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1. Introduction 

The production and utilization of fossil fuels introduce several negative environmental 

impacts. Bioenergy and biobased products are not a panacea for these problems. However, 

the environmental burden from use of biorenewable resources is generally much less than 

from the use of fossil resources. Biofuels include fuels derived from biomass conversion, as 

well as solid biomass, liquid fuels and various biogases. Forest biomass, agricultural 

residues and energy crops constitute the three major sources of biomass for energy, with the 

latter developing into probably the most important source in the 21st century. Land use and 

the changes thereof is a key issue in sustainable bioenergy production as land availability is 

ultimately a limiting factor [1]. Biodiesel and bioethanol are the main biofuel. Biodiesel can 

be made from vegetable oils, microalgae, and animal fats; on the other hand, bioethanol is 

an alcohol made by fermentation, mostly from carbohydrates produced by sugar or starch 

crops such as corn or sugarcane, as well as from non-food sources such as agricultural 

residues. Nevertheless, these processes require as an additional step, prior to 

saccharification, making production a difficult and expensive. Using agave plants as raw 

material could be a viable alternative to bioethanol production. 

2. Microorganisms involved in the bioethanol production 

There is an ever-growing demand for new and improved bioethanol production 

microorganism strains. Desirable characteristics of bioethanol production microorganisms 

are listed in Table 1. 

Ethanol production microorganisms, mainly Zymomonas mobilis and Saccharomyces cerevisiae, 

are potential candidates for bioethanol productions because they showed many of the 

characteristics presented in the table 1. However, Zymomonas mobilis strains have attracted 

much attention because their growth rate is higher than that of Saccharomyces cerevisiae, 
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conventionally used microorganisms for commercial bioethanol production. Zymomonas 

mobilis has been used in tropical areas for making alcoholic beverages from plant sap [2], but 

its narrow spectrum of fermentable carbohydrates has hampered its industrial exploitation 

[3]. Several researchers have taken on the challenger on developing recombinant organisms, 

including: S. cerevisiae, Z. mobilis, Escherichia coli, Klebsiella oxytoca and Erwinia herbicola [4-5], 

but the bioethanol production from biomass materials by genetically engineered strains has 

not yet reached a sufficient level for commercial application [6]. Zymomonas cells are gram-

negative rods; a minority of the strains are motile, with 1 to 4 polar flagella. These organisms 

need glucose, fructose, or (for some strains) sucrose in the growth medium. They are very 

unusual microorganisms since they ferment these sugars anaerobically by way of the 

Entner-Doudoroff mechanism, followed by pyruvate decarboxylation. The oxidation-

reduction balance between G6P dehydrogenase and triosephosphate dehydrogenase on one 

hand and ethanol dehydrogenase on the other, is mediated through NAD+. Sugar 

fermentation is accompanied by formation of a small amount of lactic acid, with traces of 

acetaldehyde and acetoin [2]. 

 

Fermentation Properties Technological Properties 

 Rapid initiation of fermentation 

 High fermentation efficiency 

 High ethanol tolerance 

 High osmotolerance 

 Low temperature optimum 

 Moderate biomass production 

 High genetic stability 

 Low foam formation 

 Flocculation properties 

 Compacts sediment 

 Low nitrogen demand 

Table 1. Desirable characteristics of bioethanol production microorganisms 

The simplified fermentation process is: 

 
 

 
   

  
6 12 6 3 2 2

3 2

C H O carbon source 1.8 CH CH OH  1.8 CO

+ 0.2CH CH OH COOH  0.22 CH O  ATP  32.7 kcal
 (1) 

The molar growth yield indicates that Zymomonas is only about 50% efficient in converting 

its carbon and energy sources. Growth is partially uncoupled. About 2% of the glucose 

substrate is the source of about half of the cellular carbon. Several amino acids also serve as 

carbon sources. Some strains grow only anaerobically; others display various degrees of 

microaerophily. Apparently, the main effect of oxygen is the oxidation of part of the ethanol 

which converts into acetic acid. Most strains are alcohol tolerant (10%) and grow in up to 

40% glucose. The wide pH for growth range from 3.5 to 7.5, and acid tolerance are quite 

typical. This bacterium has been isolated from fermenting agave sap in Mexico, from 

fermenting palm saps in Zaire, Nigeria, and Indonesia, from fermenting sugarcane juice in 

Northeastern Brazil. Undoubtedly, they are important contributors to the fermentation of 

plant saps in many tropical areas of the America, the Africa, and Asia.  

Saccharomyces cerevisiae is a eukaryotic microorganism classified in the fungi kingdom. This 

yeast is a unicellular microorganism and is defined as basidiomycetes or ascomycetes. S. 
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cerevisiae cells measure 3-7 microns wide and 5-12 microns long. It has elliptic, round and 

oval shapes and reproduces is by a division process known as budding [7]. It is believed that 

S. cerevisiae was originally isolated from the skin of grapes [8]. Its optimum temperature 

growth range is 30 C [9]. S. cerevisiae is tolerant of a wide pH range (2.4-8.2), being the 

optimum pH for growth between values of 3.5 to 3.8 [10]. In addition, S. cerevisiae is high 

growth rate (0.5 h-1) in the yeast group. With respect to S. cerevisiae nutritional 

requirements, all strains can grow aerobically on glucose, fructose, sucrose, and maltose and 

fail to grow on lactose and cellobiose. Also, all strains of S. cerevisiae can use ammonia and 

urea as the sole nitrogen source, but cannot use nitrate since they lack the ability to reduce 

them to ammonium ions.  They can also use most amino acids, small peptides and nitrogen 

bases as a nitrogen sources [11]. S. cerevisiae have a phosphorus requirement, assimilated as 

a dihydrogen phosphate ion, and sulfur, which can be assimilated as a sulfate ion or as 

organic sulfur compounds, such as the amino acids: methionine and cysteine. Some metals, 

such as magnesium, iron, calcium and zinc are also required for good growth of this yeast. 

Alcoholic fermentation by yeast consists of three main stages: (1) transporting sugars within 

the cell, (2) transforming sugars into pyruvate through glycolysis pathway and finally (3) 

converting acetaldehyde to ethanol. 

The simplified fermentation process is: 

  6 12 6 3 2 2C H O  carbon source 2CH CH OH  2 CO  2 ATP  25.5 kcal      (2)  

3. Modes of fermentation process 

There are basically three modes of fermentation process: (1) Batch fermentation process. (2) 

Fed batch fermentation process and (3) Continuous fermentation process (Figure 1). 

 

Figure 1. Fermentation process; x: biomass, s: sustrate, p: product, t: time 
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The mode of operation is dictated by the type of product being produced. 

The fermentation process may be divided into six phases:  

a. The formulation of media to be used in culturing the process organism during the 

development of the inoculum and in the production fermenter. 

b. The sterilization of the medium, fermenters and ancillary equipment. 

c. The production of an active, pure culture in sufficient quantity for inoculating the 

production vessel.  

d. The growth of the microorganism in the production fermenter under optimum 

conditions for product formation. 

e. The extraction of the product and its purification. 

f. The disposal of effluents produced by the process. 

The interrelationships between the six phases are illustrated in Figure 2. 

 

Figure 2. A schematic representation of a typical fermentation process 

3.1. Batch fermentation 

In the batch fermentation process, the entire medium is removed from the fermentation 

vessel. The vessel is then thoroughly washed, cleaned and the new batch is started only 

thereafter. The bioreactor is initially loaded with fresh medium and inoculated with selected 

microorganism. 

During the growth period, no medium is added or removed. The Biomass, nutrients and 

products concentrations change continuously in time [12]. 
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During the batch fermentation process, various physiological states of the microorganism 

are observed (Figure 3): 

a. Lag phase - Period where microorganisms adapt to the new environment. 

b. Positive acceleration phase - Period of slow increase in the population 

c. Logarithmic or exponential phase - Period of rapid rise in population due to availability 

of nutrients. The exponential phase may be described by the following equation: ݀ݔ ൗݐ݀ =  		ݔߤ
Where x is the concentration of microbial biomass 

t is time, in hours 

and μ is the specific growth rate in hours-1 

d. Negative acceleration phase - Period in which there is a slow rise in population as the 

environmental resistance increases. 

e. Stationary phase - Finally, growth rate becomes stable because mortality and natality 

rates become equal. During the stationary phase, the organism is still maintaining a 

certain metabolic activity, while some secondary metabolites are formed (products not 

associated with microbial growth). 

f. Death phase - Finally, environmental stress causes a decrease in metabolic activity of 

yeast and autolysis. 

3.2. Fed batch fermentation 

Fed-batch fermentation is described as the type of system where nutrients are added when 

their concentration falls. In the absence of outlet flow, the volume in the bioreactor will 

increase linearly. The nutrients are added in several doses to ensure that there are not 

surplus nutrients in the fermenter at any time. Surplus nutrients may inhibit microorganism 

growth. By adding nutrients little by little, the reaction can proceed at a high production rate 

without getting overloaded. The best way to control the addition of the feed is monitoring 

the concentration of the nutrient itself in the fermenter or reactor vessel. 

 

Figure 3.  Growth curve of microorganism 
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The main advantages of the fed batch fermenter are: 

a. The extension of the exponential growth phase and production of metabolites of 

interest. 

b. The production of high biomass and product concentrations. 

c. The reduced inhibition by the substrate. 

However, accumulations of toxic products to the microorganism in the medium and 

downtime due to charging and discharging (which also occur in batch fermentations) are 

the main disadvantages of Fed batch fermentation [12]. 

3.3. Continuous fermentation 

Exponential growth in batch fermentation may be prolonged by adding of fresh medium to 

the vessel. In the continuous fermentation process, the added medium displaced an equal 

volume of culture from the vessel. Thus, the process of continuous fermentation non-stop 

and the exponential growth will proceed until the substrate is exhausted. By using proper 

technique, the desired products are obtained from the removed medium [13].  

If medium is fed continuously to such a culture at a suitable rate, a steady state is eventually 

achieved i. e., the formation of new biomass by the culture is balanced by the loss of cells 

from the vessel. The flow medium into the vessel is related to the volume of the vessel by 

the term dilution rate, D, defined as: ܦ = ܨ ܸൗ 				 
Where F is the flow rate (volume units/time) and V is the volume (volume units). 

The net change in cell concentration over a time period may be expressed as:  ݀ݔ ൗݐ݀ = 	ℎݐݓ݋ݎ݃	 − ݔ݀ 				ݐݑ݌ݐݑ݋ ൗݐ݀ =  ݔܦ–	ݔߤ

Under steady state conditions the cell concentration remains constant, thus ݀ݔ ൗݐ݀ = 0  and: ߤ =  		ܦ
Thus, under steady state conditions, the specific growth rate is controlled by the dilution 

rate, which is an experimental variable. It is recalled that under batch culture conditions, an 

organism will grow at its maximum specific growth rate and, therefore, continuous culture 

may be operated only at dilution rates below the maximum specific growth rate. 

4. Agaves species in the Americas, characteristics and uses 

Chiefly Mexican, agaves are also native to the southern and western United States and 

central and tropical South America. They are succulents with a large rosette of thick, fleshy 
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leaves, each ending generally in a sharp point and with a spiny margin; the stout stem is 

usually short, the leaves apparently springing from the root. Agave taxa give particulars for 

all 197 taxa in the two subgenera, Littaea and Agave. The first of a slender form with high in 

saponin concentration is intended as ornament mainly, except Dasylirion spp. Species, which 

is the raw material to produce Sotol (a Mexican distilled alcoholic beverage). Also the 

Littaea is used as raw material producing medicinal steroids, since contains smilagenin. In 

the other hand, the species in the subgenus Agave have been exploited since the ancient pre-

Columbian civilization mainly for producing: fiber, fodder, food and alcoholic beverage 

(Table 2) [14].  

5. Alcoholic fermentation process of agave juice  

Agave juice bioethanol production from involves multiple steps: at harvest, fermentable 

sugars are obtained from heads of the agave plant by steaming, milling and pressing. 

During the steaming process, the polysaccharides (fructans) are hydrolyzed into a mixture 

of sugars consisting of fructose mainly. After fermentation, the alcohol from the must is 

purified by distillation and dehydration for obtaining anhydrous ethanol.  

 

Agave species Main State of Production Uses Characteristic 

Agave tequilana Weber 

 

Jalisco, regions of the states 

of Nayarit, Michoacán, 

Tamaulipas, 

Guanajuato. 

Tequila industry

 
High sugar content  

Agave angustifolia Haw.

Agave rhodacantha Trel.

Agave shrevei Gentry 

Agave wocomahi Gentry

Agave durangensis 

Agave palmeri Engelm.

Agave zebra Gentry 

Agave asperrima Jacobi

Agave potatorum Zucc.

Agave weberi Cels 

Agave tequilana Weber 

Oaxaca, San Luis Potosí, 

Durango, Jalisco,  
Mezcal industry High sugar content 

Agave angustifolia Haw. Sonora  
Bacanora 

Industry 
High sugar content 

Agave atrovírens Kawr 

Agave lehmannii 

Agave cochlearís 

Agave lattísíma Jacobí 

Agave mapisaga 

Agave salmiana 

Distrito Federal, Tlaxcala, 

Hidalgo, Querétaro, 

Puebla, Morelos, San Luis 

Potosí 

Pulque industry High sugar content 
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Agave species Main State of Production Uses Characteristic 

Agave angustifolia 

Agave inaequidens 

Agave maximiliana 

Jalisco Raicilla industry  

Agave lechuguilla 

Agave striata 

Agave sisalana 

Yucatan 

 
Fiber industry Obtained from leaf 

Agave lechuguilla Jalisco 
Cleaning cloth 

product 

Obtained from 

agave pulp 

Agave salmiana San Luis Potosí Food and fodder Obtained from leaf 

Agave sisalana 

Agave fourcroydes 
Yucatan Paper source Obtained from leaf 

Agave salmiana 

Agave fourcroydes 

Agave agustifolia 

Agave deweyana 

San Luis Potosi, Jalisco, 

Yucatan, Sonora 

Medicinal uses: 

steroid drugs 

Obtained from leaf 

High sapogenins 

concentration 

Table 2. Main species of agave with economic importance in México 

Alcoholic Fermentation is one of the most important stages in the bioethanol process, as 

sugars (mainly fructose) are transformed into ethanol and CO2. Agave juice can be 

fermented by inoculation (with selected microorganisms) or spontaneously (without 

inoculums). Significant differences were observed between fermentation conducted with 

controlled microorganism or inoculated media and spontaneous or no inoculated media. 

The introduction of selected strains allows fermentation to be regulated and accelerated.  

Inoculation of culture media with starter cultures allows a high population of selected 

strain, thereby assuring it dominance. The results are quicker ethanol synthesis, shorter 

fermentation time, and higher productivity. 

Knowledge of physiological behavior of indigenous tequila yeast used in the agave juice 

alcoholic fermentation process for obtaining bioethanol is still limited. The raw material and 

physiochemical and biological conditions have significant impact on the productivity 

fermentation process. For these reasons, a better knowledge of the physiological and 

metabolic features of these yeasts in agave juice fermentation is required. A study of 

bioethanol production from Agave tequilana Weber var. azul juice fermentations is presented 

below. For this, the alcoholic fermentation of Agave tequilana Weber var. azul juice was 

carried out in batch and continuous modes of fermentation process.  

a. Agave tequilana Weber var. azul juice characterization 

The Agave tequilana Weber juice used in the experimentation was supplied by a 

distillery. The sugar concentration of the agave juice was 20 °Bx and pH was 4.0. In the 

distillery, the agave plants are cooked in an autoclave at 95 to 100°C for 4 hours.  

The analysis of agave juice amino acids of and of its hydrolyzate was performed and 

compared to grape juice (Table 3). These results show that agave juice is naturally amino 

acid poor, even when hydrolyzed [15]. 
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Amino acid (mg/L) Grape juice1 Agave juice2 Hydrolyzate Agave juice2 

L- alanine 58.5* 0.72±0.005 20.98±0.153 

L-arginine 255.9±182.3 5.76±0.030 38.68±0.676 

L-aspartate 46.4±  22.9 0.41±0.018 25.51±0.322 

L-glutamate 91.2±  37.7 0.12±0.001 42.12±0.117 

L-glutamine 122.9±  93.9 nq nq 

L-glycine 4.1±   3.1 0.44±0.016 21.75±0.526 

L-histidine 103.9±  85.9 0.19±0.008 10.09±0.301 

L-isoleucine 13.4* 0.06±0.003 11.70±0.196 

L-leucine 13.4* 0.14±0.003 21.28±0.524 

L-lysine 7.6±   6.67 0.06±0.002 6.59±0.150 

L-metionine 24.2± 13.9 nd 4.10±0.126 

L-phenylalanine 16.9± 11.3 0.06±0.003 12.44±0.100 

L-serine 53.1±  23.4 1.34±0.024 32.52±0.306 

L-threonine 51.6± 25.1 0.32±0.014 18.54±0.270 

L-tyrosine 13.3* 0.22±0.010 13.97±0.109 

L-valine 17.7* 0.14±0.004 21.49±1.058 

1: amino acid concentration of 11 grape varieties must [16]; 2: Each value represents the average ± standard deviation of 

duplicate determinations, the method limited detection is 1 pmols/mL; *: amino acid concentration constant in the 11 

varieties of grape [16]; nd: not detected; nq: not quantified.  

Amino acid analyses were determined by HPLC [17]. The acid hydrolysis of agave juice was performed as reported by 

Umagath et al. [18]. 

Table 3. Amino acid composition of grape and agave juices. 

b. Batch fermentation process 

The bioethanol production from agave juice batch fermentation process is shown. For this 

work, three yeast strains isolated from agave juice were studied for their fermentative 

capacity. The strains (S1, S2 and S3) were identified by biochemical and molecular tests [15]. 

The experiments were performed using agave juice supplemented with sufficient 

ammonium sulphate, for maintaining a good performance of the yeast strains. For 

fermentation medium, sugar concentration of the agave juice was adjusted to 12 ºBrix (95±5 

g/L reducing sugar) and then supplemented with 1g/L of ammonium sulphate. Culture 

media were sterilized at 121 °C for 15 min. The pH of the unadjusted juice was 4.2. This 

fermentation medium was similar to the must typically used in industrial distilleries for 

obtain alcoholic beverage. The fermentations were carried out under anaerobic conditions at 

35 °C and 250 rpm in a 3 L bioreactor (Applikon, Netherlands). The inoculation level was 20 

million cells/mL. Two fermentations were performed with each yeast. 

Each must was fermented for 72 h, and sampling was performed every 2 h during the first 

12 h of fermentation, then every 4 h during the following 48 h, until the last sampling event 

at 72 h. Biomass concentration was obtained by dry weight measurement. Reducing sugar 

concentration was determined by the DNS method modified and glucose, fructose and 
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glycerol concentration was determined by HPLC [15]. Samples were micro-distilled and 

ethanol concentration was determined in distillates by using the potassium dichromate 

method [19].  

Fermentation Kinetic Analysis - The evolution of biomass, sugar consumption and ethanol 

production versus time were plotted in Fig. 1 and Table 1, showing the kinetic parameters of 

each strain. All Saccharomyces strains grew faster reaching a biomass concentration level of 4-

5.3 g/L by approximately 12 h and sugar was completely depleted by 18-24 h of the 

fermentation (Figure 4). The S1 and S2 strains showed a higher ethanol concentration and 

sugar consumption than S3 (Figure 4 and Table 4). 

 

Figure 4. Kinetic profiles of the fermentation of  S1(◊), S2(□) and S3(� ) strains in a Agave tequilana Weber 

blue variety juice medium at 12 ºBx, supplemented with ammonium sulfate (1g/L). Biomass: biomass 

concentration profile; ARD: reduction sugar concentration profile; ETOH: ethanol concentration profile.   
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Growth and ethanol yields were different: 0.046-0.059 g/g and 0.47-0.49 g/g, respectively 

(Table 4).  Statistical analysis (95% LSD) showed significant differences between yeast 

strains in all kinetic parameters (Table 4). S. cerevisiae S1 strain presented a higher value of 

maximum specific growth and sugar consumption than S2 and S3 strains. Likewise, S1 and 

S3 strains showed a high maximum specific ethanol rate (Table 4).   

 

 Kinetics parameters

Strain μmax 

(h-1) 

qsmax 

(g/gh-1) 

qpmax 

(g/g h-1) 

Yx/s 

(g/g) 

Yp/s 

(g/g) 

Xf 

(g/L) 

Sc 

(g/L) 

Etohf 

(g/L) 
   

S1 0.43±.016 4.28±.27 1.56±.12 0.050±.004 0.49±.027 4.34±.26 86.7±2.0 42.6±1.0 

S2 0.33±.030 2.85±.15 1.34±.06 0.055±.004 0.49±.001 4.86±.44 87.4±1.2 43.5±.55 

S3 0.35±.020 3.74±.27 1.52±.06 0.052±.001 0.47±.015 4.35±.10 83.9±.30 39.9±1.4 

μmax: maximum specific growth rate; qsmax: maximum specific sugar consumption rate; qpmax: maximum specific ethanol 

production rate; Yx/s and Yp/s: yields of biomass and ethanol; Sc: consumed substrate concentration; Xf: final biomass 

concentration; Etohf: final ethanol concentration. Each value represents the average ± standard deviation of duplicate 

determinations of two fermentations. 

Table 4. Comparison of kinetic parameters and final concentration of biomass, consumed substrate and 

ethanol for the different strains. 

c. Continuous fermentation process 

Bioethanol production from agave juice continuous fermentation process is shown below. In 

continuous fermentation process, the effects of dilution rate, nitrogen and phosphorus 

source addition and micro-aeration on growth, and synthesis of ethanol of two native 

Saccharomyces cerevisiae S1 and S2 strains were studied. 

Continuous cultures were carried out in a 3 L bioreactor (Applikon, The Netherlands) with a 

2 L working volume. Cultures were started in a batch mode, by inoculating fermentation 

medium with 3.5 x 106 cells/mL (97±2 %. initial viability) and incubating at 30 °C and 250 

rpm for 12 h. Afterwards, the culture was fed with fermentation medium (12 °Brix = 95 ± 5 

g/L reducing sugar and  1 g/L of ammonium sulfate). Culture media were sterilized at 121 

°C for 15 min. 

To reach the steady state in each studied condition, the culture was maintained during five 

residence times and samples were taken every 6 h. A steady state was reached, when the 

variation in the concentrations of biomass, residual sugars and ethanol were less than 5%. 

Data presented on tables and figures are the mean ± standard deviation of three assays at 

the steady state.  

Effect of the dilution rate on S. cerevisiae strains fermentative capability in continuous 

cultures  

Both yeast strains (S1 and S2) were used and fermentation medium was fed at different D 

(0.04, 0.08, 0.12 and 0.16 h-1) for studying the effect of dilution rate (D) on the kinetic 
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parameters and concentrations of biomass, residual reducing sugar and ethanol at a steady 

state of agave juice continuous fermentation process (Table 5 and Figure 5). 

Concentrations of biomass and ethanol decreased as D increased for both strains cultures 

while residual reducing sugars increased parallel with the increase of D (Figure 5).  

 

Figure 5. Concentration of Residual reducing sugar (Sr), Ethanol (Pf) and Biomass (Xf) at the steady 

state of continuous culture of two strains of S. cerevisiae (S1 and S2) fed with agave juice at different 

dilution rate (D). Data are presented as mean ± standard deviation of four assays at the steady state.  

Although, S. cerevisiae S2 consumed more reducing sugars than S1 for each D, ethanol yields 

reached by S1 were higher than those obtained by S2, which were near the theoretical value 

(0.51) with no significant differences among the different D tested (p>0.05) (Table 5).  

At D = 0.04 h-1, S1 and S2 strains reached the highest ethanol productions (43.92 and 38.71 

g/L, respectively) and sugar consumptions (96.06 and 94.07 g/L, respectively) which were 

similar to those obtained using batch fermentations (see Batch fermentation process section). 

The low fermentative capacities displayed by both strains at higher D than 0.04 h-1 could be 

due to a low content of nutrients and/or toxic compounds in agave juice cooked [15]. 

Both strain cultures reached maximal ethanol production rates at 0.12 h-1 (2.37 and 2.53 

g/L·h, respectively for S1 and S2), maximal growth rates were achieved at 0.16 h-1 (0.44 and 

0.38 g/L·h, respectively for S1 and S2) and maximal sugar consumption rates were obtained 

at 0.08 h-1 (5.08 g/L·h) for S1 and at 0.12 h-1 (9.96 g/L·h) for S2 (Table 5 and Figure 6). 

Effect of the pH value on the fermentative capacity of S1 and S2 strains - The effect of pH 

was observed, switching from a controlled pH (at 4) to an uncontrolled pH (naturally set at 

2.5±0.3). Figure 7 shows biomass and ethanol productions for strain S1, in non-aerated or 

aerated (0.01 vvm) systems fed with sterilized medium. Results did not show significant 

differences on the biomass or ethanol productions (P > 0.05) between the fermentations with 

control (4) and with no control (2.5) of pH. Conversely, biomass and ethanol productions 

increased on aerated culture compared to that non aerated, for both pH levels studied. 

These results agreed with those reported by Díaz-Montaño et al. [20]. These results are 

important, since the operation of a continuous culture naturally adjusted to a low pH would 

limit the growth of other yeasts [21, 22] or bacteria [23, 24], indicating the feasibility of 

working with non-sterilized media on an industrial scale. Another advantage of not 

controlling the pH is that instrumentation for this operation is not required, thus removing 

it from the initial investment [25].  
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Parameter Strain D (h-1)

  0.04 0.08 0.12 0.16 

Biomass (g/L) S1 5.83 ± 0.21 3.38 ± 0.03 3.04 ± 0.04 2.75 ± 0.07 

 S2 4.89 ± 0.12 3.18 ± 0.08 2.86 ± 0.08 2.39 ± 0.06 

Ethanol (g/L) S1 43.92 ± 0.81 29.63 ± 0.79 19.76 ± 0.32 9.95 ± 0.39 

 S2 38.71 ± 0.74 27.33 ± 1.60 21.10 ± 0.48 15.20 ± 0.51 

RS (g/L) S1 3.94 ± 0.53 35.34 ± 0.94 59.75 ± 0.81 79.08 ± 1.08 

 S2 5.93 ± 1.16 13.69 ± 1.70 16.96 ± 0.43 70.70 ± 2.17 

Glucose (g/L) S1 nd 1.41 ± 0.06 2.32 ± 0.06 3.07 ± 0.16 

 S2 nd 0.43 ± 0.03 0.65 ± 0.04 3.46 ± 0.48 

Fructose (g/L) S1 2.79 ± 0.57 32.12 ± 0.85 51.48 ± 0.28 65.94 ± 1.39 

 S2 2.14 ± 0.05 10.54 ± 0.37 15.74 ± 0.50 63.10 ± 2.82 

Glycerol (g/L) S1 2.44 ± 0.28 1.94 ± 0.04 1.70 ± 0.03 1.86 ± 0.26 

 S2 2.09 ± 0.09 2.34 ± 0.07 2.54 ± 0.08 1.32 ± 0.05 

YX/S (g/g) S1 0.06 ± 0.00 0.05 ± 0.00 0.08 ± 0.00 0.17 ± 0.01 

 S2 0.05 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.07 ± 0.01 

YP/S (g/g) S1 0.46 ± 0.01 0.47 ± 0.02 0.49 ± 0.01 0.47 ± 0.01 

 S2 0.39 ± 0.01 0.30 ± 0.02 0.24 ± 0.00 0.44 ± 0.04 

rX (g/Lh) S1 0.23 ± 0.01 0.27 ± 0.00 0.36 ± 0.01 0.44 ± 0.01 

 S2 0.19 ± 0.01 0.25 ± 0.01 0.34 ± 0.01 0.38 ± 0.01 

rS (g/Lh) S1 3.80 ± 0.02 5.08 ± 0.08 4.69 ± 0.10 2.52 ± 0.17 

 S2 3.96 ± 0.05 6.91 ± 0.14 9.96 ± 0.05 4.69 ± 0.35 

rP (g/Lh) S1 1.76 ± 0.03 2.37 ± 0.06 2.37 ± 0.04 1.59 ± 0.06 

 S2 1.55 ± 0.03 2.19 ± 0.13 2.53 ± 0.06 2.43 ± 0.08 

 

RS: Residual reducing sugar concentration, YX/S: yield of biomass, YP/S: yield of ethanol, rX: growth rate, rS: reducing 

sugars consumption rate, rp: ethanol production rate, nd: not detected at the assayed conditions. Data are presented as 

mean ± standard deviation of four assays at the steady state. 

Table 5. Kinetic parameters at the steady state of continuous cultures of two strains of S. cerevisiae (S1 

and S2) fed with agave juice at different dilution rates (D). 
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Figure 6. Ethanol production and reducing sugars consumption rates at different dilution rates for S. 

cerevisiae S1 (rp -∆- and rs -�-) and S2 (rp -x- and rs -o-). 
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Figure 7. Effect of controlling (at 4) or not controlling (2.5 ± 0.3) pH, in the production of biomass and 

ethanol at aeration rates of 0 or 0.01 vvm during the culture of S1 strain. 

Effect of the nitrogen and phosphorus supplementation on S. cerevisiae S1 sugar 

consumption 

Since both S. cerevisiae strains were unable to consume sugars efficiently in cultures fed at D 

higher than 0.04 h-1, a nutritional limitation and/or some inhibitory substances formed in the 

agave cooking step (Maillard compounds), which can act on S. cerevisiae strain activity. In 

fact, Agave tequilana juice is deficient in nitrogen sources (Table 3). Amino acids are the most 

important nitrogen source in agave juice; however, their natural concentrations (0.02 mg 

N/L) are not enough to support balanced yeast growth and the complete fermentation of 

sugars [26]. Therefore, agave juice supplemented with ammonium sulfate at 1 g/L could be 

insufficient. Several authors point out the importance of nitrogen sources (type and 
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concentration) for achieving a complete fermentation, since they improve cell viability, yeast 

growth rate, sugar consumption and ethanol production (11; 20). It is worth noting that 

ammonium phosphate (AP) was chosen as a nitrogen source, since the two macronutrientes 

frequently implied in the causes of stuck fermentation when present in small quantities are 

nitrogen and phosphate (see the reviews by Bisson [11]). 

Therefore, the effect of the ammonium phosphate (AP) addition on S. cerevisiae S1 sugar 

consumption was studied in a continuous culture (Figure 8). To study the effect of nitrogen 

and phosphorus source addition on the agave juice fermentation by S. cerevisiae, S1 strain 

was used and fermentation medium was fed at D of 0.08 h-1, while after the steady state was 

reached, the ammonium phosphate (AP) concentration was gradually increased, as follows: 

1g/L (first addition), 2 g/L (second addition), 3 g/L (third addition) and 4 g/L (fourth 

addition). 

The fermentation was started in batch mode using the fermentation medium. After 12 h, the 

culture was fed using medium supplemented with 1 g/L of AP (first addition). At the steady 

state, residual concentrations of sugars and ammonium nitrogen were 29.42 and 0.08 g/L, 

respectively. These results were not significantly different (p>0.05) from the condition 

previously tested for the same strain (at D = 0.08 h-1), feeding an unsupplemented 

fermentation medium (Figure 5).  

 

Figure 8. Effect of the addition of ammonium phosphate to the agave juice fed to S. cerevisiae S1 

chemostat culture (at D=0.08 h-1), on the consumptions of reducing sugars (□) and ammonium-nitrogen 

(◊). First addition: 1 g/L; Second addition: 2 g/L; Third addition: 3 g/L; Fourth addition: 4 g/L. 

Those residual concentrations of reducing sugars (high) and ammonium nitrogen (low) 

indicate the necessity of adding more AP. At the steady states of the second (2 g/L), third (3 

g/L) and fourth (4 g/L) additions of AP, the residual sugars concentrations were 25.96, 21.25 

and 17.60 g/L, respectively. This indicates that the residual ammonium nitrogen 

concentrations were 0.31, 0.36 and 1.29 g/L, respectively; indicating that the AP addition 

improved S. cerevisiae S1 fermentative capability, but other nutritional deficiencies still 

existed [27]. 
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Effect of the micro-aeration rate on S. cerevisiae S1 fermentative capability - Lack of 

oxygen has proved to be a main limiting factor to fermentation [11], since yeasts require low 

amounts of oxygen for synthesizing some essential lipids to assure cell membrane integrity 

[28]. Because S. cerevisiae is Crabtree-positive, alcoholic fermentation is privileged in culture 

media containing high sugars concentrations, even in the presence of oxygen [29]. The effect 

of the micro-aeration rate (0, 0.01 and 0.02 vvm) on the fermentative capacity of S. cerevisiae 

S1 (at D = 0.08 h-1) was studied for investigating the yeast oxygen requirement during the 

continuous fermentation, using the last fermentation medium supplemented with 4 g/L of 

AP for feeding at D of 0.08 h-1. Biomass and ethanol concentrations increased as air flow 

increased, reaching at the steady state, 5.66, 7.18 and 8.04 g/L, and 40.08, 44.00 and 45.91 g/L, 

respectively for 0, 0.01 and 0.02 vvm (Figure 9).  

 

Figure 9. Concentration of Residual reducing sugar, Ethanol and Biomass at the steady state of 

continuous culture of two strains of S. cerevisiae S1 fed with agave juice (D = 0.08 h-1) at different 

micro-aeration rates. Data are presented as mean ± standard deviation of four assays at the steady state.  

Meanwhile, residual sugars decreased as micro-aeration increased, reaching 17.67, 10.71 and 

4.48 g/L, respectively for 0, 0.01 and 0.02 vvm; showing an improvement in the fermentation 

process due the dissolved oxygen in the must. However, statistical differences were not 

found in biomass and ethanol yields at the different tested aeration rates (p>.05) (Table 6). In 

addition, sugars consumption rates and ethanol and biomass productions increased as 

micro-aeration increased, achieving a faster fermentation (Table 6). These results were in 

accordance to those reported by Díaz-Montaño [20]. Viability of the S1 strain was 100% in 

aeration experiments. 

Glycerol is a metabolite providing yeast metabolic activity information. In fact, yeasts 

produce glycerol mainly for reoxidating the NADH generated by glycolysis. Since the citric 

acid cycle and the respiratory chain are slightly activated by micro-aeration, NAD might be 

partially regenerated, and consequently, glycerol concentration decreases [30]. However, in 

this work, glycerol concentration increased as aeration increased (Table 6). Given that 
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biomass concentration and fermentation efficiency also increase as aeration increases, 

glycerol production could contribute to faster NAD regeneration. 

 

Parameter Micro-aeration rates (vvm)

 0.00 0.01 0.02 

YX/S (g/g) 0.06 ± 0.00 0.07 ± 0.00 0.08 ± 0.00 

YP/S (g/g) 0.48 ± 0.01 0.49 ± 0.00 0.48 ± 0.01 

rX (g/Lh) 0.45 ± 0.01 0.57 ± 0.00 0.64 ± 0.01 

rS (g/Lh) 6.55 ± 0.08 7.14± 0.02 7.64 ± 0.05 

rP (g/Lh) 3.21 ± 0.03 3.52 ± 0.02 3.67 ± 0.04 

    

YX/S: yield of biomass, YP/S: yield of ethanol, rX: growth rate, rS: reducing sugars consumption rate, rp: ethanol 

production rate. Data are presented as the mean ± standard deviation of four assays at each steady state. 

Table 6. Kinetic parameters of S. cerevisiae S1 continuous cultures at steady state fed with agave juice (D 

= 0.08 h-1) at different micro-aeration rates. 

Effect of feeding non-sterilized medium on the fermentative capability of S. cerevisiae 

strains 

Non-sterilized medium (NSM) was fed to S1 and S2 continuous cultures and the aeration 

rate was gradually increased from 0 to 0.02 vvm. For these experiments, pH was controlled 

at 4 for S2 strain and not controlled for S1 strain. Ethanol production increased significantly 

(P < 0.05) as the aeration rate increased during S1 fermentations fed with SM or NSM. In 

contrast, aeration did not have any effect on ethanol or biomass production during the S2 

fermentation fed with NSM (Figure 10-B). For S1 continuous fermentation, medium type 

(SM or NSM) did not show a significant difference in the production of ethanol (P > 0.05), 

but it had a significant difference in the production of biomass (P < 0.05). Multiple range 

tests divided S1 fermentations in aerated (0.01 and 0.02 vvm) and non-aerated systems, 

indicating higher biomass and ethanol productions in aerated cultures. Nevertheless, no 

significant difference was found in the productions of biomass or ethanol (P > 0.05) between 

experiments aerated at 0.01 and those aerated at 0.02 vvm. These results could be attributed 

to the lower pH (2.3) observed at 0.02 vvm, which could have reduced cell viability. 

Interestingly, S1 strain flocculation was not observed for 0.02 vvm and biomass retention 

time was lowered, decreasing the cell population (Figure 10-B).  

For all the fermentation conditions, the consumption of reducing sugars was significantly 

augmented (P < 0.05) as aeration rate increased, reaching 4 ± 2 g L-1 of residual reducing 

sugars at 0.02 vvm for both medium types. It has been reported that more than 12% of total 

sugars contained in agave juice are non-fermentable, since fructans hydrolysis is not 

complete during the cooking step. In this study, oligosaccharides might be taken into 

account as residual reducing sugars, because they are difficult to degrade by S. cerevisiae. 
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Figure 10. Effect of the aeration on the productions of biomass and ethanol of two S. cerevisiae strains 

(S1 and S2) using the continuous addition of A) sterilized (SM) and B) non-sterilized (NSM) media, pH 

was 4 and 2.5 ± 0.3 for S1 and S2 strain cultures. 

S2 continuous fermentations were divided by the multiple range test, according to the 

aeration rates (0, 0.01 and 0.02 vvm), showing an increase in the fermentative capability of 

the S2 strain as aeration increased. The type of medium led to a significant difference (P < 

0.05) in ethanol and biomass production. Nevertheless, no significant differences (P > 0.05) 

were found in the consumption of reducing sugars between both types of medium. Higher 

biomass and ethanol production was observed during SM fermentations. Differences 

between cultures with different types of medium (NSM and SM) could not be attributed to 

changes in medium composition during sterilization (121 .C, 15 min), since the cooking of 

agave heads is a more aggressive treatment (100 .C, 36 h). Furthermore, Maillard reactions 

during the heating are not favored since agave juice nitrogen source content is low (Table 3). 

Work is ongoing to answer this phenomenon; however, those changes could be attributed to 

a possible contamination of wild yeast carried by the non-sterilized agave juice. 

Nevertheless, microscopy did not show any bacterial contamination for fermentation of 

either strain. Moreover, the pH during S2 continuous fermentation was controlled at 4 for all 

the experimental conditions in comparison to S1 fermentation, which was not controlled 
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and reached lowered pH values, which could have limited the microbial contamination. In 

addition, compared to S2, the capacity of S1 to flocculate could be an advantage for this 

strain to be retained longer inside the bioreactor. Several studies have proved the capability 

of inoculated S. cerevisiae strains in continuous fermentations to resist contamination by wild 

yeast. Cocolin et al. showed by molecular methods that the starters strain was able to drive 

the fermentation until the end of the process (12 days). On the other hand, de Souza Liberal 

et al. identified Dekkera bruxellensis as the major contaminant yeast, even though its growth 

rate is lower than that of S. cerevisiae in batch fermentations. They indicated the possibility 

that D. bruxellensis grows faster than S. cerevisiae in a continuous culture under certain 

conditions. 

6. Conclusion  

Agave plants could be a viable alternative as an accessible raw material for bioethanol 

production, since high concentration of fermentable sugar is released when agave plant 

fructans is cooked and/or hydrolyzed. This mixture of sugars, mainly fructose, could be 

converted into ethanol by microorganism action. 

The present study examined the use of batch and continuous fermentation processes for 

investigating bioethanol production from Agave tequilana Weber var. azul. juice. 

The fermentable sugars of agave juice fermentation in batch culture were depleted between 

18-24 hours by indigenous tequila S. cerevisiae strains. The ethanol productivity obtained in 

batch fermentation was 2.36, 2.42 and 1.66 g/Lh for S1, S2 and S3 yeast strains respectively. 

Agave juice continuous fermentation was examined for increasing ethanol productivity in 

the fermentation process. For this, a chemostat system was used for investigating the impact 

of the dilution rate, pH value, nitrogen and phosphorus source addition, micro-aeration and 

non-sterilized medium on growth, sugar consumption and ethanol production of two S. 

cerevisiae strains. The dilution rate and nutrient addition have a significant impact on the 

physiology of the S. cerevisiae yeast strains. When S1 and S2 yeast strains are used in 

continuous cultures, they show low sugar consumption at D≥0.08h-1. The study revealed a 

nutritional limitation on the agave juice, which was corrected by adding of nitrogen sources 

and oxygen, achieving S. cerevisiae S1 strain complete sugar consumption with high ethanol 

conversion at 0.08h-1. The pH did not have a significant effect on the fermentative capability 

of S. cerevisiae S1 strain at the levels studied. Uncontrolled pH fermentations naturally 

reached acid values (pH �2.5 ± 0.3), which is advisable, since bacteria or yeasts 

contamination could be limited. The type of agave juice tested (SM and NSM) did not have a 

significant effect on ethanol production in S1 cultures, but did have an effect on ethanol 

production in S2 cultures. These results could be attributed to the higher pH fermentation 

during S2 continuous cultures, which could have favored the proliferation of contaminant 

wild yeasts. The ethanol productivity obtained in S1 strain agave juice continuous 

fermentation process was 3.6 g/Lh. Thus, the ethanol productivity in continuous 

fermentation is higher, 34.4% more than in S1 strain batch fermentation.  
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These results showed the possibility of performing agave juice fermentations in continuous 

culture feeding non-sterilized medium and taking advantage of the possible improvements 

that continuous fermentations and agave plant could offer to the bioethanol industry, such 

as high productivity with full sugar consumption. 
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