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1. Introduction

Pregnancy is a physiological condition characterized by a progressive, weeks of gestation-
dependent increase in maternal triglycerides (hypertriglyceridemia) and total cholesterol
(hypercholesterolemia) [1-4]. In some cases a misadaptation occurs and these levels increase
over a physiological range and dyslipidemia is recognized [5]. This condition occurs in some
pregnancies coursing without associated pregnancy alterations [i.e., maternal supraphysio‐
logical hypercholesterolemia (MSPH)] and in pregnancies coursing with pathologies as
preeclampsia and gestational diabetes mellitus (GDM) [3, 5].

GDM is widely associated with endothelial dysfunction of the placenta mainly triggered by
hyperinsulinemia, hyperglycemia, and changes in nucleoside extracellular concentration and
dyslipidemia associated with this pathology could play a role in this phenomenon since
dyslipidemia is a risk factor to develop endothelial dysfunction and atherosclerosis [6].
Additionally, GDM predisposes to an accelerated development of cardiovascular disease
(CVD) in adult life and as most of pregnancies with GDM course with elevated dyslipidemia,
is feasible found a pathological link between dyslipidemia in GDM pregnancies and devel‐
opment of CVD later in life [6,7].

The hypertrygliceridemia described in GDM is directly related with the fetal macrosomia
characteristic of this pathology, and a positive correlation between maternal triglycerides
levels and neonatal body weight or fat mass has been found in GDM [7,8].
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Even when hypercholesterolemia, described in GDM, is not related with the fetal macrosomia,
could be related with fetal endothelial dysfunction and later development of cardiovascular
diseases in the adulthood [6].

Although lipid traffic through the placenta is restrictive, a correlation between maternal and
fetal blood cholesterol in the first and second trimesters of pregnancy has been established,
suggesting that maternal cholesterol level could alter normal development of the fetus [9]. In
fact it has been reported that due to altered lipid metabolism in the placenta as a result of high
maternal blood cholesterol, atherogenesis, a clinical complication commonly appearing in
adults, probably begins in fetal life with similar factors altered at the mother, the fetus and the
placenta [9, 10].

In this regard, GDM correlates with placental macro and microvascular endothelial dysfunc‐
tion, also considered as early marker of atherosclerosis, and neonates from GDM pregnancies
have significant increase in the aortic intima-media thickness and higher lipid content, both
considered as subclinical markers of atherosclerosis, conditions that will potentially increase
the atherosclerotic process later in life [11,12].

Since the lack of information in the literature, nothing is yet available about the potential effect
of hypercholesterolemia in GDM pregnancies regarding development of endothelial dysfunc‐
tion and atherosclerosis in human fetoplacental vasculature [6], however cumulative evidence
shows that high levels of blood cholesterol modify the endothelial function in different
vascular beds, mostly associated with reduced vascular nitric oxide (NO) bioavailability (i.e.
the L-arginine/NO pathway) and elevated oxidative stress leading to reduced vascular
reactivity, and then vascular reactivity in children and adults [13].

Several changes caused by hypercholesterolemia could explain these alterations including
post-transcriptional down-regulation of cationic amino acid transporters (hCATs)-mediated
L-arginine transport [14], reduced NO synthase (NOS) expression [15], reduced expression of
tetrahydrobiopterin (BH4) an NOS cofactor [16], and increased expression and activity of
arginases (enzymes that compete by L-arginine with NOS) [17] among others factors that
finally leads to reduction of NO synthesis and endothelial dysfunction. Interestingly, these
mechanisms have not been evaluated in GDM coursing with hypercholesterolemia [6].

2. Hypercholesterolemia in pregnancy

Several reports show that pregnancy is a physiological condition characterized by a progres‐
sive, weeks of gestation-dependent increase (reaching 40-50%) in the maternal blood level of
cholesterol [1,2]. This phenomenon is known as maternal physiological hypercholesterolemia
in pregnancy (MPH), and is considered to be an adaptive response of the mother to satisfy the
high cholesterol demand by the growing fetus [3,4].

In the lack of a consensus and currently available information for general population, a mean
value calculated from the reported data in the literature rising to ~247 mg/dl of blood choles‐
terol could represents a state of MPH (see table 1). When a maternal misadaptation to the
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cholesterol demand by the fetus occurs, a group of these women develop a pathological
condition described as maternal supraphysiological hypercholesterolemia (MSPH) in preg‐
nancy [5]. Unfortunately, the establishment of a cut-point value for this condition is difficult
to define because the scare information in the literature regarding this condition. However, a
review of the available information allows establish a MSPH condition when the maternal
blood cholesterol at term of pregnancy level is over the 90th percentile or establishing a cut-
point defined by different authors and based in their findings (Table 1).

With this global lack of information, the prevalence of MSPH in the pregnant population is
unknown and could certainly be a consequence of the fact that maternal blood cholesterol level
is not routinely evaluated during pregnancy. However, has been reported that the global
prevalence for high blood cholesterol level (>200 mg/dl) in non-pregnant women is 40% with
a range between 23% (Asia) and 53% (Europe) [18]. Based on this official information from
WHO and assuming that pregnancy results in an increase of 40-50% in blood cholesterol [4],
it is conceivable that a significant number of women that get pregnant will develop MSPH and
who will potentially present an adverse intrauterine condition that could result in facilitating
the developing of vascular alterations and atherosclerosis in the growing fetus.

2.1. Cholesterol traffic in pregnancy

Although lipids traffic through the placenta is restrictive and children born from MSPH
generally have normal blood cholesterol level [19], a correlation between maternal and fetal
blood cholesterol in the first and second trimesters of pregnancy has been established [9,20].

The sources of cholesterol for fetal metabolism along with endogenous production by fetal
tissues include transplacental mother-to-fetus transport of cholesterol [9,19,21-26].

The maternal cholesterol must cross two layers of cells to enter in the fetal circulation, the first
one are the trophoblast cells and the second one are the endothelial cells [19,27] (Figure 1).

In the maternal circulation the cholesterol is mainly transported in low density (LDL) and high
density (HDL) lipoproteins which interacts with their membrane receptors, the LDL receptor
(for native LDL (nLDL) and oxidized LDL (ox LDL)), the lectin-like oxidized low-density
lipoprotein receptor-1 (LOX-1, for oxLDL), and scavenger receptor class B type I (SR-BI, for
HDL and oxLDL) to deliver the cholesterol content into the cell [28,29]. These lipoprotein
receptors are expressed in placental cells including trophoblast and endothelial cells [23,30].
Once in the trophoblast cells, the cholesterol may exit cells secreted as lipoprotein or effluxed
from the cellular membrane to extracellular acceptors precursors of mature lipoproteins (i.e.,
apolipoproteins or discoidal phospholipids) [19]. In the next step, this cholesterol is uptake by
endothelial cells to be deliver in the fetal circulation, phenomenon where the expression of
cholesterol transporters type ATP binding cassette transporter sub-family A member 1
(ABCA1) and sub-family G member 1 (ABCG1) is determinant since these transporters
participate in the efflux of cholesterol to nascent fetal lipoproteins [26,31]. In this scenery the
phospholipid transporter protein (PLTP) also participate in the formation of fetal HDL (fHDL)
contributing with the efflux of phospholipids to nascent fHDL [26] (Figure 1).
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Studied population (n)
Blood cholesterol (mg/dl)

Ref.
MPH Cut-point for MSPH

USA (29) 251 318 [5]

USA (142) 260 300 [157]

USA (553) 250 300 [158]

Canada (59) 248 290 [24]

Mexico (130) 189 - [159]

Argentina (101) 244 - [160]

Chile (86) 263 280 [unpublished]

UK (8) 289 - [161]

UK (40) 315 - [162]

UK (114) 273 - [163]

UK (118) 246 - [163]

UK (178) 264 - [164]

Italy (82) - 281 [9]

Italy (156) - 280 [21]

Italy (72) 205 280 [165]

Italy (22) 286 - [1]

Norway (12.573) 211 - [166]

France (73) 242 - [167]

Germany (150) 253 - [168]

Spain (45) 225 - [143]

Spain (66) 259 - [169]

Portugal (67) 285 - [170]

Finland (22) 274 - [171]

Japan (19) 280 - [172]

China (20) 184 - [173]

Pakistan (45) 209 - [174]

Nigeria (222) 204 - [175]

Tunisia (30) 222 - [176]

Mean 247

The values correspond to the third trimester of pregnancy. MPH: maternal physiological and hypercholesterolemia,
MSPH: maternal supraphysiological hypercholesterolemia.

Table 1. Maternal total cholesterol in MPH and MSPH pregnancies.
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Thus the mother-to-fetus transport of cholesterol seems to be a controlled process that is crucial
in fetal development; however the effect of a supraphysiological level of maternal cholesterol
will modify the traffic of cholesterol increasing the risk of developing fetal vascular anomalies
such as those seen in atherosclerosis [31].

2.2. Consequences of MSPH in the fetus

Studies in aortas from spontaneously aborted human fetuses and premature newborns (24-30
weeks of gestation) demonstrate that offspring from mothers with MSPH in pregnancy exhibit
more and larger aortic lesion which were positive for almost one marker of atherosclerosis
among the presence of macrophages and foam cell, LDL, oxLDL and oxidation-specific
epitopes [9]. These data were additionally supported by another autopsy study that deter‐
mined that children (1-13 years old) of mothers with MSPH in pregnancy exhibit faster
progression of atherosclerotic lesions [21].

At present, the effect of MSPH have been evaluated as atherosclerosis in fetal arteries but the
vascular effects of MSPH could be determined in placental vessels since its cells are indirectly
exposed to maternal cholesterol (see section Cholesterol traffic in pregnancy). Interestingly, it has

Figure 1. Mother-to-fetus transport of maternal cholesterol. In the maternal circulation (higher levels of plasma cho‐
lesterol) the cholesterol (Ch) is mainly transported in low density lipoproteins (LDL) (natives, nLDL and oxidized, oxLDL)
and high density lipoproteins (HDL) lipoproteins and delivered into the trophoblast by LDL receptor (LDL-r) and scav‐
enger receptor class B type I (SR-BI). The cholesterol deliver to extracellular matrix (ECM) and is uptake by endothelial
cells through unknown mechanisms to finally, be delivered to the fetal circulation by the of cholesterol transporters
type ATP binding cassette transporter sub-family A member 1 (ABCA1) and sub-family G member 1 (ABCG1), which
together with phospholipid (PL)-transfer protein (PLPT) contribute with the assembly of fetal lipoproteins. In fetal cir‐
culation (lower levels of plasma cholesterol) cholesterol is deliver to acceptors as ApoAI and nascent fetal HDL (fHDL).
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been shown that MSPH is associated with increased expression of placental genes related to
cholesterol metabolism (i.e. fatty acid synthase (FAS), sterol regulatory element-binding
protein 2 (SREBP2)), thus exposing the fetus to an altered lipid environment and eventually
promoting vascular alterations [24]. Additionally, increased level of maternal cholesterol and
LDL leads to down-regulation of LDL receptor expression in whole placenta homogenized
without changes in the expression of HDL receptor (SR-BI) [32], suggesting that the increase
in the LDL concentration in the maternal blood induce the regulation of the LDL receptor
expression. Interestingly these alterations are not related with changes in the newborn lipid
levels, in fact normal levels of LDL and total cholesterol are determined at birth in the fetal
blood of newborns from mothers with MSPH.

These data provide evidence for the potential effect of MSPH on the placenta and its conse‐
quences for the fetus where vascular lesion progression is triggered. However, even knowing
this available information nothing is reported regarding whether abnormal maternal blood
cholesterol level leads to placental vascular dysfunction [10,33].

3. Endothelial function in normal pregnancies

The placenta is a physical and metabolic barrier between the fetal and maternal circulation.
The normal development and function of the placenta and the umbilical cord are crucial to
sustain the adequate fetal development and growth [34]. The human fetoplacental circulation
under physiological conditions exhibits a high blood flow and low vascular resistance [35].
Since it lacks of autonomic innervation [36] the equilibrium between the synthesis, release and
bioavailability of vasoconstrictors and vasodilators circulating and locally released, such as
NO and adenosine, are crucial to maintain the control of fetoplacental hemodynamics [37,38].
In a physiological context, different pathologies of pregnancy such as GDM [38,39], intrauter‐
ine growth restriction (IUGR) [40] or preeclampsia [41], exhibits altered synthesis and/or
bioavailability of NO leading to changes in blood flow of the human placenta thus limiting
fetal growth and development [37,38,42]. These conditions produce an imbalance or loss of
essential endothelial functions leading to altered blood flow in the fetoplacental unit mainly
associated with altered NO synthesis and membrane transport of the semi-essential cationic
amino acid L-arginine, i.e., the ‘endothelial L-arginine/NO pathway’ (Figure 2) [35,42,43].

3.1. Endothelial L-arginine/NO signaling pathway

Synthesis of NO requires active NOS, a group of enzymes conformed by, at least, three
isoforms, i.e., neuronal NOS (nNOS or type 1), inducible NOS (iNOS or type 2) and endothelial
NOS (eNOS or type 3), of which mainly eNOS is expressed in endothelial cells [43,44]. The NO
diffuses from endothelium to vascular smooth muscle cells leading to cyclic GMP (cGMP)-
dependent vasodilatation [45].

Activity of NOS may depend on the ability of endothelial cells to take up its specific substrate
L-arginine via a variety of membrane transport systems [42,43,46,47]. L-Arginine is taken up
into the endothelial cells through the membrane transport systems y+ (cationic amino acid
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transporters family, CATs), y+L (very high affinity transporters), b0,+ and B0,+ (Na+-independent
and dependent, respectively) [48,49,50]. CATs is a family of membrane transporters with at
least 5 isoforms identified in human tissues, i.e., human CAT-1 (hCAT-1), hCAT-2A, hCAT-2B,
hCAT-3 and hCAT-4 [43,51]. In endothelial cells from the human placenta such as human
umbilical vein endothelial cells (HUVEC) and human placental microvascular endothelial cells
(hPMEC), only hCAT-1 and hCAT-2B isoforms like transport have been identified, the first
exhibiting low-capacity and high-affinity, and the second exhibiting higher-capacity and
lower-affinity [41,51]. Moreover, eNOS activity seems to depend on the ability of these cells to
take up L-arginine mainly via hCAT-1 and/or hCAT-2B [40, 33, 52]. Interestingly in patholog‐
ical conditions such as GDM the L-arginine/NO pathway is highly up-regulated in HUVEC [6,
39, 53, 54] (Figure 2).

4. Hypercholesterolemia and endothelial L-arginine/NO pathway

Endothelial dysfunction and reduced NO seems are considered early markers in the devel‐
opment of cardiovascular disease [55-58]. Thus, studies designed to evaluate the impact of

Figure 2. Endothelial L-Arginine/NO pathway regulation by GDM and MSPH. In human endothelial cells L-arginine is
mainly taken up via cationic amino acid transporter 1 (hCAT-1). Then, L-arginine is metabolized in nitric oxide (NO)
and L-citrulline by endothelial NO synthase (eNOS). In GDM is described an increase (blue up arrows) in the elements
in L-Arginine/NO pathway, but with a decrease in NO bioavailability leading endothelial dysfunction. As seen in other
vascular beds, MSPH leads to decreased (green down arrows) hCAT-1 and eNOS expression; and NO synthesis leading
also to endothelial dysfunction.
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hypercholesterolemia (in non-placental vessels) have determined that this pathological
condition induces endothelial dysfunction in vessels of the macro and microcirculation, but
the biological effects may differ between both vascular beds [59-60]. It has been shown that
high levels of total cholesterol and oxLDL impair endothelial function increasing the produc‐
tion of the vasoconstrictor endothelin-1 [61-62] and reducing NO bioavailability [13,63-67],
alterations that have been associated with impaired endothelium-dependent relaxation
[68-73]. Therefore, alterations in cholesterol levels leading to endothelial dysfunction in
different vascular beds have been associated with molecular changes in the expression and
activity of different component of the L-arginine/NO pathway, thus decreasing the production
or bioavailability of NO (Table 2). However, no studies have addressed whether elevated
maternal blood cholesterol modulate L-arginine/NO pathway and endothelial function in
placental endothelial cells form pregnancies coursing with MSPH or pregnancy diseases
associated with increased levels of cholesterol as GDM or preeclampsia [12,35].

4.1. eNOS expression and activity in hypercholesterolemia

Hypercholesterolemia is associated with decreased expression of eNOS in aortic rings of
hypercholesterolemic rabbits [58] and in human saphenous vein endothelial cell, porcine aortic
endothelial cells and HUVEC expose to high concentration of nLDL or ox-LDL [15,75,76], an
effect that is reversed by restitution of normal blood cholesterol level (e.g., with the use of
statins). The mechanism behind this effect of hypercholesterolemia on eNOS expression is not
well understood and few studies have proposed a time- and concentration-dependent decrease
in eNOS mRNA level involving transcriptional inhibition and reduced mRNA stability (i.e.,
reducing eNOS mRNA half-life) [15,75,76].

Additionally to down regulation of  eNOS expression,  high levels  of  cholesterol  are also
associated with changes in eNOS cellular localization and function, a phenomenon related
with up-regulation of the protein caveolin [77-83]. In the endothelial cell eNOS targets to
caveolae [70,71] where it is functionally inhibited by binding to caveolin [84-87]. Optimal
eNOS activity occurs when the eNOS-caveolin complex interaction is disrupted by calcium-
calmodulin binding to eNOS-caveolin [87]. It has been shown that caveolin expression is
regulated by cholesterol increasing eNOS-caveolin complex formation, and diminishing NO
production [88-90].

4.2. Asymmetrical dimethylarginine (ADMA) availability in hypercholesterolemia

ADMA, an arginine metabolite proposed as endogenous inhibitor of eNOS [91-95], is increased
in hypercholesterolemic monkeys [92] and in human endothelial cells incubated with high
concentration of nLDL and oxLDL [96]. The mechanisms involved in this phenomenon are the
up-regulation of the expression of protein arginine N-methyl transferases (PRMTs), which are
involved in the synthesis of ADMA and decreased activity of dimethylarginine dimethylami‐
nohydrolase (DDAH), an enzyme responsible of ADMA degradation [78,82,83]. Moreover, the
regulation of ADMA is relevant in the atherogenic process and extensive data have shown a
good correlation between plasmatic levels of ADMA and the presence of atherosclerosis [92].
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Thus, this is a different way by which increased levels of cholesterol leads to a reduction in

NO synthesis.

Element Gestational Diabetes Mellitus Non-pregnancy

Hypercholesterolemia

Cell type Effect References Cell type Effect References

hCATs expression HUVEC Increased [43] EAhy926 Increased [113]

rAR Increased [114]

hCATs activity HUVEC Increased [43] EAhy926 Increased [113]

rAR Reduced [14]

bAEC Reduced [111]

pAEC Reduced [74]

HUVEC Unaltered [109]

HUVEC Unaltered [110]

eNOS expression HUVEC Increased [28,43] hSVEC Reduced [15]

hPT Increased [177] rbAS Increased [75]

rbAS Reduced [152]

HUVEC Reduced [76]

pAEC Reduced [180]

eNOS activity HUVEC Increased [28,29,43] hSVEC Reduced [15]

hVT Unaltered [178] rbAS Reduced [152]

HUVEC Reduced [76]

pAEC Reduced [74]

rAC Reduced [181]

NO level HUVEC Increased [179] hSVEC Reduced [15]

Arginase I hPBMC Increased [182]

Arginase II hAEC Increased [17,114,115]

mAEC Increased [114,115]

hCATs, human cationic amino acid transporters; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; HUVEC,
human umbilical vein endothelial cell; hPT, human placental tissue; hVT, human villous tissue; EAhy 926, human
endothelial cell line EAhy 926; rAR, rat aortic ring; bAEC, bovine aortic endothelial cell; pAEC, porcine aortic
endothelial cell; hSVEC, human saphenous vein endothelial cell; rbAS, rabbit aortic segment; rAC, rat aortic cell;
hPBMC, peripheral blood mononuclear cells; hAEC, human aortic endothelial cell; mAEC, mouse aortic endothelial
cell. Table modified from reference 6.

Table 2. Effect of GDM and hypercholesterolemia on endothelial L-Arginine/NO pathway.
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4.3. Tetrahydrobiopterin (BH4) availability in hypercholesterolemia

A reduced expression of the eNOS cofactor BH4 leads to deficient activation (or even uncou‐
pling) of eNOS, a phenomenon characterized by eNOS-reduction of molecular oxygen by a no
longer coupled L-arginine oxidative mechanism resulting in generation of superoxide anion
rather than NO [98]. This phenomenon contributes to vascular oxidative stress and endothelial
damage and dysfunction [16]. Hypercholesterolemic mice and rabbit exhibit reduced level of
BH4 in the aorta and myocardium [99,100], a phenomenon related with endothelial dysfunction
and major progression of atherosclerosis. Additionally, it has been demonstrated that BH4

supplementation improves the endothelial function in hypercholesterolemic patients
[101,102], suggesting that this cofactor is reduced in this pathological condition. Endothelial
cells from the human placenta vasculature express functional BH4 which is reduced with the
progress of pregnancy by a mechanism involving lower activity of guanosine triphosphate
cyclohydrolase I (GTPCH) and 6-pyruvoyl tetrahydropterin synthase (PTPS), key enzymes
involved in BH4 synthesis [103,104]. Alternatively, in other cell types, a reduced level of BH4

dependent of down-regulation of GTPCH expression has been associated with hypercholes‐
terolemia in rat macrophages and smooth muscle cells [105,106].

4.4. L-Arginine transport in hypercholesterolemia

Decreased bioavailability of L-arginine could result from reduced expression and/or altered
cellular localization of hCATs, as reported for hCAT-1 and potentially hCAT-2B in HUVEC
[53,54,107,108]. Interestingly, it was initially shown that hCAT-1–like transport was unaltered
by oxLDL in HUVEC cultures [109,110]. However, no kinetic parameters were addressed in
these studies opening the possibility that L-arginine transport at a unique fixed concentration
of this amino acid (100 µM) [109] could be insensible to oxLDL, or that a long period of
incubation for L-arginine uptake (1-24 hours) [110] will not be a condition close to initial
velocity for transport, something required for this type of analysis [49,51]. Additional studies
in other types of endothelial cells show that LDL (native or oxLDL) reduces L-arginine
transport in aortic endothelium from hypercholesterolemic rats, involving protein kinase C
[14]; and bovine aortic endothelium where a maximal transport capacity (Vmax/Km) [49] is
reduced [111,112]. Interestingly, human aortic endothelial cells exposed to nLDL/oXLDL
exhibit decreased intracellular content of L-arginine, a phenomenon explained as resulting
from post-translational down-regulation of CAT1 and increased CAT1 internalization [102].
In addition, and highlighting the involvement of L-arginine transport in placental vascular
reactivity, recent studies suggest that L-arginine transport mediated by hCAT-1 will be a
mechanism limiting human placental vascular reactivity since reduced transport (by the use
of N-ethylmaleimide) or cross-inhibition (by L-lysine) of hCATs leads to reduced insulin-
induced dilatation of human umbilical vein rings from normal pregnancies [54].

4.5. Arginases expression in hypercholesterolemia

Up-regulation of arginases (isoforms I and II) is another mechanism by which NO synthesis
is  proposed  to  be  reduced  leading  to  placental  endothelial  dysfunction.  Arginases  are
enzyme  competing  by  L-arginine  with  eNOS  [17,114,115],  favoring  conversion  of  L-
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arginine into L-ornithine and urea.  Therefore,  an increase in arginases activity will  limit
the availability of L-arginine to be metabolized by eNOS for NO synthesis. Interestingly, a
link between hypercholesterolemia and arginase I and II expression has been demonstrat‐
ed  in  mice  [115]  and  in  human  aortic  endothelial  cells  [116]  where  oxLDL  induces  an
overexpression of arginases and a reduction of total eNOS protein abundance associated
with lower NO production [114], mostly by the interaction with LOX-1 receptor and the
activation of the small GTPase RhoA and Rho A kinase (ROCK) signaling pathway [17].
Interestingly,  the  reduction  of  arginases  activity  caused  by  statins  in  hypercholesterole‐
mic subjects improves the endothelial function [117].  These findings show that arginases
could  play  a  role  in  the  modulation  of  endothelial  function,  most  likely  regarding  NO
synthesis by competing for L-arginine with eNOS.

5. Gestational diabetes mellitus

GDM is a syndrome characterized by glucose intolerance with onset or first recognition during
pregnancy [118-120]. Clinical manifestations of GDM have been attributed mainly to the
condition of hyperglycemia, hyperlipidemia, hyperinsulinemia, and fetoplacental endothelial
dysfunction [34,37,119,121,123]. GDM is also associated with abnormal fetal development and
perinatal complications, such as macrosomia, neonatal hypoglycemia, and neurological
disorders [121]. This syndrome occurs with a high incidence, depending on diagnostic criteria
used, ranging between 5 and 15% of pregnant women in developing [124,125] and developed
countries [120,126-128].

Altered vascular reactivity is a characteristic of GDM and is due to endothelial dysfunction at
the micro and macro fetoplacental vasculature [34,37,129-134].

Even when hyperglycaemia is the principal factor leading to endothelial dysfunction, other
factors are involved including hyperinsulinemia and the extracellular nucleoside adenosine
level [39,133,134]. Since GDM is associated with MSPH, this factor could also contribute with
this phenomenon although the effect is actually unknown.

5.1. Endothelial function in GDM and L-arginine/NO pathway

It has been reported that the NO level in the human umbilical vein blood is increased in
GDM [127] and that in HUVEC from GDM the synthesis of NO is increased [39,53, 135,
136]. These findings were associated with a constitutive increase in the number of copies
for eNOS mRNA, as well as increased eNOS protein level and activity. Other studies show
that  in  HUVEC isolated from GDM the L-arginine  transport  is  increased due to  higher
maximal velocity (Vmax)  for transport,  most likely resulting from increased expression of
hCAT-1 [53,133]. Even when the synthesis of NO is increased in GDM cells, the bioavaila‐
bility of this vasodilator is reduced leading to an state of endothelial dysfunction [6,34,39,
123] (Figure 2).  Thus, the vascular reactivity of umbilical vein rings from GDM is lower
compare with rings from normal pregnancies [39]. This phenomenon has been suggested
to result  from a less  reactive umbilical  vein due to  a  tonic  and basal  increased state  of
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vasodilation by over-release and/or accumulation of adenosine,  a nucleoside that induce
vascular relaxation, in the umbilical vein blood [39].

6. Dyslipidemia in GDM

GDM is a pathological condition also characterized by maternal dyslipidemia, alterations that
affect directly the fetal development and growth [123].

Dyslipidemia is defined as elevated levels of triglycerides (hypertriglyceridemia) and total
blood cholesterol (hypercholesterolemia) including increased LDL and reduced HDL choles‐
terol [137]. Dyslipidemia is recognized as the main risk factor for development of CVD
[137,139]. Additionally, GDM has also been established as a significant risk factor to fetal
programming of metabolic syndrome [140-142] and thus predisposing to accelerate the
development of CVD in the adult life [141-146].

Interestingly, most of pregnancies that develop GDM course with dyslipidemia [7,24,147]
(Table 3) and thus could be feasible to found a pathologic link between dyslipidemia in
pregnancies with GDM and the development of CVD later in life.

GDM is related with fetal macrosomia and endothelial dysfunction and interestingly both
characteristic could be related with the associated dyslipidemia. The association between
dyslipidemia and macrosomia regards hypertriglyceridemia more than hypercholesterolemia;
in fact, a positive correlation between maternal triglycerides and neonatal body weight or fat
mass has been found in GDM [7,141,142]. In the other hand, hypercholesterolemia could
contribute with the endothelial dysfunction described in the pathology [6,142,149]. Thus GDM
could play a role in the fetal programming of adult CVD not only by the classical alterations
mainly triggered by hyperinsulinemia, hyperglycaemia and changes in nucleoside extracel‐
lular concentration, but also by hypercholesterolemia associated with this pathology
[6,142,149]. However, no studies have addressed whether elevated maternal blood cholesterol
in GDM modulate endothelial function in placental endothelial cells [33].

6.1. Cholesterol metabolism in GDM

The increased levels of maternal cholesterol in GDM (Table 3) are related with alterations in
the expression of proteins involved in lipid and cholesterol homeostasis [24,150,151].

Although MSPH is associated with decreased expression of LDL receptor in the placenta, the
effect of GDM-associated dyslipidemia on lipoprotein receptors expression is unknown
[24,32]. A study of microarray profile determined changes in the expression of multiple genes
involved in lipid and cholesterol metabolism in placental tissue of pregnancies coursing with
GDM. These genes include the fatty acid coenzyme A ligase, long chain 2, 3 and 4 (FACL2,3,4)
that catalyze the conversion of fatty acids into fatty acyl-CoA esters (precursors for the
synthesis of triglycerides, cholesterol, and membrane phospholipids), additionally 3-hy‐
droxy-3-methylglutaryl-Coenzyme A reductase (HMGCR), 3-hydroxy-3-methylglutaryl-
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1°trimester 2°trimester 3°trimester Reference

TG 101* 142* 187* [147]

(mg/dl) 286* 271* [183]

226* [184]

260* [185]

268 [24]

220 [158]

203 [186]

214 [187]

Ch 203* 226* 281* [147]

(mg/dl) 241 224 [183]

242 [184]

267 [24]

197 [158]

243 [185]

246 [187]

LDL 145 130 [183]

(mg/dl) 129 [187]

130 [184]

148† [185]

143 [24]

197 [158]

Values of cholesterol (Ch) and triglycerides (TG) in GDM pregnancies were compared with those of normal pregnancy.
*: level increased compared with a control group without GDM. †: level decreases compared with a control group without
GDM. LDL: low-density lipoprotein.

Table 3. Maternal lipids levels GDM pregnancies.
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Coenzyme A synthase (HMGCS 1) among other genes involved in the novo synthesis of
cholesterol were also regulated [150] and even when in this study the level of cholesterol were
not determined among normal and GDM pregnancies, these data suggest that GDM leads to
changes in genes related with cholesterol metabolism in the placenta. Previously was described
that MSPH associates with increased expression of FAS and SREBP2 in the placenta, while the
effect in FAS was observed also in placental cells from GDM without changes in SREBP2
expression [24].

These data suggest that both MSPH and GDM associates with changes in key element in the
lipids metabolism, however, if MSPH potentiate the effect of GDM over theses parameters is
unknown [6].

Another lipid modulator modified by GDM in placental cells is PLTP, a key protein involved
in the metabolism of fetal HDL. PLTP is expressed in endothelial cells of the placental
vasculature and is regulated as ABCA1 and ABCG1 by liver X receptor (LXR) nuclear receptors
[26,152,153]. Interestingly diabetes leads to increased levels of the principal ligand of LXR, the
oxysterols [154] and GDM associates with up-regulation of PLTP in endothelial cells of the
placenta [151] mainly due to the hyperinsulinemia and hyperglycaemia related with GDM.
The increased expression of PLTP could be a key phenomenon associated with the increased
concentration of HDL described in newborns from GDM [11,151]. Additionally, the increased
expression of PLTP in placental endothelial cells could affect the maternal to fetal cholesterol
transport, a phenomenon not yet evaluated and potential worsen by conditions as MSPH
where the mother-to-fetus cholesterol transport may be altered almost in the first months of
pregnancies when the levels maternal cholesterol correlates with the fetal ones [9].

6.2. Hypercholesterolemia in GDM and endothelial dysfunction

As was previously discussed, physiological increase in the levels of maternal cholesterol is
considered to be an adaptive response of the mother to satisfy the high lipids demand by the
growing fetus. The misadaptation to this condition leads to develop MSPH a phenomenon
associated with the earlier development of fetal atherosclerosis and with reduced endothelial
function of the umbilical vein [6].

Additionally and regarding with the development of atherosclerosis, it is recognized that GDM
correlates with endothelial dysfunction [34,39] and neonates of pregnancies coursing with
GDM have significant increase in aortic and umbilical artery intima-media thickness (IMT)
and higher lipid content, both markers of subclinical atherosclerosis that could increase the
atherosclerotic process later in life [12,155,156].

The effect of GDM in the aortic IMT of newborns was assayed and an increased intimal-
medial ratio was determined. Interestingly the IMT was evaluated in newborns of pregnan‐
cies coursing with GDM and increased levels of total cholesterol and LDL compared with the
control group [12]. Thereby may be possible to found a potential effect of MSPH in this phenom‐
enon. Similar findings were found in fetus in the lasts weeks of gestation where the IMT was
evaluated in umbilical artery, where umbilical IMT was increased in arteries from GDM
pregnancies, however the potential effect of maternal cholesterol was not evaluated [156].
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Unfortunately, nothing is yet available regarding the potential effects of MSPH in pregnancies
coursing with GDM on the development of endothelial dysfunction and atherosclerosis in
placental and eventually in fetal vessels at birth, a phenomenon that could leads to a poten‐
tiation of GDM-associated fetoplacental endothelial dysfunction.

7. Concluding remarks

MSPH is a risk factor promoting the development of atherosclerosis in the growing fetus and
in the children, however the effects of this condition in fetoplacental endothelium is unknown
even when increased levels of maternal cholesterol could lead to alterations in the hCAT-
mediated L-arginine transport and eNOS-synthesis of NO (i.e., the endothelial L-arginine/NO
signaling pathway) such as occurs in other vascular beds exposed to high cholesterol levels.

GDM is a condition that course with alterations of the L-arginine/NO signaling pathway in
the human fetoplacental vasculature, phenomenon resulting in abnormal bioavailability of
NO leading to altered vascular reactivity and changes in umbilical vessels blood flow with
consequences in the fetal growth and development.

Interestingly, some pregnancies coursing with GDM associates with MSPH and the possibility
that the observed fetoplacental endothelial dysfunction results from a potentiation of the
classical factor associated with GDM and the increased levels of cholesterol is likely.

Further studies are required to elucidate whether pregnancies coursing with GDM and MSPH
have different effect in placental endothelial function compare with those coursing with GDM
and normal levels of maternal cholesterol because it could be possible find a different mech‐
anism involved in both cases.

This may contribute to understand the mechanisms related with the vascular dysfunction
associated with GDM and allow establishing a better knowledge based- management of the
mother and the newborn.
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