syndrome, where deficiency of dopamine signaling results
in compensatory over eating [105, 125]. fMRI studies demonstrated that obese patients have
an increased “motivation” or “wanting” for food intake, actual food intake is associated with
decreased “liking” [130]. It is not known that these functional changes are the results of obesity
or the cause of obesity.

Hypothesis
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Figure 5. Hypothesis of obesity as an analogy of drug addiction. Addictive drugs are both rewarding and reinforc-
ing. Repeated use of addictive drugs produces multiple changes in the brain that may lead to addiction. Withdrawal
occurs when drug-taking stops. Withdrawal symptoms drive one to reuse the drug. Excessive consumption of hyper-
palatable foods might parallel to drug addiction. Repeated taking of palatable food produces multiple changes in the
brain that may lead to obesity. After weight loss was achieved in obese patients, they usually regain their weight.
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Figure 6. Percentage of food addiction diagnosis according to the Yale Food Addiction Scale as a function of
weight category. This graph is made from the data of Table 1. (Meule, A., Medical Hypotheses, 2012;79(4):508-511)
[128]. These are aggregated data from three studies done by Meule, A. et al, in which the Yale Food Addiction Scale
was used and BMI was assessed. Participants were classified in weight categories according to the guidelines of WHO.
The prevalence of food addiction diagnosis was significantly increased in overweight/obese individuals compared
with normal weight individuals.

Stress is reported to modulate the reward circuit. Stress affects feeding behavior in humans in
both directions, with some individuals increasing their food intake while others eat less [131].
An overall increased consumption of caloric dense and highly palatable foods following stress
compared to non-stressed controls is reported, independent of stress-induced hyperphagia or
hypephagia [131]. Susceptibility to stress and stress-induced hyperphagia are observed in
obese individuals [132]. Depression, other mood disorders, and cognitive impairment also
affect the feeding behavior of obese individuals. Direct interaction between stress-mediated
mood and reward circuits in rodent was reported by Vialou et al [133].

5.3. Hormones and neurotransmitter in metabolic hunger and hedonic hunger

5.3.1. Leptin

Leptin is one of the most important adipocyte-derived hormones and circulate in proportion
to body fat mass, enter the brain, and act on neurocircuit that govern food intake and energy
expenditure [124]. The long form of the leptin receptor (Ob-Rb) expresses in numerous regions
including the hypothalamus, VTA, and NAc. Through both direct and indirect actions, leptin
diminishes perception of food reward (the palatability of food) while enhancing the response
to satiety signals generated during food consumption that inhibit feeding and lead to meal
termination [124]. Administrations of leptin in the VTA directly regulate mesolimbic dopamine
system [134-135]. Centrally administered leptin diminishes both sucrose preference and the
effect of fasting to increase the rewarding properties of electrical pleasure-center stimulation
[136-137]. The effect of weight loss to lower leptin levels and hence to reduce leptin signaling
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increases rewarding properties of food while diminishing satiety, a combination that potently
increases food intake [124].

5.3.2. Ghrelin

Ghrelin is recognized as the only known orexigenic peptide hormone and synthesized
mainly by a distinct group of endocrine cells located within the gastric oxyntic mucosa
[136]. The mechanisms by which ghrelin promotes food intake are multifaceted and include
not only stimulating intake of food via homeostatic mechanisms but also enhancing the
rewarding properties of pleasurable food [139-140]. Ghrelin shifts food preference toward
palatable sweet and fatty food [139]. Ghrelin can directly affect dopaminergic VTA neuronal
activity and increase motivational aspect of reward [139]. Intra-VTA administration of
ghrelin modulates intake of freely available regular chow, food preference, motivated food
reward behavior, and increases body weight [139]. Orexin signaling is required in these
ghrelin’s action on food reward [140]. Ghrelin also reported to mediates stress-induced
food-reward behavior in mice [141].

5.3.3. Insulin

Insulin is produced by pancreatic 3-cells, controls plasma glucose levels, increases in propor-
tion to fat mass, consequently relay information about peripheral fat stores to central effectors
in the hypothalamus to modify food intake and energy expenditure. Neurons in the ARC of
the hypothalamus express insulin receptors and regulate energy homeostasis. The receptors
for insulin are also present in brain reward circuitry, which are thought to be projected from
LH in the hypothalamus [126, 142-143]. Insulin works as satiety hormone similar to leptin, and
also attenuates food reward similar to leptin, substantially suppresses food intake [126, 144].
Insulin signaling and dopamine signaling via dopamine 2 receptor (D2R) work in tandem to
regulate dopamine transporter plasma membrane expression and function [145]. Brain insulin
resistance which is often accompanied with obesity also exists in brain regions regulating
appetite and reward [146]. Dysregulation of brain insulin signaling might alter dopamine
reward pathways resulting in changing motivation for food since these pathways are insulin
sensitive [145]. Jastreboff et al demonstrated a fMRI study that in obese individuals, food
craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolim-
bic-striatal brain regions including the striatum, insula, and thalamus during favorite-food
and stress cues [147]. These findings strongly suggest that the relationship between insulin
resistance and food craving in obese individuals mediated by activity in motivation-reward
regions [147]. Centrally administered insulin also diminishes both sucrose preference and the
effect of fasting to increase the rewarding properties of electrical pleasure-center stimulation
similar to leptin [136-137].

5.3.4. GLP-1

GLP-1 is secreted from the L cells of intestinal tract in response to nutrients. GLP-1 is also
produced in the NTS of the brainstem, resulting in the activation of GLP-1receptor (GLP-1R)
expressed on both dendritic terminals of vagal afferent fibers innervating the organs of the
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peritoneal cavity, as well as the pancreatic3-cells [148-149]. Activation of the GLP-1R promotes
glucose dependent insulin secretion, slowing of gastric emptying, and glucose-dependent
inhibition of glucagon secretion, together facilitating the rapid clearance, storage, and nor-
malization of blood glucose [149]. GLP-1 has anorectic effects, and regulation of short and long-
term food intake and body weight [148]. GLP-1Rs are expressed especially in the NTS and in
the hypothalamic nuclei [155]. GLP-1 neurons in the NTS are characterized to project to the
PVN and the DMH in the hypothalamus [150]. Peripheral GLP-1 regulates long-term energy
balance interacting with leptin [150]. Central GLP-1 is a critical downstream mediator of leptin
action [155]. Cells in both the VTA and the NAc clearly express the GLP-1R [147-148]. They
receive GLP-1-positive fibers which are likely coming from the NTS and potentially contribute
to the regulation of reward behavior [151-152]. Peripheral and central administration of a long-
acting GLP-1 receptor agonists, liraglutide and Exendin-4, suppress food reward and motiva-
tion in rats, resulting in reduce appetite and body weight [148].

5.4. Weight management strategy in obesity

On the basis of the observation that a 10% loss of body weight frequently produces substantial
beneficial change in health risk factors, even in the very obese, a 10% weight loss has been
offered as a clinical definition of weight loss success [153]. Long-term success in voluntary
weight loss is clearly possible but quite difficult. Lifestyle modification sometimes with
cognitive behavioral therapy (CBT) is essential part of the strategy of weight management in
obesity. Medications and bariatric surgery are supportive therapy. Recent new findings from
successful bariatric surgery might help us to get new strategy.

5.4.1. Lifestyle modification

The health and psychosocial benefits of sustained weight loss are well established, even tough,
these natural incentives are not sufficient to motivate long-term behavior change [153]. There
is a lifestyle patterns associated with lean or obese population. From the study done by
University of Minnesota, 5 meaningful lifestyle and weight control behavioral factors were
identified [154]. Current lesser BMI and greater % weight loss are associated with good habits:
regularity of meals, not watching television with meal or snuck, having intentional strategies
for weight control, not eating away from home, greater fruit and vegetable intake [154]. These
results strongly suggested that lifestyle modification is essential for weight loss and weight
control. Lifestyle modification includes 3 primary components: diet, exercise, and behavior
therapy. About dietary interventions, there are 4 well-known diets: low-carbohydrate, low-fat
(including balanced calorie-restricted), Mediterranean, and low-glycemic load regimens [155].
Numerous trials have examined these diets. In summary, caloric restriction rather than
macronutrient composition is the key determinant of weight loss [155]. The optimal dietary
macronutrient composition for improving specific comorbid complication will be determined
by further researches. About exercise, physical activity is associated with improvements in
body composition and metabolic conditions independent of weight loss. For weight loss,
physical activity alone is of limited benefit and much better with diet restrictions. However,
physical activity appears to be critical for long-term weight loss and prevention of weight
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regain [156]. Moderate-intensity physical activity between 150 and 250 min/week alone will
provide only modest weight loss and prevent weight gain. Greater amount of physical activity
over 250 min/week have been associated with clinically significant weight loss [156]. Resistance
training increase fat-free mass and increase loss of fat mass but does not enhance weight loss
[156]. For weight control, multiple short bouts of activity, as brief as 10 min, throughout the
day are as effective as 1 long bout (>40 min) [157]. Behavior therapy is a set of principles and
techniques for helping obese individuals modify eating, activity, and thinking habits that
contribute to their excess weight [156, 158]. Setting specific goal and self-monitoring are the
most important components of behavioral treatment [156]. Self-monitoring contains, daily
monitoring of food intake and physical activity by use of paper or electronic diaries, weekly
monitoring of weight, structured curriculum of behavior change, and regular feedback from
an interventionist [156]. Frequent self-monitoring is a consistent predictor of both short- and
long-term weight losses [159]. Frequency and duration of treatment contact is another
important component of lifestyle modification [156]. Among many lifestyle modification
programs, the LEARN program developed by Dr. Kelly Brownell of Yale University, is often
recommended by health professionals in the USA and UK. Itis designed to produce permanent
change in five areas of life (lifestyle, exercise, attitudes, relationships and nutrition) for living
and maintaining a healthy body weight. It also includes a master list of various lifestyle
techniques, personal charts and forms, a fast food guide, calorie guide, a Weight Loss Readi-
ness Test, and a comprehensive index [153, 158].

5.4.2. Cognitive behavioral therapy

Cooper et al developed a new CBT for obese women based on the evidence of their CBT for
bulimia nervosa [112]. It targets patients’ overeating, low level of activity, and focuses on
processes hypothesized to hinder successful weight maintenance [160]. CBT was successful at
achieving change in participants” acceptance of body shape. The great majority of the partici-
pants lost weight while taking CBT but within the observation period regain it. It seems that
sustained behavior change in people with obesity is remarkably difficult to achieve, unlike the
situation with people with eating disorders. However, CBT is still valuable for its validity and
safety and there is still room for improvement.

5.4.3. Medication

After Orlistat (pancreatic lipase inhibitor) was approved 13 years ago, on 1999, safety concerns
or lack of efficacy have doomed past applications. Fenfluramine, serotonin re-uptake inhibitor
and increases the release of serotonin, is withdrawn by US Food and Drug Administration
(FDA) with side effects of hallucinations, valvulopathy, pulmonary hypertension. Sibutra-
mine, noradrenalin and serotonin re-uptake inhibitor is withdrawn by FDA with side effects
of increased risk of heart attack and stroke in patients with high risk of cardiovascular
disorders. Rimonabant (SR141716; CB, receptor antagonist/inverse agonist) is withdrawn by
European Medicines Agency with side effects of risk of suicide [101]. In this year, Belviq
(lorcaserin; selective 5-HT, receptor agonist, [161-163]) and Qsymia (a combination drug of
phentermine; a sympathomimetic amine anorectic, and topiramate extended-release; an
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antiepileptic drug, [164-166]) were approved by FDA as new weight-loss drugs. Contrave, a
combination of two well-established drugs, naltrexone and bupropion, in a sustained release
formulation (SR), is also under-consideration [167]. The average body weight loss is around
10%, which is not so large even with instructed diet and exercise, and they are effective only
while taking them. Orlistat 30-360 mg/day can reduce nearly 10% of body weight from baseline
compared with 5-6% of those in the placebo-treated groups [168]. Belviq in conjunction with
a lifestyle modification program can reduce body weight from baseline, —2.7%, —4.6%, —5.6%
for placebo, 10mg BID, and 10 mg QD, respectively [161]. Qsymia, controlled-release phen-
termine/topiramate, in conjunction with a lifestyle modification program reduced body weight
from baseline, —1.8%, —9.3%, and —-10.5% for placebo, 7.5 mg phentermine/46 mg controlled
release topiramate, and 15 mg phentermine/92 mg controlled release topiramate, respectively
[164]. Contrave can reduce body weight from baseline, —1.3%, —-5.0%, and —6.1% for placebo,
16 mg naltrexone plus 360 mg bupropion, and 32 mg naltrexone plus 360 mg bupropion,
respectively [167].

Besides Orlistat, most pharmacotherapies for obesity have been to target pathways that
promote satiety. Dietrich and Horvath raised the interesting hypothesis that hunger promotes
a healthier and longer life, and compounds that target satiety pathways will ultimately
promote the homeostatic mechanisms that are related to metabolic overload and therefore
chronic disorders [101]. Also, it seems almost impossible to alter only feeding behavior and
energy expenditure without affecting on many other brain functions. New targets of anti-
obesity drugs are needed with much safety and efficacy. Recently, from the observation of type
2 diabetes treated by GLP-1 analogs, liraglutide and Exendin-4, which reduce appetite and
body weight, has drawn attention as anti-obesity drug. A randomised, double-blind, placebo-
controlled study of liraglutide showed that treatment with liraglutide, in addition to an energy-
deficit diet and exercise program, led to a sustained, clinically relevant, dose-dependent weight
loss that was significantly greater than that with placebo and orlistat [169]. In this study, 76%
of individuals treated with high-dose liraglutide, 3.0 mg/day, lost more than 5% weight, and
almost 30% of individuals treated with liraglutide 3.0 mg/day lost more than 10% weight after
20 weeks of treatment [169]. Further study on the same patients group done by the same group,
high-dose liraglutide (2.4/3.0 mg/day) with a diet and exercise program was successfully
sustained weight loss for 2 years [170]. Moreover, Simmons et al reported that Exendin-4
resulted in considerable reduction of body weight in a patient with severe hypothalamic
obesity from hypothalamic germ cell tumor [171]

5.4.4. Surgery

On the other hand, use of bariatric surgery for severe obesity has increased dramatically. The
most common operations are adjustable gastric banding, Roux-en-Y gastric bypass and
sleevegastrectomy. Bariatric surgery demonstrated significant and durable weight loss as well
as improvement in obesity-related comorbities [172]. Although, there is no large, adequately
powered, long-term randomized controlled trials of clinical efficacy and safety of bariatric
surgery compared with standard care, diet and exercise, yet. The American Association of
Clinical Endocrinologists (AACE)/ The Obesity Society (TOS)/ the American Society for
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Metabolic & Bariatric Surgery (ASMBS) Guidelines reported weight loss as percentage of
excess body weight after bariatric surgery are, gastric banding; 29-87% for 1-2 follow-up years,
45-72% for 3-6 follow-up years, 14-60% for 7-10 follow-up years, Roux-en gastric bypass;
48-85% for 1-2 follow-up years, 53-77% for 3-6 follow-up years, 25-68% for 7-10 follow-up years,
sleeve gastrectomy; 33-58% for 1-2 follow-up years, 66% for 3-6 follow-up years [173]. Selected
criteria for bariatric surgery are certified by AACE/TOS/ASMBS Guidelines [173]. Patients with
uncontrolled, severe psychiatric illness are excluded. As already discussed above, psychiatric
and personality disorders are frequent in obese patients, particularly in morbidly obese
patients before bariatric surgery. The procedure needs comprehension of risks, benefits,
expected outcomes, alternatives, and lifestyle changes required with bariatric surgery. A
psychological assessment is surely required before proposing such intervention. Literature
reviews and numerous empirical studies have described significant improvements in psycho-
social functioning after bariatric surgery [174-178]. Patients typically report decreases in
symptoms of anxiety and depression and significant improvements in health-related quality
of life [179-183]. Patients also typically report improvements in body image as well as marital
and sexual functioning [184-186]. On the other hand, a negative psychological response to
bariatric surgery also has been reported [29, 187-188]. For some patients, improvements in
psychosocial status dissipate 2-3 years postoperatively [196, 197]. Other studies have docu-
mented suicides postoperatively [189-190]. Postoperative eating behavior is also documented.
Some patients struggle to adhere to the recommended postoperative eating plan [173]. Among
psychological factors improving after surgery, eating disorders have inconsistently been
reported to disappear or not, consecutively to bariatric surgery [178, 192-194]. Bariatric surgery
may lead to a physical impossibility of consuming unusually large amounts of food as required
by binge eating disorders diagnosis criteria. However, loss of control on eating or grazing
(frequently eating relatively small amounts of food) can appear or re-appear after surgery
[178]. For that reason, eating behavior should not only be screened before, but also periodically
after surgery [195]. Psychological factors assessed in patients before surgery did not have an
impact on weight loss 2 years after surgery [178]. Increased caloric consumption above
patients” postoperative caloric demands may contribute to suboptimal weight loss or even
weight regain, which may begin as early as the second postoperative year [187, 190, 196-197].
To maintain long-term weight reduction after surgery, combination of the programs focusing
on lifestyle modification as for non-bariatric obese patients isimportant [178, 195]. The changes
in energy intake and energy expenditure after bariatric surgery may be affected by alternations
in gut and adipocyte hormones [130, 198]. The reduced appetite seen after bariatric surgery
has been attributed to changes in gut hormones, such as PYY, ghrelin, and GLP-1 [130]. But it
isnot clear how these hormonal changes affecting on mental status and the substantial outcome
of weight control. A decrease in preference for both of sweet taste and high calorie foods has
been demonstrated in animal models. The effect of bariatric surgery on the hedonic system in
humans has been consistent with decreased activation of the hedonic system being demon-
strated by fMRI and decreased preference for intake of high energy foods also being observed
post-surgery [130]. The effect of bariatric surgery on dopamine signaling, which is involved
in the hedonic system, is still not clear. Various studies utilizing questionnaires have demon-
strated increased satiety and decreased hunger after bariatric surgery [130]. Understanding of
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the precise physiology of bariatric surgery could pave the way for the design of newer therapies
to combat the epidemic of obesity [199].

6. Conclusion and future perspectives

Mental disorder is a critical dimension of obesity. It causes obesity, affects the development of
obesity, and results of obesity. It varies among individuals, and does not simply parallel BMI.
Evidence suggests a pathophysiologic relevance between obesity and mental disorder. We
hypothesize that there is also common vulnerability towards metabolic dysregulation and
mental disorder [Figure 7]. Although clinical findings continue to be accumulated, the precise
mechanisms remain unclear. A better understanding of how mental function is modulated in
the development of obesity, weight reduction, and weight regain should contribute to the
development of effective treatments for obesity. In our laboratory, we are going to obtain new
findings of “hunger” from animal experiments, which will promote new strategy for treatment
of obesity and mental disorder complicated with obesity.

il NS

~ Cognitive impairmént
/ \ schizophrenia
| Obesity | Depression  Mental dysfunction

\ / Eating disorder
\ / (Reward abnormality)

"
v

Figure 7. Schematic mutual interaction of obesity and mental disorder. The prevalence of cognitive impairment,
schizophrenia, depression, and eating disorder increases in obesity. The prevalence of metabolic dysregulation, such
as insulin resistance, hypertension, and dyslipidemia, in other words, metabolic syndrome and obesity are often co-
morbid in mental disorder. These findings speculate that there are mutual interaction between obesity and mental
disorder, common vulnerability and treatment possibility towards obesity and mental disorder.
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