
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 9

Data Driven Techniques and Wavelet Analysis for the
Modeling and Analysis of Actual Evapotranspiration

Zohreh Izadifar and Amin Elshorbagy

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52809

1. Introduction

Evapotranspiration (ET) is one of the important components of the hydrological cycle, which
its modeling and analysis is vital for better understanding of watersheds hydrology and
efficient water resource designs and managements. Evapotranspiration (ET) is a combined
term including the transport of water to the atmosphere in the form of evaporation from the
soil surfaces and from the plant tissues as a result of transpiration. Evapotranspiration is
considered as a major cause for water loss around the world (Dingman, 2002).

ET is basically a complex and not fully understood mechanism, which varies over temporal
and spatial scales. ET can be conceptually expressed either in the form of potential or actual
evapotranspiration. Potential evapotranspiration (PET) describes the maximum loss of water
under specific climatic conditions when unlimited water is available. The actual evapotrans‐
piration (AET) is the rate at which water is actually removed to the atmosphere from a surface
due to the evapotranspiration process. The influence of soil moisture on the AET has made its
physical modeling more complicated than the PET. Complexity of AET has also imposed some
limitations on the previously developed estimation models. Although the AET is the preferred
form of ET in the hydrological analysis, vast majority of the previous studies have investigated
the modeling of PET. As a result, there is a vital need for modeling and analysis of AET
mechanism. Complexity of the AET physics, limitations of the currently available AET
estimation approaches, such as requirement of extensive information and reasonable estima‐
tion of models parameters has led to the investigation of some techniques/tools that can model/
analyze such complicated mechanism without having a complete understanding of it.

Data driven techniques can provide a model to predict and investigate the process without
having a complete understanding of it. Inductive modeling approach is also interesting
because of its knowledge discovery property. Using data driven models, one can extract useful
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implicit information from a large collection of data and improve the understanding of the
investigated process. Machine learning (ML) techniques are modern data driven modeling
methods that originated from the advances in computer technologies and mathematical
algorithms. These techniques are usually employed for characterizing complicated systems,
which cannot be easily understood, analyzed, and modeled. Artificial neural networks (ANNs)
and genetic programming (GP) are two robust ML techniques, which apply artificial intelli‐
gence for the modeling of complex systems. ANNs are computational models that can be used
for the modeling of complex relationships by simulating the functional aspects of biological
neural networks. GP is an evolutionary-based technique inspired by the biological evolution
to generate computer programs (e.g. models) for solving a user-defined problem.

Both ANNs and GP technique has been examined for the modeling of ET. Kumar et al. (2002)
developed an ANN model for the prediction of reference evapotranspiration (ETo) and
compared its performance with that of a conventional method (Penman-Monteith equation)
to examine the capabilities of ANNs in ETo prediction compared to the PM method. The results
of the study showed that the ANN model can predict ETo better than the conventional method
for the considered local case study. The utility of ANNs for the estimation of reference and
crop evapotranspiration (ETc) of wheat crop was examined by Bhakar et al. (2006) and it was
revealed that the ANN model was suitable for the prediction of ETo and ETc. Zanetti et al.
(2007) found that by using ANNs, it was possible to estimate ETo just as a function of maximum
and minimum air temperature. The results of a study conducted by Jain et al. (2008) indicated
that ANNs can efficiently estimate ETo from the limited meteorological variables of tempera‐
ture and radiation only. Landeras et al. (2008) developed seven ANNs with different input
combinations and then compared ANNs to locally calibrated empirical and semi-empirical
equations of ETo. Their proposed ANNs performed better than the locally calibrated equations
particularly in situations where appropriate meteorological inputs were lacking. Dai et al.
(2009) investigated the predictive ability of ANNs for the prediction of ETo in arid, semi-arid,
and sub-humid areas of Mongolia, China, and conducted a comparison between the estimated
ETo values from ANNs and MLR. The results showed that regional ETo can be satisfactorily
estimated using ANN models and conventional meteorological variables.

In the majority of the conducted studies, researchers have focused on the modeling of potential
and reference crop evapotranspiration but not actual evapotranspiration (AET). To the
knowledge of the authors, the only publications reporting the application of ANNs for the
modeling of AET include the studies conducted by Sudheer et al. (2003) and Parasuraman et
al. (2006; 2007). Sudheer et al. (2003) estimated the lysimeter-measured AET of rice crop using
RBF-ANNs. The results demonstrated that ANNs can successfully estimate the AET. Para‐
suraman et al. (2006) developed spiking modular neural networks (SMNNs) for modeling the
dynamics of EC-measured hourly latent heat flux. The results demonstrated that although the
SMNNs are computationally intensive, they can perform better than regular feed forward
neural networks (FFNNs) in modeling evaporation flux. Parasuraman et al. (2007) developed
a regular three-layered FFNN model for the estimation of EC-measured hourly AET as a
function of net radiation, ground temperature, air temperature, wind speed, and relative
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humidity. Their results indicated that the ANN model performed better than the currently
used PM method in northern Alberta, Canada.

Among the various published studies on the application of GP in hydrological modeling, only
a few studies examined the applicability and robustness of GP for modeling of the evapo‐
transpiration process. To the best knowledge of the authors, the only publications that
investigated the application of GP for modeling the evapotranspiration mechanism are the
studies conducted by Parasuraman et al. (2007), Parasuraman and Elshorbagy (2008), and El-
Baroudy et al. (2009). Parasuraman et al. (2007) employed equation-based GP for modeling the
hourly actual evapotranspiration process as a function of net radiation, ground temperature,
air temperature, wind speed, and relative humidity. The performance of the evolved GP model
was compared with that of ANN model and the traditional Penman Monteith (PM) method.
It was noted that GP and ANN models had comparable performances and both predicted AET
values with better closeness to the measured AET than the PM method. Their analysis also
indicated that the effect of net radiation and ground temperature on the AET dominated over
other variables. Parasuraman and Elshorbagy (2008) investigated a GP-based modeling
framework for quantifying and analyzing the model structure uncertainty on an AET case
study. The results of the study demonstrated the capability of the ensemble-based GP in
quantifying the uncertainty associated with the hourly AET model structure. El-Baroudy et al.
(2009) did not develop a new GP model for AET, but rather developed models using a
technique called evolutionary polynomial regression (EPR), and then compared its perform‐
ance to the ANN and GP models developed by Parasuraman et al. (2007). With the exception
of Parasuraman et al. (2007), Parasuraman and Elshorbagy (2008), and El-Baroudy et al.
(2009), no other publication was observed that reports an explicit equation for the prediction
of AET.

Understanding of the not fully understood mechanism of AET as well as its correlation with
the interacting meteorological variables can be improved by exploiting the available time series
data and some data mining tools. New digital signal processing tool, namely wavelet analysis
(WA), has a robust property for providing multiresolution representation of hydrological time
series. Representation of the time series data into time and scale domains makes it possible to
extract useful information about temporal cyclic events existing in the underlying signal. In
addition, the correlation structure of time series data, in terms of temporal cyclic variations,
can be investigated using extensions of wavelet analysis such as cross wavelet analysis. In the
field of hydrology, wavelet has been increasingly used for the analysis of spatial-temporal
variability of hydrological processes and systems as well as their interactions with climatic
variations. WA has been frequently applied for feature extraction of discharge time series data
(Saco and Kumar, 2000; Kirkup et al., 2001; Cahill, 2002; Lafreniere and Sharp, 2003; Coulibaly
and Burn, 2004; Labat, 2006; Schaefli et al., 2007; Labat, 2008), and characterization of temporal
variability of rainfall (Gupta and Waymire, 1990; Kumar and Foufoula-Georgiou, 1993a, b;
Kirkup et al., 2001; Coulibaly, 2006; Westra and Sharma, 2006, Miao et al., 2007; Chen and Liu,
2008). In the above-mentioned studies, the utility of WA was mainly employed for detecting
and analyzing different periodic events existing in the time series and correlated meteorolog‐
ical signals. Coulibaly and Burn (2004) investigated the temporal and spatial variability of
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Canadian streamflows. The results exhibited different period bands of significant activities in
the streamflow time series, which were found to be correlated to the considered climatic
patterns at some spatial locations. Coulibaly (2006) employed wavelet and cross wavelet
analysis to investigate both spatial and temporal variability in seasonal precipitation and its
relationship with climatic modes in the Northern Hemisphere. The results revealed striking
climatic-related cyclic features in the precipitation time series and, in the temporal-spatial
variability of the relationship between precipitation and climate throughout Canada. There
are very limited case studies in the literature that investigated the application and capability
of WA in analyzing the variability of the evapotranspiration process. Kaheil et al. (2008) used
discrete wavelet transform (DWT) for decomposing and reconstructing processes involving
the AET phenomenon at various spatial scales, and to find the relationship between the inputs
and outputs using support vector machines technique. To the best knowledge of the authors,
no effort has been made, in the literature, which benefited from the capability of WA in the
temporal scaling of AET variations. Time-scale analysis of the AET signal seems to be an
effective approach in improving the understanding of the AET process as well as the efficiency
and predictive ability of AET prediction models. Temporal variations of AET and meteoro‐
logical variables, as well as their correlations, can be examined using wavelet analysis.
Wavelet-provided information can improve the understanding of AET temporal variations,
its relationship with influential meteorological variables, and hopefully improve the modeling
of the AET mechanism.

This chapter presents the ANNs and GP modeling of AET, and the WA of the AET and
meteorological signals. The rest of this chapter is organized as follow. In sections 2 and 3, the
three techniques of ANNs, GP, and WA are described. Section 4 presents the application of
the ANNs, GP, and WA techniques for the modeling and analysis of AET in a specific case
study. The hourly eddy covariance (EC)-measured AET is modeled as a function of five
meteorological variables; net radiation (Rn), ground temperature (Tg), air temperature (Ta),
relative humidity (RH), and wind speed (Ws), using the ANNs and GP techniques, and their
performances are compared. The advantage of the investigated data driven models for
revealing some information about the AET function and its most influential variables are also
examined. Temporal variability of the AET and associated contribution of the meteorological
variables is also examined using the wavelet analysis as an approach to modeling input
determination. Conclusions of the results and analysis and possible future research are
provided in section 5.

2. Data driven modelling

2.1. Artificial neural network

Artificial Neural Networks (ANNs) (Swingler, 1996) are massive networks of parallel infor‐
mation processing systems resembling (simulating) the human brain’s analytical function, and
they have an inherent ability to learn and recognize highly nonlinear and complex relation‐
ships by experience. ANNs learn from empirical examples, which make them a non-rule-based
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technique, like statistical methods (Maier and Dandy, 2000). Each neuron (information-
processing unit) in ANNs consists of input connection links, a central processing unit, and
output connection links (Fig.1a). Input signals are received through the connection links from
the outside environment or other neurons. Each connection link is assigned a synaptic weight
(w) representing the strength of the connection between two nodes in characterizing input-
output relationship (ASCE, 2000). Received information is processed in the central processing
unit (neuron body), by adding up the weighted inputs and bias (Eq. 1), and passed through
the activation function (Eq. 2). Bias (b) is the threshold value, which must be exceeded before
the node (neuron) can be activated (ASCE, 2000). Activation function forms the output of the
node and enables the nonlinear transformation of inputs to outputs. The log-sigmoid activation
function is one of the two most commonly used activation functions in the literature because
it is continuous, relatively easy to compute, its derivatives are simple (during the training
process), maps the outputs away from extremes, and provide nonlinear response (ASCE, 2000).

t =∑
i=1

n
wi xi + b (1)

f (t)= 1
1 + e -t  (2)

(a) (b)(a) (b)

Figure 1. a) Schematic diagram of an artificial neuron, (b) Simple configuration of three-layer feed forward ANN (from
Fauske, 2006 ).

One of the popular types of ANNs, in water resource problems, is the feed forward neural
networks (FFNNs) in which the neurons are arranged in layers; input layer, one or more hidden
layers, and output layer. The information in FFNNs flows and is processed in one direction
from input layer, through hidden layer(s), to the output layer (Fig.1b). Each of the neurons in
the hidden layer receives the input signals from the input layer. Received information is
processed individually in each of the hidden layer neurons and the outputs are passed to the
output layer neuron(s) to release the final response of the network. A simple configuration of
three-layer feed forward ANNs is shown in Fig.1b.

It was observed in the literature that a single hidden layer has been usually sufficient for the
approximation of conventional hydrological processes (Maier and Dandy, 2000), and it was
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noted also, in particular, for the process of evapotranspiration (Kumar et al., 2002; Parasura‐
man et al., 2007). The number of hidden layers and hidden neurons is specified, based on the
complexity of the problem, using different methods (usually trial-and-error procedure (ASCE,
2000)). ANNs with single hidden sigmoid layer and linear output layer are the most popular
network architectures in the field of water resources (Cybenko, 1989; Hornik et al., 1989).ANNs
learn the pattern of the investigated process by adjusting the connection weights and bias
values using the provided examples of input-output relationship (namely, training samples).
A training algorithm is employed to optimize the weight matrices and bias vectors, which
minimize the value of a predetermined error function. Minimum error function results in an
ANN model that can generate the most similar output vector to the target vector.

Back propagation algorithm is the most common type of training algorithm in the FFNNs in
water related problems (Maier and Dandy, 2000). The network starts with random weight and
bias values and generates the output of the network using the given input data; this step is
called the forward step (ASCE, 2000). The network output is compared with the desired target
output, and the associated error value is computed. The error is propagated backward through
the network and the connection weights are adjusted accordingly. The forward and backward
steps, together called an epoch, are implemented repeatedly for several times until the error
function reaches its minimum value and the optimum weight and bias values are achieved.

One of the problems that threaten the learning process is over-fitting. It usually occurs when
the network has memorized the training examples, but it has not learned to generalize to new
situations. Various techniques can be employed to avoid over training and improve network
generalization ability such as; regularization and early stopping (Neural Network Toolbox
User’s Guide, 2009). Regularization attempts to smooth the network response by keeping the
size of the network weights adequately small (MacKay, 1992) using the modified form of the
error function, which considers network weights and biases (Neural Network Toolbox User’s
Guide, 2009). Through early stopping approach, an independent test set, namely cross-
validation, can be used to monitor the performance of the model on a set of not-yet-encoun‐
tered examples at some stages of the training process. Training is stopped when error on the
cross-validation dataset begins to rise to prevent the model from being over-trained (Neural
Network Toolbox User’s Guide, 2009). Levenberg-Marquardt (Levenberg, 1944; Marquardt,
1963) and Bayesian-regularization (MacKay, 1992) are two of the common training algorithms
in ANNs. Levenberg-Marquardt is one of the high-performance algorithms that appear to be
the fastest method for training moderate-sized FFNNs (Neural Network Toolbox User’s Guide,
2009). Bayesian-regularization algorithm is an automated regularization algorithm. This
algorithm also keeps the network size as small as possible (Neural Network Toolbox User’s
Guide, 2009).

2.2. Genetic programming (GP)

The origins of evolutionary computation traced back to the late 1950’s (Box, 1957; Friedberg,
1958; Friedberg et al., 1959; Bremermann, 1962) when it was proposed for the first time. Genetic
programming (GP) was first recognized as a different and new development in the world of
evolutionary algorithms in the seminal monograph of Genetic Programming by Koza (1992).
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Genetic algorithms (GA) belong to the family of evolutionary algorithms, and are generally
considered as an optimization method for searching global optimum of a function using
natural genetic operators. Genetic programming (GP), which was introduced by Koza (1992),
is an extension of GA for inducing computer programs, as solutions for problems at hand,
using an intelligent and adaptive search. This type of search uses the information gained from
the performance (fitness) of individual computer programs, in the search space, for modifying
and improving the current programs. Depending on the particular problem, computer
programs of the GP search space may be different, e.g. Boolean-valued models and symbolic
mathematical models (Koza, 1992). Symbolic regression GP evolves computer programs in the
form of mathematical expressions in which both functional form and numerical coefficients of
the regression symbolic model are optimized through the evolutionary process of GP. This
application of GP can be adopted for obtaining explicit mathematical AET models.

In the first step of GP implementation, a population of computer programs is randomly
generated. This initial population is called first generation. Symbolic regression models are
represented by structured parse trees, which are composed of functional and terminal sets
appropriate to the problem. A functional set can be a set of mathematical arithmetic operators
such as {+, -, *, /}, mathematical functions, Boolean and conditional operators, and any other
user-defined functions where the number of arguments of each function is specified. The
terminal set, which is associated with the nodes that terminate a branch of a tree in tree-based
GP (Banzhaf et al., 1998), is defined as independent variables; i.e. the terminal set z={x,y} where
x and y are independent variables (Sette and Boullart, 2001).

GP begins to search in the search space of randomly generated models of initial generation.
The fitness measure is used to evaluate how well each individual in the population performs.
Fitness is usually measured by the errors produced by individual models. Each model in the
population is run using a number of provided data instances (training dataset) to measure the
performance of each individual over a variety of representative different situations (Koza,
1992). A scalar fitness value is assigned to each individual using the defined fitness evaluation
function. Base on the assigned fitness values, some individuals in the population perform
better than others with smaller error values, which means that they have higher chance to be
selected for the next step of GP.

In the second step, genetic operators are used to create the next generation. Individuals with
better performance are allowed to survive and be reproduced in the next population, called
mating pool. In the mating pool, two other operations are performed on the reproduced
individuals, namely crossover and mutation. Crossover acts on specific percentage of the
mating pool population, crossover probability (Pc), and results in the creation of new individuals
in the population. Crossover exploits two individuals (parents), selected based on their fitness,
and splits each parent at the crossover point into two fragments (sub trees), which are swapped
between the parents to create two new offspring (Fig. 2). The offspring (new models) are
improved individuals, compared to their parents, which carry some genetic properties from
each of them.
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Figure 2. Crossover operation on two selected individuals.

Mutation operates on the population individuals in proportion to the mutation probability (Pm).
A string is randomly selected from the mating pool and it undergoes some changes at the
randomly selected mutation point (Fig. 3). The mutation operation also results in new
individuals, which increases the genetic diversity of the population (Koza, 1992). Simply
reproduced individuals from the mating pool and newly created individuals resulted from
genetic operations of reproduction, crossover, and mutation form the next generation of GP
search space. The described evolutionary process is performed iteratively over several
generations until some termination criterion is satisfied. The termination criterion might be a
maximum number of generations or some measure of the goodness of the generated solution
and stop the algorithm once the solution is found (Koza, 1992). The result of the GP algorithm,
which is a GP-evolved model for the investigated problem, based on the termination criterion,
is either the best found model or the best individual of the last GP generation.

Figure 3. Mutation operation on a selected individual.

3. Wavelet analysis

Natural functions, e.g. meteorological and hydrological processes, operate over a wide range
of spatial and temporal scales leading to spatial/temporal variability of interacting mecha‐
nisms. AET is a hydrometeorological signal interacting with several temporally/spatially
variable meteorological signals. Evaluation of dominant cyclic variations in the AET and
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correlated meteorological signals improves the understanding of the mechanism as well as its
modeling. Temporal cyclic variations of natural processes are not usually stationary and
contain several localized and transient frequency events. Therefore, conventional frequency
domain analysis such as Fourier transform cannot reveal the localized natural cyclic events.
Wavelet analysis (WA) provides a tool for decomposing the variations of a time series signal
into time and scale (frequency) domains; allowing the identification and analysis of dominant
temporal cyclic events. The basic component of WA is the wavelet transformation in which
the studied function is represented by wave-like oscillating functions. The choice of the wavelet
function is of high importance within the wavelet transformation. Wavelet functions are
defined in different forms, namely mother wavelets, to have specific properties for information
extraction of different types of signals. Figure 4 shows some examples of mother wavelets.

Figure 4. Examples of mother wavelet functions; (a) Mexican Hat, (b) Morlet, and (c) Meyer.

The term wavelet function generally refers to two types of wavelet functions, namely orthog‐
onal and non-orthogonal (Torrence and Compo, 1998). Orthogonal wavelets are mainly used
for decomposition of a signal into specific (preferably minimum) frequency bands (Polikar,
1996). This type of wavelet analysis is usually referred to as discrete wavelet transformation,
which may not provide a physically meaningful analysis all the time (Si, 2008). Non-orthogonal
wavelets are usually used for continuous wavelet transformation (CWT) of time series signals
in which a continuous set of frequencies are examined. CWT results in a highly redundant
time-scale resolution of the signal, which in one hand induces some uncertainties in the
reconstruction of the signal and, on the other hand, provides better scale analysis of the time
series (Si, 2003; He et al., 2007). Because of the wide range of possible dominant frequencies
that can be obtained using CWT, Coulibaly and Burn (2004) indicated that the CWT is more
appropriate for analysis of geophysical and hydrological time series.

3.1. Continuous wavelet analysis

As it was mentioned earlier, the choice of wavelet function is an important component in the
wavelet transformation. Wavelet function can be a real or complex function. Complex wavelet
functions make it possible to extract the information of both amplitude and phase, which is
more suitable for analyzing the signal’s oscillatory behavior (Torrence and Compo, 1998).
Morlet, Mexican Hat, and Haar are some of the mother wavelets usually employed in the CWT.
Morlet is a complex and non-orthogonal wavelet that provides sufficient resolution in time
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and scale domains (Grinsted et al., 2004; Si, 2008). Morlet function, with non-dimensional
frequency parameter (ω0) equal to 6, has been shown to successfully work for the analysis of
observed time series in different hydrological applications (Lafreniere and Sharp, 2003; Anctil
and Tape, 2004; Coulibaly and Burn, 2004; Labat et al., 2005; Si and Zelek, 2005; Coulibaly,
2006). This Morlet wavelet is an exponential oscillatory function defined as (Torrence and

Compo, 1998):τ0(η)=π -1/4e iwoη e -η 2/2,where η and ω0 are non-dimensional time and frequency
parameters. The CWT of a discrete time series data of xi (i=1,2,…,N) is defined as the inner
product of time series signal with the scaled and translated version of mother wavelet function,
ψo(η), according to a specific scale (s) and time location (τ), which is given as:

CWT (τ, s)=∑
i=1

N
xi(t).ψτ,s

* (t) (3)

where ψτ,s(t) is the normalized wavelet function and (*) represents the complex conjugate.
Normalized  wavelet  function  ensures  that  the  wavelet  transform  at  each  scale  is  not
weighted by the magnitude of the scale, which makes a direct comparison of wavelet co‐
efficients  at  different  scales  possible  (Torrence  and  Compo,  1998).  Normalized  wavelet
function is defined as:

ψτ,s(t)= 1

s
ψoτ,s(t) (4)

where τ and s are associated with the time location and scale resolution at which the wavelet
transformation is performed. Localization of the time series signal into time and scale domains
is implemented, first, by modulating the mother wavelet, corresponding to the current scale,
and shifting the scaled wavelet through the signal to the end and performing the convolution
at each discrete time location. This results in the time localization of the signal. The procedure
is repeated, in the second step, for each scaled wavelet to localize the signal in the scale domain.
Wavelet coefficients are computed for all time and scale steps (τ,s) to give the multiresolution
representation (or CWT) of the signal. Scaled and translated wavelet at scale s and time location
τ is computed by:

ψτ,s(t)=ψ( t - τ
s ) (5)

According to the mathematical definition of CWT, WA investigates the resemblance of the
wavelet function with the in hand signal in the sense of frequency content (Polikar, 1996). In
other words, “if the signal has a major component of the frequency corresponding to the
current scale, then the wavelet at the current scale will be similar or close to the signal at the
particular location where this frequency component occurs. Therefore, the CWT coefficient at
this point in the time-scale plane will be a relatively large number” (Polikar, 1996) and will
spike in the contour plot of CWT spectrum.
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For implementing CWT, it is required to identify the set of analyzed scales a priori. In
continuous wavelet analysis, the investigated scales must be incremented continuously to
create a complete picture of the wavelet transform. Theses set of scales (s) can be generated
using fractional powers of two (Torrence and Compo, 1998); sj=s0 2jδj, j=0,1,2,...,J, where s0 is the
smallest scale and J determines the maximum number of scales to be investigated. δj is the
scale step size whose value depends on the selected wavelet function (Torrence and Comp,
1998). Complex wavelet function, e.g. Morlet, results in complex wavelet coefficients constitute
of real and imaginary parts or amplitude,|CWT (τ, s)| , and phase,
tan-1 Im{CWT (τ, s)} / Re{CWT (τ, s)} , respectively. For convenient description of time series
cyclic variations, it is common to use wavelet power spectrum, defined as, |CWT (τ, s)|2 ,
instead of continuous wavelet spectrum. The obtained wavelet power spectrum is also
normalized; divided by the variance of the time series (σ2), |CWT (τ, s)|2 / σ 2 , for easier
comparison with different wavelet spectra (Torrence and Compo, 1998). Cone of Influence
(COI) has been defined in the wavelet spectrum to clarify the areas that are considerably
affected by the zero paddings at the ends of the time series signal. Time series data are padded
by zeros at both edges to overcome the problem caused by their finite lengths. These zero
values decrease the magnitude of wavelet power at the areas close to the edge from which the
COI distinguishes regions that are not or negligibly influenced. Length of COI is estimated for
each examined scale using a mathematical expression, which is defined as a function of scale.
For Morlet wavelet, the length of COI at each scale (s) was defined as 2s.

3.2. Statistical significance test

Most of the natural processes (e.g. geophysical and hydrological) are affected with background
color noise (white or red noise). The effect of noise is reflected on the signal’s wavelet power
spectrum. It is essential to identify the powers caused by the background noise and distinguish
them from the actual wavelet power peaks. Torrence and Compo (1998) developed a statistical
significance test for wavelet power spectra to establish significant levels. Following Torrence
and Compo (1998), a statistical significance test is implemented by modeling the appropriate
background noise (either white or red) and then testing the significance of the power spectrum
peaks against the modeled background noise at certain statistical significance level. Signifi‐
cance test investigates if the peaks of the wavelet spectrum represented some true cyclic
features or they are just caused by noise. Most of the geophysical time series are contaminated
with red noise background signals (Grinsted et al., 2004). Red noise refers to the temporal
fluctuations that have higher amplitude at lower frequencies and lose the magnitude as the
frequency increases

According to Hasselmann (1976), lag-1 auto regressive process (AR [1]) is a suitable back‐
ground noise for many climatological applications. A simple theoretical AR [1] red noise model
for modeling the background time series red noise (xn) is given by (Torrence and Compo, 1998):

xn =αxn-1 + zn (6)
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where x0 = 0, zn is the Gaussian white noise, and α is the lag-1 autocorrelation coefficient that
can be estimated from observed time series (Allen and Smith, 1996).

It was shown by Torrence and Compo (1998) that the local wavelet power spectrum of the
theoretical red noise, at every randomly selected time location, is on average identical to the
Fourier transform of the noise time series. In the described statistical significance test, it is
assumed that the time series variables have random normal distribution. Fourier power
spectrum of the theoretical noise, which is the square of the normally distributed spectrum,
has chi-square (χ2) distribution with two degrees of freedom, X2

2, corresponding to the real
and imaginary parts. Statistical significance test can be performed at 95% confidence level. To
perform the test, the 95% line is developed by multiplying the red noise spectrum by the 95th

percentile value ofX2
2. Wavelet peaks are compared with this 95% line and the peaks that are

above this confidence line are identified as cyclic features that are significantly different from
background red noise at 95% confidence level.

3.3. Cross wavelet analysis

Cross wavelet analysis is an extension to WA, which examines the linear correlation between
two time series. Cross wavelet spectrum between two processes, X and Y, is estimated by
(Torrence and Comp, 1998):

W XY (τ, s)=CWT X (τ, s)CWT Y *(τ, s) (7)

where  CWT X (τ, s)and CWT Y (τ, s)are the continuous wavelet transforms of the investigated
time series, X and Y, and (*) indicates the complex conjugate. Cross wavelet spectrum is
complex and can be decomposed into amplitude and phase. Local relative phase between X
and Y is estimated by the complex argument (phase), tan-1 Im{W XY (τ, s)} / Re{W XY (τ, s)}
and the cross wavelet power is also defined as|W XY (τ, s)|. The phase information in the cross
wavelet spectrum gives the phase angel difference between the components of the two-time
series. Using cross wavelet spectrum, cyclic features at which the underlying time series are
co-varying can be detected. The co-variations of two signals demonstrate the existence of a
link, in some way, between the underlying processes and also the fact that the information of
one process is capable of predicting the other process. This information is very useful when it
is of interest to find out the processes that have correlation (or strong correlation) with a target
time series, e.g. AET here. The signals, which are showing to have high common power with
the target signal in the cross wavelet spectrum, can be used as predictors in the estimation of
temporal variations of the target time series. This is important information in the modeling of
complex processes, e.g. hydro-meteorological processes, in which determination of important
predictors is essential and a challenging task. Statistical significance test of the cross wavelet
power spectrum can be conducted using the theoretical Fourier spectra of the two underlying
time series. More description on the development of cross wavelet significance test can be
found in Torrence and Comp (1998).
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4. Application of data driven modelling and wavelet analysis in
characterizing AET in a case study

This section describes the application of the previously explained data driven modeling
techniques; ANNs and GP, and wavelet analysis for the modeling and analysis of AET in a
case study.

4.1. Research scope and experimental data

The experimental data, which were used in this study, were collected from the South West
Sand Storage (SWSS) site, located at Mildred lake mine north of Fort McMurray, Alberta,
Canada. The SWSS facility is an active tailing disposal facility (dam), which covers an area of
about 23 km2, holding approximately 435×106 m3 of materials, with 40 m higher than the
surrounding landscape and an overall side slop of 5%. The soil cover system within the SWSS
consists of a 45 cm thick peat/secondary mineral soil with a clay loam texture overlying the
tailing sand. Vegetation cover system varies across the SWSS site including the dominant
groundcover of horsetail (Equisetum arvense), fireweed (Epilobium angustifolia), sow thistle
(Sonchus arvense), and white and yellow sweet clover (Melilotus alba, Melilotus officinalis), and
tree and shrub species including Siberian larch (Larix siberica), hybrid poplar (Populus sp.
hybrid), trembling aspen (Populus tremuloides), white spruce (Picea glauca) and willow (Salix
sp.) (Parasuraman et al., 2007). The latent heat flux data were originally measured on a
continuous basis (Baldocchi et al., 1988) using the eddy covariance technique, and the mean
fluxes were recorded every 30 minutes on a data logger. In this study, the hourly Eddy
Covariance latent heat (LE) flux (Wm-2) data from May 3 to September 21, 2005 and from May
27 to September 8, 2006 were used. The day-time data, which were used for modeling purpose,
were only associated with the period of 8:00 AM to 8:00 PM. The data of net radiation (Rn;
Wm-2) were also recorded using net radiometer. Air temperature (Ta; oC), ground temperature
(Tg; oC), relative humidity (RH), and wind speed (Ws; m s-1) constituted the rest of the mete‐
orological data, which were measured by the weather station located at the site. The LE and
Rn fluxes were originally recorded in the unit of Wm-2 on half hourly basis. For convenient
interpretation, the latent heat flux (Wm-2) was converted to the equivalent depth of water (mm
m-2). Since the hourly data were desired to be used in the modeling procedure, conversion of
the recorded half-hourly data to hourly data was also implemented in the pre-processing step.

In the first step, the data of the year 2006 were used for modeling purposes with the two
proposed techniques (ANNs and GP). Disregarding the missing data, the total number of
available instances for modeling in year 2006 is 1207, which were randomly divided into three
datasets consisting of 604 instances (50%), 201 instances (17%), and 402 instances (33%) of the
data, for training, cross-validation, and testing purposes, respectively. To obtain three
statistically consistent subsets, a population of 100 groups of three sub-datasets was randomly
generated by sampling from the dataset. The statistical characteristics of the data, i.e. mean
and standard deviation, were determined for every subset of each group. Then, the group
possessing three subsets with relatively similar statistical characteristics was selected for this
study. Aside from the described modeling procedure, a rigorous test was also implemented
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in the second step, using the data of 2005, to assess the generalization ability of the developed
models in a more realistic way. Disregarding the missing data in 2005, 1600 instances are
available. The 2005 dataset has different statistical properties from the data of 2006, which are
discussed later in this study.

Multiresolution analysis of the AET and meteorological signals (wavelet analysis) was
conducted using the data of the year 2006. The total number of instance that was available for
wavelet analysis of the 2006 data is 2520, which constitute the hourly time series data from
May 27 to September 9. All of the observed time series data were pre-treated before performing
the WA to have zero mean and unite standard deviation.

4.2. ANN modeling

Three-layer FFNNs were adopted in this study for the modeling of AET process. The input
layer contained five nodes providing the information of predictor variables; Rn, Tg, Ta, RH, and
Ws, to the network and the output layer consisted of a single neuron representing the model
output (predicted AET values). Activation functions adopted here include the log-sigmoid and
linear functions for the hidden layer and output layer neurons, respectively. The commonly
used trial-and-error procedure was employed and different number of hidden neurons
ranging from 1 to 14 was investigated for finding the optimum number of hidden neurons.
Regularization and early stopping approaches were employed with the examined training
algorithms; Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) and Bayesian-regula‐
rization (MacKay, 1992). Neural Network Toolbox in MATLAB (MALAB® Software, 2003)
was used to develop the ANN models to predict AET based on five inputs of meteorological
variables, Rn, Tg, Ta, Ws, and RH. The data pool of 2006 was randomly divided into three subsets
of training, cross validation, and testing using the approach explained earlier. The training
subset was used for optimizing the connection weights and bias of the network. The cross-
validation subset was used for early stopping. Once the network was trained, the generaliza‐
tion and predictive ability of the network was evaluated using a completely unseen subset of
2006 called testing subset. The data subsets were normalized so that data fell between 0 and
1. Such scaling of data smoothness the solution space and averages out some of the noise effects
(ASCE, 2000). Based on the training subset, different ANN models were trained using
Levenberg-Marquardt and Bayesian-regularization training algorithms, using different
number of hidden neurons ranging from 1 to 14. For each examined network architecture the
training process was repeated several times, each time started with different random initial
weight matrices, until satisfactory optimal network (with minimum errors) was obtained. The
ANN model with the best performance measures associated with the cross-validation subset
was selected as the optimal predictive network. The performance and generalization ability of
the trained model was evaluated on the testing subset, which determines how well the ANN
model performs on the dataset that have not been seen during the training process (Cheng and
Titterington, 1994).

ANNs, as a data driven technique, have the ability to determine the critical model inputs (Maier
and Dandy, 2000). In this study, the ANN modeling technique was used to identify the
important meteorological variables affecting the AET process. In this approach, no prior
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knowledge was assumed about the physics of AET mechanism and the relationships among
variables. All possible combinations of input variables, 26 combinations, were considered to
be examined as ANN model input sets. Separate optimal ANN models were developed and
trained for each input combination set using the model development approach explained
earlier. The developed ANN models were compared based on their prediction accuracy in
order to identify the most appropriate and efficient combinations of inputs for the estimation
of AET. This approach is commonly referred to as trial-and-error procedure, which is under
the category of heuristic approaches. The possible combination sets of five available input
variables include; five-input combination, “Rn, Tg, Ta, RH, Ws”, four-input combinations, “Rn,
Tg, RH, Ws”; “Rn, Tg, Ta, RH”; “Rn, Tg, Ta, Ws”; “Rn, Ta, RH, Ws”; “Tg, Ta, RH, Ws”; three-input
combinations, “Rn, Tg, RH”; “Rn, Tg, Ws”; “Rn, Tg, Ta”; “Rn, RH, Ws”; “Rn, Ta, RH”; “Rn, Ta, Ws”;
“Tg, RH, Ws”; “Tg, Ta, Ws”; “Tg, Ta, RH”; “Ta, RH, Ws”; and two-input combinations, “Rn, Tg” ;
“Rn, RH” ; “Rn, Ws” “Rn, Ta” ; “Tg, RH” ; “Tg, Ws” ; “Tg, Ta” ; “Ta, RH” ; “Ta, Ws” ; “RH, Ws”.

4.3. GP modeling

Major steps in the implementation of GP to solve a problem, e.g. evolution of AET models in
the current study, include determination of functional and terminal sets, fitness measure,
initializing method, selection method, levels of GP parameters over the run (crossover and
mutation probabilities, population size), and the termination criterion. The functional set,
which was introduced to GP, included {+, -,*, /}. The terminal set was defined as {Rn, Tg, Ta,
Ws, RH}. Root mean squared error (RMSE) was selected as the fitness function for evaluating
individual performance and further fitness-based selection. Ramped-half-and-half method
was adopted for initializing the first generation tree structures. Descriptions of initializing
methods can be found in Koza (1992) and Banzhaf et al. (1998). The next important issue in the
implementation of GP is the fitness-based selection method. Selection method determines the
manner by which the individuals are selected based on the assigned fitness values for further
GP operations (e.g. crossover, mutation). Roulette wheel selection method was employed here
for implementing selection operation in the GP runs. Roulette wheel method is the simplest
selection scheme that follows a stochastic algorithm. Several different levels of GP parameters;
crossover and mutation probabilities, number of evaluated generations, and the size of
population, were executed for obtaining symbolic regression AET models using the training
subset. The termination criterion for each GP run was the identified maximum number of
generations. The performances of the generated symbolic equations were assessed using the
cross-validation subset to select the best equation (model). The selected symbolic equation was
then tested using the unseen testing subset to evaluate the predictive accuracy and generali‐
zation ability of the proposed model. Data subsets that were used with the GP technique were
exactly the same as those used with the ANNs. The data were normalized by dividing the
values of variables by their corresponding maximum values. In this way, all variables could
have dimensional consistency during the GP implementation (Parasuraman et al., 2007). In
this study, GPLAB (Silva, 2005), GP toolbox for MATLAB, was used for the implementing of
the GP technique and generating mathematical models based on the datasets where AET is a
dependent variable as a function of the five independent variables: Rn, Tg, Ta, Ws, and RH.
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The performances of the ANNs and GP models were evaluated to compare their predictive
accuracies based on three statistical criteria: Pearson’s correlation coefficient (R), root mean
squared error (RMSE), and mean absolute relative error (MARE), which were calculated as
follows:

R =
∑
i=1

N (Oi - O
- )(Pi - P

- )
∑
i=1

N (Oi - O
- )2 0.5

∑
i=1

N (Pi - P
- )2 0.5 (8)

MARE = 1
N ∑

i=1

N |Oi - Pi|
|Oi| (9)

RMSE =
∑
i=1

N (Oi - Pi)2

N
(10)

where Oi, Pi, P
-

, and O
-

 are observed values, simulated values, mean of simulated, and mean
of observed values, respectively. N is the number of instances in the dataset.

4.4. Wavelet analysis

In this study, only temporal scaling of the variables time series was investigated whereas the
spatial variability of the AET and meteorological signals was not considered. Since scale
analysis of the time series data were of interest, the CWT was employed for the analysis. The
Morlet wavelet with non-dimensional frequency parameter (ω0) equal to 6 was adopted as the
mother wavelet for the current wavelet transformation. For the current analysis, the scale step
size of δj = 0.083 and the maximum examined scales of SJ = 16 and 48 hours were selected for
performing the transformation. The smallest scale (S0) was selected as approximately equal to
2δt, where δt is the time step of the measured time series data. The time step of the AET and
meteorological variables is an hour (δt = 1) and subsequently S0 = 2 hours. A simple theoretical
AR [1] red noise model was adopted for describing the background noise. The meteorological
variables, whose covariations with the AET time series were investigated in this study, include
Rn, Tg, Ta, RH, and Ws. The statistical significance test was performed at 95% confidence level.

Both continuous and cross wavelet analysis were implemented using the software package
developed for MATLAB and provided on-line by Grinsted et al. (2004) (http://www.pol.ac.uk/
home/research/waveletcoherence/). Wavelet and cross wavelet analysis were basically of
interest to examine the temporal cyclic variations occurring during day-time (8:00 AM to 8:00
PM) of the AET and meteorological time series. However, wavelet transformation can only be
performed on complete (continuous) time series but not non-continuous time series such as
day-time data. To obtain accurate wavelet analysis, which were also associated only with the
day-time variations, wavelet and cross wavelet analysis were performed using the complete
time series data (day-time and night-time data). Then, the wavelet coefficients (spectrum
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segments), which were associated with night-time data were cut out to give the spectrum of
the day-time only time series data. Wavelet spectra provided in the next section are all
associated with the day-time only time series.

4.5. Results and discussions

4.5.1. ANN model and performance analysis

Figure 5 illustrates the influence of number of hidden neurons on the performance measures
for two training algorithms; Levenberg-Marquardt and Bayesian-regularization. It appears
that Levenberg-Marquardt training algorithm is more sensitive to the number of hidden
neurons, represented by larger fluctuations in the error measures with respect to the number
of hidden neurons than the Bayesian-regularization algorithm. Figure 5a indicates that the
Levenberg-Marquardt algorithm leads to lower values of correlation coefficient (R) for all
numbers of hidden neurons compared to the Bayesian-regularization algorithm. Figs. 5b and
5c show that Levenberg-Marquardt results in higher values of RMSE and MARE than
Bayesian-regularization for all number of hidden neurons. It indicates that the Bayesian-
regularization training algorithm performs more efficiently than the Levenberg-Marquardt
algorithm on the dataset under consideration. This might be attributed to some hindrance
caused by the use of redundant network parameters (weights and biases) in the output
estimation of the network trained by Levenberg-Marquardt algorithm, while the network
trained by Bayesian-regularization training algorithm only use the effective network param‐
eters for computing the output. Among the 28 assessed ANN models, the ANN model with
eight hidden neurons trained by Bayesian-regularization algorithm resulted in relatively better
statistical measures; R of 0.89, RMSE of 0.06, and MARE of 0.28 when evaluated using the cross-
validation dataset. Therefore, eight hidden neurons were adopted for the ANN model for the
rest of the modeling process.
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Figure 5. The influence of number of hidden neurons on the network performance for two training algorithms using
the cross-validation subset: −, Levenberg-Marquardt; ---, Bayesian-regularization.

Applying the selected ANN model with eight hidden neurons to the testing dataset results in
R, RMSE, and MARE values of 0.86, 0.07, and, 0.31, respectively, which indicates reasonably
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low values of RMSE and MARE, and high value of R associated with the testing dataset, which
imply that the ANN model has good generalization ability for predicting AET based on the
unseen testing dataset. For the five available meteorological variables, Rn, Tg, Ta, RH, and Ws,
26 different input combinations could be assessed, which were described earlier in this chapter.
In order to examine the importance of each input combination, the associated optimum ANN
model was developed. The primary results indicated that net radiation (Rn) is a crucial factor
in the estimation of AET; its exclusion from the input set causes serious deterioration of the
performance of the ANN models. For instance, ANN model with the predictors set of Tg, Ta,
RH, and Ws (excluding Rn) resulted in the performance measures of 0.11 mm/h, 0.69, and 0.54
for the RMSE, MARE, and R, respectively, when applied to the testing subset. The significant
role of net radiation, as the main source of energy, in the AET mechanism is expected based
on the physics of the AET process. As a result, the rest of the analysis was performed only for
the input subsets, which include Rn as one of the predictors. Consequently, the total number
of investigated input combinations decreased from 26 to 16. Table 1 shows the performance
statistics of ANN models trained using 16 different combinations of inputs.

The best performance of ANNs was obtained when all five meteorological variables were used
for the modeling of AET; however, ANN models, which employed the predictor combinations
of “Rn, Tg, RH, Ws”; “Rn, Tg, Ta, RH”; “Rn Tg, Ta, Ws”; “Rn, Ta, RH, Ws”; “Rn, Tg, RH”; and “Rn, Tg,
Ws”, also resulted in comparable performances. Among the input combinations of two factors
only, the ANN model with predictor set of Rn and Tg performed fairly well, which shows the
possibility of using fewer number of predictors for estimating AET in an efficient and parsi‐
monious way. Obtaining acceptable prediction accuracies from different combinations of
inputs demonstrates the difficulty of determining the significant input variables for modeling
the AET process. Thus, the trial-and-error procedure using the ANN technique might not be
the best approach for identifying the important AET predictors. This difficulty can also be
associated with the complexity of the AET process itself. The interaction among multiple
processes and variables involving the AET makes it possible, for ANN model, to sufficiently
capture the variations of AET by using different combinations of variables. It is understood
from the results that determination of a unique set of meteorological variables might not be
necessary for the estimation of AET. Instead, the effort can be concentrated on the determina‐
tion of the most efficient and parsimonious set of predictor variables.

4.5.2. GP modeling and performance analysis

Using GPLAB (Silva, 2005) several equation-based GP models were generated at 42 different
levels of GP parameters including crossover probability, mutation probability, number of
generations, and population size. Table 2 presents the values of RMSE, MARE, and R along
with the associated GP parameters obtained with the best eight models generated by GP. The
optimum GP models that resulted in the best statistics associated with the cross-validation
subset are given below (Equations 11-18):

0.013 0.148 0.01 0.104n gAET R T RH= - + + - (11)
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3 30.018 5.54 10 9.49 10g n gAET T R T- -= - + ´ + ´ (12)

3 3 2 4 7 20.0784 9.2 10 3.5 10 2.7 10 8.64 10n g n g n g a aAET R T R T R T T T- - - -= + ´ - ´ + ´ - ´ (13)

3 30.039 0.063 1.88 10 7.37 10n g n gAET R T R T- -= + + ´ + ´ (14)

3 30.0696 7.836 10 2.569 10n g gAET R T T- -= + ´ + ´ (15)

Input combination
Training Cross-validation Testing

RMSE* MARE R RMSE MARE R RMSE MARE R

Rn,Tg,Ta,RH,Ws 0.06 0.40 0.89 0.06 0.28 0.89 0.07 0.31 0.86

Rn,Tg,RH,Ws 0.06 0.43 0.88 0.06 0.28 0.88 0.07 0.33 0.86

Rn,Tg,Ta,RH 0.06 0.43 0.88 0.06 0.31 0.88 0.07 0.32 0.86

Rn Tg,Ta,Ws 0.07 0.44 0.87 0.07 0.29 0.87 0.07 0.33 0.85

Rn,Ta,RH,Ws 0.07 0.49 0.85 0.07 0.30 0.87 0.07 0.36 0.83

Tg,Ta,RH,Ws 0.12 0.87 0.61 0.10 0.71 0.62 0.11 0.69 0.54

Rn, Tg,RH 0.06 0.44 0.88 0.06 0.30 0.88 0.07 0.34 0.86

Rn,Tg,Ws 0.07 0.42 0.87 0.07 0.29 0.86 0.07 0.32 0.85

Rn,Tg,Ta 0.07 0.48 0.85 0.07 0.31 0.87 0.07 0.35 0.84

Rn,RH,Ws 0.07 0.47 0.85 0.07 0.29 0.86 0.07 0.37 0.83

Rn,Ta,RH 0.07 0.54 0.84 0.07 0.35 0.86 0.07 0.40 0.83

Rn,Ta,Ws 0.07 0.54 0.83 0.07 0.32 0.86 0.07 0.37 0.83

Rn,Tg 0.07 0.57 0.85 0.06 0.34 0.87 0.07 0.42 0.84

Rn,RH 0.07 0.53 0.82 0.07 0.36 0.87 0.07 0.49 0.82

Rn,Ws 0.08 0.53 0.79 0.08 0.35 0.82 0.09 0.45 0.77

Rn,Ta 0.08 0.51 0.83 0.07 0.34 0.85 0.08 0.43 0.82

*RMSE in mm/h

Table 1. Performance statistics of ANN models with different combinations of inputs.
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3 30.0633 3.1 10 0.011 6.85 10g n g nAET T R T R- -= + ´ + ´ + ´ (16)

3 30.0775 2.23 10 6.35 10a n aAET T R T- -= + ´ + ´ (17)

0.129 0.005n aAET R T= + (18)

where, AET, Rn, Tg, Ta, and RH are the rate of actual evapotranspiration [mm h-1], net radiation
[MJ], ground temperature [oC], air temperature [oC], and relative humidity [fraction], respec‐
tively.

Model Crossover prob.
Mutation

prob.

No.of

generation

Population

size

RMSE

(mm/h)
MARE R

Eq. 11 0.6 0.2 50 60 0.06 0.37 0.88

Eq. 12 0.5 0.2 60 70 0.07 0.34 0.86

Eq. 13 0.6 0.3 60 60 0.07 0.37 0.86

Eq. 14 0.7 0.5 50 300 0.07 0.35 0.85

Eq. 15 0.5 0.2 200 100 0.07 0.43 0.86

Eq. 16 0.7 0.4 200 50 0.07 0.44 0.86

Eq. 17 0.8 0.3 100 40 0.07 0.46 0.85

Eq. 18 0.6 0.3 50 80 0.08 0.40 0.85

Table 2. The best generated GP-based models using various GP parameters for the cross-validation subset.

The optimum GP-evolved models are structurally simple, characterizing the variation of AET
as semi-linear functions of meteorological variables, since the models are linear in parameters.
Most (six out of eight) of the presented GP models contain Rn and Tg as AET predictors. The
appearance of RH (one out of eight times) and Ta (three out of 8 times) was limited in the
developed models. Interestingly, Ws never came up as an important predictor in the presented
optimum AET models, which means that GP did not find wind speed to be an effective
component in the estimation of hourly AET. The simplicity of the models seems to be inter‐
esting, especially when the error measures also indicate relatively good generalization ability
of the models based on the testing subset (Table 3). It is perceived from the GP models that the
AET mechanism can be characterized by structurally simple models, which are also not
physically complex. This can be considered as a strong advantage of the GP technique that
searches for any possible combination of predictors that can properly model the AET process.
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Model RMSE (mm/h) MARE R

Eq. 11 0.07 0.35 0.85

Eq. 12 0.08 0.32 0.83

Eq. 13 0.07 0.32 0.82

Eq. 14 0.08 0.32 0.82

Eq. 15 0.07 0.39 0.83

Eq. 16 0.07 0.40 0.83

Eq. 17 0.07 0.41 0.81

Eq. 18 0.09 0.36 0.79

Table 3. Performance statistics of the GP-based models using testing subset.

Based on the equation-based GP models, the contribution of each meteorological variable in
the estimation of AET can also be discussed. This is only possible by using the normalized
form of the equations in which all input variables receive their values from a consistent range
(e.g. less than 1). Then the contribution of each input variable or factor to the AET can be
assessed based on the associated coefficient’s magnitude. A selective set of models, which
includes only GP models with different physical structures, was identified and the input
variables were normalized for further analysis. The selected models, Eq. (11), (12), (13), (14),
and (17), are rewritten, in order, as follow:

0.013 0.385 0.285 0.095n gAET R T RH¢ ¢ ¢= - + + - (19)

0.018 0.15 0.53g n gAET T R T¢ ¢ ¢= - + + (20)

2 3 20.0784 0.514 0.49 0.424 0.976 10n g n g n g a aAET R T R T R T T T-¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢= + - + - ´ (21)

0.039 0.164 0.051 0.412n g n gAET R T R T¢ ¢ ¢ ¢= + + + (22)

0.0775 0.075 0.396a n aAET T R T¢ ¢ ¢= + + (23)

In these normalized equations, input variables, which are associated with the models’ linear
coefficients (e.g. T'g, T'gR'nT'a, and R'n

2T'g), are normalized inputs by dividing each of them
by its corresponding maximum values and AET is the rate of actual evapotranspiration [mm
h-1]. These normalized models were only developed and used for interpreting the contribution
of different inputs to the estimation of AET.
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Equation (19) indicates that AET can be estimated as a simple linear function of R'n, T'g, and
RH', which is highly dominated by the net radiation and ground temperature variables.
Equation (20) also has a simple structure describing the AET process as a nonlinear function,
of only net radiation and ground temperature, which is dominated by the two-factor interac‐
tion of R'n and T'g. The interaction factor of R'nT'g has larger contribution to the estimation of
AET than the T'g, individually, with the average contribution magnitude of 0.15 and 0.10 mm/
h for the terms 0.53R'nT'g and 0.15T'g, respectively. This indicates that when some factors are
interacting, their interactions influence the individual contribution of each variable to the AET
mechanism. Consequently, the interaction term is more responsible for AET variations than
the individual variables. In Eq. (21), the air temperature (T'a) variable has been included in
addition to the R'n and T'g. The air temperature has appeared both as an individual variable
and as an interacting factor in the three-factor interaction term of R'nT'gT'a. According to the
coefficients associated with these variables in Eq. (21), T'a can affect the rate of AET only
through the influence it might have on the R'n and T'g (interacting coefficient of 0.424 compared
to that of air temperature, 0.000976). The structure of Eq. (22) also confirms the importance of
interaction effects of multiple variables rather than the individual processes. The combined
component of R'nT'g is more responsible for the variation of AET than the R'n and T'g

individually. The average contribution magnitude of each of the terms 0.412R'nT'g, 0.164R'n,
and 0.051T'g in the estimation of AET values are 0.12, 0.05, and 0.03 mm/h, respectively.
Equation (23) demonstrates that the AET mechanism can even be characterized as a simple
semi-linear function of R'n and T'a only, which are commonly available meteorological
measurements. Again, the AET model is dominated by the interaction factor of the two
variables. The interaction and individual terms of 0.396R'nT'a and 0.075T'a are contributing to
the estimation of AET by the average magnitude of 0.11 and 0.05 mm/h, respectively. Although
the generated models, based on error measures, are performing well and relatively similar,
they are using different combinations of inputs with different mathematical structures. This
demonstrates that precise identification of the meteorological variables driving the AET
process is not an easy and straightforward task, where different combinations of inputs may
result in relatively good AET estimation. The results obtained from the GP-evolved models
indicate that the hourly AET process can be estimated by both linear and nonlinear relation‐
ships. Using the above-listed GP models, one may choose one of them for estimating the rate
of AET based on the meteorological data that are available. Thus, the proposed GP models can
suit different conditions of data availability.

4.5.3. Comparison among ANN and GP models

The performances of the models from the two proposed techniques; ANNs and GP, were
compared based on the testing subset. It can be seen (Table 4) that the equation evolved by GP
resulted in slightly larger MARE value compared to that of ANN model. Despite discrepancies
among the statistics, the differences are small, which implies that the models have comparable
performances for estimating AET based on the meteorological variables. Errors produced by
the ANN and GP models have similar statistical characteristics and follow the same probability
distribution of LogLogistic (Figure 6).
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Model RMSE (mm/h) MARE R

ANN 0.07 0.31 0.86

GP (Eq. 20) 0.07 0.35 0.85

Table 4. Performance statistics of different models using testing subset..
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Figure 6. Probability distribution of the data driven models errors.

Figure 7 illustrates the scatter plots of the predicted AET values by ANNs and GP, respectively,
versus observed data, using the testing subset. Based on the visual comparison, no substantial
difference can be observed among the predictive abilities of the proposed models.
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Figure 7. Scatter plots of predicted actual evapotranspiration (AET) versus observed AET by (a) ANN, (b) GP (Eq. 11)
using testing subset.

Data Driven Techniques and Wavelet Analysis for the Modeling and Analysis of Actual Evapotranspiration
http://dx.doi.org/10.5772/52809

189



In order to evaluate the generalization ability of the developed models in a more realistic and
rigorous way, the optimum models obtained from the ANNs and GP techniques, using the
2006 data, were employed for the prediction of actual evapotranspiration of a different year
(2005). This assessment was also conducted to identify the possible superiority of any of the
proposed models for future prediction applications. The 2005 dataset, which was used for
implementing the rigorous generalization test, has different statistical properties from the year
2006 dataset, which was employed for training and testing during model development (Table
5). Applying the developed models to a statistically different dataset helps to evaluate and
compare the models’ predictive abilities on instances from a statistically different population.
The hourly meteorological variables of Rn, Tg, Ta, Ws, and RH of the year 2005 were used as the
inputs of the optimum models, including ANN and GP (Eq. 11 and Eq. 12) to estimate the AET.

Year
Minimum

(mm/h)

Maximum

(mm/h)

Average

(mm/h)

Median

(mm/h)
SD * (mm/h)

Coefficient of

variation

2005 -0.05 0.68 0.18 0.16 0.12 0.65

2006 -0.06 0.67 0.24 0.23 0.13 0.55

*Standard deviation

Table 5. Statistical characteristics of AET data of the years 2005 and 2006.

A comparison among the performance statistics of the data driven models, used for the
prediction of AET in 2005, is given in Table 6. It is apparent that GP model is performing better
than the ANN model with lower error measure values and higher correlation coefficients. GP
technique was able to capture the semi-linearity of the AET process and to characterize it by
simple equations. However, ANN model, because of its structure, tried to fit a complex non-
linear model to the AET process, which was unnecessary and resulted in its poor performance
in generalization.

Model RMSE (mm/h) MARE R

ANN 0.10 0.91 0.78

GP

- Equation (11) 0.07 0.55 0.82

- Equation (12) 0.06 0.47 0.85

Table 6. Performance statistics of different models using 2005 data.

For better interpretation of models’ performances, further analysis was conducted. Scatter
plots of the predicted AET values by ANN and GP models versus observed values, using the
2005 dataset, are illustrated in Fig. 8. It can be seen in Fig.8a that the ANN model is overesti‐
mating most of the AET values in 2005, which was expected from the large value of MARE.
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Figure 8b indicates that the GP model is performing well on the estimation of AET in 2005.
This demonstrates the superiority of GP model over the ANN with regard to the generalization
ability.

The two different types of comparison discussed above highlighted the importance and also
the reliability of the approach one may use for comparison purposes in the modeling process.
In the first approach, the unseen testing subset, which was coming from the same year
(statistical population) that was used for developing (training) the models, was employed for
testing the generalization ability of the models. Based on this comparison, no considerable
difference was observed among the two proposed data driven models in terms of models’
generalization ability. However, using the second approach; testing the developed models
using data from a different year, led to a more realistic assessment of the predictive accuracy,
which revealed the discrepancies among the data driven models much better. Consequently,
the choice of the testing dataset on which the generalization ability of the models is evaluated
is important, and in the case of inappropriate and/or insufficient testing data, incorrect
conclusions might be made.
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Figure 8. Scatter plots of predicted actual evapotranspiration (AET) versus observed AET by (a) ANN and (b) GP (Eq.
21) models using 2005 data.

Another point of interest, which was observed in this analysis, is the issue of representation
of a set of optimum GP equations instead of representing only the best GP equation. Out of
the best GP-evolved models, Eq. (20), as an example, performed better than Eq. (21) when they
were applied to the testing dataset of 2006. However, Eq. (21) had better performance than that
of Eq. (20) when 2005 data were tested. This indicates that no single GP equation can be adopted
as the best GP model, and thus, representation of a set of GP equations as the optimum GP
models is necessary (Parasuraman and Elshorbagy, 2008).

The proposed AET estimation models can also be compared in terms of their complexity and
efficiency. The number and the data availability of the various inputs and the simplicity/
complexity of the model usage can also be investigated for better comparison of the proposed
models. Table 7 provides the sum squared error (SSE) values of the proposed data driven
models. Based on the SSE values, the ANN model has better fitness to the data than the GP
models although it is more complex based on the number of input variables and optimized
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parameters. The GP model (Eq. 11) has also comparable SSE value, which indicates its good
fitness though it is simple in terms of the number of inputs and estimated parameters.

Model SSE*
No. of required input

variables

No. of optimized

parameters

ANN 2.16 5 24

GP

- Equation (11) 2.83 3 4

- Equation (12) 3.50 2 3

* Sum squared error

Table 7. Akiak information criterion and sum squared error of the data driven models and their required inputs

The ANN technique provides an implicit model from which no explicit information about the
AET process can be easily obtained. As a result, ANN models might be used when prediction
of AET is the only concern of the modeling process. In other words, accurate estimation of AET
is more important than the understanding of AET mechanism itself. Furthermore, the signif‐
icant input variables that are employed for AET estimation in the ANN model cannot be
explicitly/easily identified, since the associated information is stored in the network connection
weights and cannot be easily interpreted. For the end user, application of ANN models is also
not as easy as the equation-based models. The GP model is an equation-based model and is of
interest for hydrologists and modellers because of its transparency and simplicity in applica‐
tion and usage. Explicit form of equation-based models, such as GP, makes it possible to extract
some information about the physics of the process. The GP model has the advantage of using
fewer input variables (Table 7) and also has simple and realistic structure. Consequently, the
GP model becomes more applicable when a limited number of meteorological variables is
available or can be measured. The simple structure of the GP models makes it easy for the
users to understand how input variables are contributing to the AET process.

4.5.4. Wavelet analysis

As it was described in the previous chapter, the length of cone of influence (COI) is defined as
a function of scale (e.g. 2 sfor Morlet wavelet) and increases with the scale. Since the studied
range of scales mainly constitute of small scales (less than 16 hours), for all spectra shown
hereafter, edge effects (COI) are negligible near both end regions of the wavelet transformation,
and consequently, cannot be seen in the spectra. The thick black contour lines, seen in the
wavelet spectra hereafter, enclose areas in which the values of wavelet powers are significantly
greater than the background red noise at 95% confidence level. Black contour lines might be
seen only as black areas in the spectra because the small-scale wavelet is narrow in time domain
(high time resolution) and the peaks appear very sharp.
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Daily variations are apparently the known cyclic pattern existed in the meteorological signals.
Continuous wavelet transformation (CWT) conducted at scale range of 2 to 48 hours confirmed
the presence of such diurnal cyclic variations. Figure 9 shows noticeably strong wavelet powers
at the scale band of 16 to 32 hours, which is most likely due to the diurnal cyclic variations in
the AET and Rn time series, as example. Similar spectra for other meteorological signals of Tg,
Ta, RH, and Ws are provided in Appendix I. Strong wavelet powers at the band scale of 16 to
32 hours indicates that the larger-scale cyclic events are the dominant source of temporal
variations in the studied time series. Consequently, small-scale cyclic events (e.g. less than 16
hours) may not play a considerable role in inducing the signals’ temporal variations. In this
study, the small-scale cyclic events were of interest to be investigated though they are not the
main source of temporal variations. This is because the small-scale (hourly) variations and
modeling of AET were the focus of this study, and the WA was examined for identifying the
most important input variables in the estimation of small-scale AET values.

Figure 9. Continuous wavelet power spectrum of hourly time series for the scale range of 2 to 48 hours; (a) AET, (b) Rn.

Figure 10 shows continuous wavelet spectrum of the daytime hourly AET signal. Several
wavelet peaks were found to be significantly different from the background red noise at scales
of 2 to 8 hours, which were fairly observed along the studied period (growing season of 2006).
The significant powers appeared at the scales of 2-4 hours are more frequent than those
appeared at 4-8 hours showing that most of the short-time intermittent variations in the AET
time series are probably produced by the 2-4 hours scale cyclic events.

Figure 10. Continuous wavelet power spectrum (left) and time series of hourly AET (right).
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Wavelet power spectrum of Tg signal is shown in Fig. 11 and exhibits no specific significant
cyclic behaviour at scales less than 8 hour. The only cyclic features, which were identified to
be significantly different from red noise, were at the scales of 8 to 16 hours. Detected features
did not show high magnitude powers (mostly in green), which demonstrate the weak
contribution of small-scale cyclic events in the temporal variations of Tg time series. This can
also be observed in the zoomed time series of a typical 48-hour window of Tg signal (Figure
12). The time series of Tg does not exhibit much short-time cyclic variations, e.g., less than daily,
compared to that of AET. This might be attributed to the physics of the Tg time series, which
changes gradually over the short terms and is not immediately influenced by sudden fluctu‐
ations in the atmospheric condition.

Figure 11. Continuous wavelet power spectrum (left) and time series of hourly Tg (right).

Figure 13 demonstrates limited detected cyclic features in the wavelet power spectrum of Ta,
which are different from the background red noise at scales of 2 to 8 hours. The significant
wavelet peaks that were identified at scales 8 to 16 hours do not contain large magnitude
powers. Consequently, Ta signal might not constitute of considerable small-scale cyclic
variations. Wavelet power spectrum of RH (Fig. 14) shows significant peaks at scales of 2-8
hours at several time locations along the studied period. Wavelet powers of RH spectrum at
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Figure 12. Time series of AET and Tg for a typical time-window of 48 hours.
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very small scales (around 2 hours) are not significantly different from the background red
noise.

Cyclic temporal variations of Rn were identified to be significantly different from the red noise
at small-scale band of 2 to 8 hours (Fig. 15). These significant cyclic features appeared quite
frequently along the studied time duration especially at scales of 2-4 hours. Wavelet analysis
of the Ws signal exhibited significant cyclic features at scales of 2 to almost 7 hours and 8 to 16
hours (Fig. 16). Small-scale cyclic features (2-4 hours) appeared more frequently than the
larger-scale features (8-16 hours).

Out of the analyzed time series, the AET, Rn, RH, and Ws exhibited frequent small-scale cyclic
features, which were found to be significantly different from the background red noise. No
specific significant small-scale cyclic features were detected in the wavelet spectra of Tg and
Ta, which could be attributed to two possible reasons. First, temporal variations of air and
ground temperature signals do not involve considerable small-scale cyclic features and are
mostly generated by larger-scale cyclic trends. Second, the likely existing small-scale cyclic

Figure 13. Continuous wavelet power spectrum (left) and time series of hourly Ta (right).

Figure 14. Continuous wavelet power spectrum (left) and time series of hourly RH (right).
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Figure 15. Continuous wavelet power spectrum (left) and time series of hourly Rn (right).
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variations are not large enough, in magnitude (because of slight changes of these variables in
small time scales), to be differentiated from the background red noise and consequently, cannot
be detected as significant cyclic features in the wavelet power spectrum.

As it was discussed earlier in this section, although several small-scale cyclic features were
found in the wavelet spectra of the time series, they might not substantially contribute to the
temporal variations of the considered signals. The reason might be the existence of larger-scale
features (e.g. scales of 16 to 32 hours), which induce the major temporal variations in most of
the studied time series (Izadifar, 2010).

4.5.5. Cross wavelet analysis

It can be seen from the cross wavelet spectrum of AET-Rn (Fig. 17) that both time series have
common significant powers at scales of 2 to 8 hours along the studied period. This demon‐
strates the significant linear correlation between AET and Rn signals at small 2scales at 95%
confidence level. To be more specific, the significant AET-Rn correlations appeared at particular
time locations but not continuously along the time axis. This means that the linear covariation
of these two time series becomes significantly different from red noise only at some periods
of time, which is more likely due to the low magnitude of variations at small scales compared
to that of larger scales (e.g. diurnal). In other words, there might be non-noise small-scale
covariances between the time series; however, since they are not major source of variations in
the time series and are low in magnitude, associated cross wavelet powers cannot be distin‐
guished from background noise. Significant powers of AET-Rn cross wavelet spectrum imply
that small-scale variation of AET can be explained by Rn time series. Phase information is
provided in the cross wavelet spectra using arrows. Arrows, pointing right and left, show in
order in-phase and anti-phase relationship between the two time series. Fig. 17 indicates the
in-phase relationship between AET and Rn at significant areas. By in-phase, it means that the
two time series are positively correlated. The relationship between AET and Rn was observed
to be not necessarily in-phase over all detected significant areas, since there are some cases
when other involved factors affect the conventional cause and effect relationship between the
two signals. Varying (not fixed) phase information was also observed in the cross wavelet
spectra between AET and other considered meteorological signals, which might be attributed
to the range of studied scales (small-scales). Small-scale cyclic events are not the dominant
source of variation in the studied time series and consequently, might not carry solid phase

Figure 16. Continuous wavelet power spectrum (left) and time series of hourly Ws (right).
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information. Larger-scale features, which have more contribution to the temporal variations,
may contain less varying and more reliable phase information (Izadifar, 2010).

Figure 17. Cross wavelet transform of the AET-Rn time series.

Cross wavelet transform of AET and RH exhibited significant common features at the scale
band of 2 to 8 hours (Fig. 18). Significant correlation between AET and RH indicates that the
RH signal can describe some of the small-scale variations of AET. Although the magnitude of
linear correlation between the two time series might not be identified quantitatively, it is seen
that RH has a significant cause and effect relationship with the AET signal at small scales.
Similar to the AET-Rn cross wavelet spectrum, phase relationship between AET and RH was
not stable. However, some anti-phase relationship can be observed at specific time-scale
locations. By anti-phase it means that the AET and RH are negatively correlated to each other.
Unstable phase relationship, at low scales, also demonstrates the complexity that exists in the
short-time variations of AET and its relationship with the involved meteorological factors,
which cannot be easily explored by using the cross wavelet transformation.

Ws time series also exhibited significant covariances with AET signal at scales of 2 to 8 hours
(Fig. 19), which were more frequent at scales less than 4 hours. All of the significant small-scale
features found in individual wavelet transform of the Ws time series were not detected as
common features between AET and Ws at 95% confidence level. It indicates that only specific
numbers of short-time cyclic variations of Ws are linearly correlated to the small-scale cyclic
variations of AET. Overall, the results of cross wavelet analysis of AET and Ws demonstrate
the existence of linear correlation at small scales. Phase information of AET-Ws spectrum
illustrates both in-phase and anti-phase relationship between the variations of the two
analyzed signals.

As it was expected form the individual wavelet spectra of AET and Tg, no specific significant
common power was found at small scales in the cross wavelet transform of AET-Tg (Fig. 20).
This might be attributed to two possible reasons; first, the presence of non-linear correlation
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between AET and Tg at small scales, which cannot be identified by the current cross wavelet
analysis. Second, for a time series like Tg, which is not varying much over short time intervals
(e.g. hourly), small-scale cyclic features do not have high powers at scales of 2-8 hours and
result in low cross wavelet powers of AET-Tg spectrum that cannot be differentiated from
background red noise.

Cross wavelet spectrum of AET-Ta shows limited detected features in the time-scale domain
in which the two signals were linearly correlated and the power was significantly different
from red noise at 95% confidence level compared to those of AET-Rn, AET-RH, and AET-Ws

(Fig. 21). Considering the rare significant peaks detected in the band scales of 2 to 8 hours of
Ta univariate power spectrum (Fig. 13), the identified powers in the cross wavelet spectrum

Figure 18. Cross wavelet transform of the AET-RH time series.

Figure 19. Cross wavelet transform of the AET-Ws time series.
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might not indicate significant covariations between the two signals. The significant common
powers in the cross wavelet spectrum of AET-Ta were most probably caused by the strong
powers of univariate AET spectrum only, which were more frequent than those of Ta over the
studied time period. Consequently, no specific and reliable cause and effect relationship can
be perceived between AET and Ta time series at small scales. However, strong linear correla‐
tion, which was significantly different from background red noise, was observed between AET
and Ta at about diurnal scale (scale band of 16 to 32 hours) when the range of studied scales
was extended up to 48 hours, Fig. 22.

The results of the cross wavelet analysis determined, to some extent, the meteorological
variables that have significant linear correlation with the AET signal at small scales at 95%

Figure 20. Cross wavelet transform of the AET-Tg time series.

Figure 21. Cross wavelet transform of the AET-Ta time series.
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confidence level. Based on the cross wavelet analysis, Rn, RH, and Ws time series exhibited
significant correlation with the AET signal and therefore, they are the important variables in
the prediction of small-scale AET variations. Based on the values provided on the scales (color
bars) of the cross wavelet spectra, Rn exhibited stronger correlation with AET than RH, which
is stronger than Ws, with maximum cross wavelet power magnitudes of 256, 16, and 8,
respectively. Unfortunately, the results of the cross wavelet analysis cannot be interpreted in
a precise quantitative way to identify the importance of one variable over others in the
prediction of AET at specific scales (or band scales). In addition, significant powers detected
in the univariant wavelet spectra must always be considered when significant cross wavelet
powers are interpreted. This is to avoid false common powers, which might be created by the
large magnitude powers of one univariate spectrum only.

Based on the cross wavelet analysis, ground temperature has no important linear correlation
with the AET time series at small scales. As a result, one might not select Tg as a predictor in
the estimation of AET. However, the results of the data driven modeling demonstrated the
importance of ground temperature in the prediction of AET. This inconsistency might be
attributed to the previously mentioned ability of cross wavelet analysis in identifying only
linear correlations between time series. As a result, any existing non-linear correlation between
each pair of signals remains undiscovered using cross wavelet analysis. Another possible
reason for insignificant common powers in AET-Tg cross wavelet spectrum is that the cross
wavelet analysis can investigate the correlation between only two time series at a time (not
multiple time series), which ignores the possible effect of other factors interacting with the
considered signals. The importance of interaction effects, which exist among the variables
involved in the AET process, was observed in the results of the data driven modeling. The
above-mentioned limitations of cross wavelet analysis affect the accuracy of the correlation
analysis of time series for determining the most important AET predictors.

The other issue, which most probably resulted in the inconsistency between the findings of
wavelet analysis and data driven modeling is the time-scale at which the temporal variations

Figure 22. Cross wavelet transform of the AET-Ta time series for the scale range of 2 to 48 hours.
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of signals were investigated using wavelet analysis or modeled by data driven techniques. The
results of the cross wavelet analysis at the larger-scales might be in agreement with the results
of the data driven models, regarding the most effective variables in the prediction of AET.
Cross wavelet analysis exhibited strong linear correlation between AET and Tg at about diurnal
scale approximately over the whole studied period. As a result, it can be perceived that the
proposed data driven models mainly characterized the larger-scale variations of AET (the
dominant cyclic patterns) for which Rn and Tg were found to be the most effective predictors.
The cross wavelet analysis, conducted in the present study, concerned more about the small-
scale variations of AET. The results obtained using the WA at small scales might be useful in
the development of AET models that aim to characterize the small-scale temporal variations.

The above-mentioned discussion highlights the importance of the time-scale of temporal
variations, which might be of interest to be investigated, analyzed, and modeled. Depending
on the specific time-scale of variations one is interested in, the employed modeling technique
and/or, for instance, the range of studied scales in the wavelet analysis may vary. As a result,
it is important to have better understanding of different types of temporal variation exist in
the investigated time series prior to the signal analysis and/or modeling.

5. Conclusion

In conclusion,  the investigated data driven modeling techniques were promising for the
estimation of the hourly AET mechanism using the observed data,  without assuming or
applying significant knowledge of the physics of the process. The choice of the testing da‐
taset was found to be important for realistically assessing the generalization ability of the
proposed data driven models and also for the determination of the possible superiority of
any  of  the  modeling  techniques  over  others.  The  genetic  programming  (GP)  modeling
technique was found to perform similarly and better than the ANN model with regard to
generalization ability. The GP-evolved models also had the advantage of being structural‐
ly simple and requiring fewer input variables, which is of interest for many hydrological
practitioners.

Furthermore, the proposed equation-based GP models showed that the AET process has the
potential to be estimated by structurally simple (e.g. semi-linear) models. Equation-based AET
models made it possible to extract some information about the physics of the process. It was
observed that the meteorological variables of Rn and Tg have larger contribution, than other
variables, to the estimation of AET. In addition, the interaction effects of the meteorological
variables were found to be important and effective in the estimation of AET.

The results of wavelet analysis improved the understanding of the AET mechanism by
revealing the importance and contributions of different time-scale cyclic variations exist in the
AET time series. This highlights the issue of time-scale and the importance of its consideration
in the modeling and prior-to-modeling input selection procedure. Although several small-
scale cyclic features were detected in the AET signal, larger-scale variations were found to be
the major frequency events at which the predictant-predictor (AET-meteorological variables)
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correlation analysis was more clear and reliable. GP models were noted to mainly model the
larger-scale (dominant) temporal variations of AET, although short time-scale (hourly) data
were employed for training and developing the models.

Consistency between the results of data driven modeling (especially GP) and wavelet analysis,
regarding the most important predictor variables, at large time-scales (e.g. diurnal) indicated
that wavelet analysis can be employed as a guide for identifying the most linearly correlated
predictors for the modeling of AET. However, limitations of such signal analysis tool should
be considered when it is used for input determination prior to modeling. Wavelet analysis
helped to perceive the difference between the predictive abilities of various models from a new
perspective, which is the time-scale of variations that the models characterize. For instance,
when the performances of two prediction models are compared, it should be noted if both
models are capturing the same time-scale of variations. Consideration of this point can make
the models’ comparative analysis more accurate and fair.
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