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1. Introduction

Eventually there may be enough pieces to form a meaningful language which could be called parascript - the language

of parasites which tells of themselves and their hosts both of today and yesteryear (Manter, 1966) [1].

Few biological interactions have deserved so much attention from biologists during the latter
part of the 20th century than host-parasite interactions. Parasites seem to throw a special light
on the problems of ecology and evolution. Host-parasite interactions should be considered
fine-grained biological models through which major changes in ecosystems can be monitored,
e.g., global climate change [2,3]. In the following pages I will review as briefly as possible the
main pathways that research on the historical biogeography of parasites has traversed ever
since the American parasitologist Harold W Manter coined the term that is the subject matter
of this chapter, parascript.

The historical biogeography of parasites is the concern of this chapter mainly because this
discipline has gathered a great deal of information during the last two decades on both
ecological and evolutionary studies that could be of extended use for future generations in
order to know what to do with this planet.

In the late 19th century host-parasite interactions were under the scrutiny of evolutionary
biologists ever since von Ihering [4,5,6] anticipated that the location of modern host and
parasite biotas (he studied helminths and lice) could be evidence of past distributions. That
was a  time when Darwin’s  natural  selection was under much debate,  and host-parasite
studies  were  used  as  proof  of  evolutionary  change  through  channelled  paths,  called
orthogenesis,  an  opposing  view  to  natural  selection.  Nevertheless,  thanks  to  von  Iher‐
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ing’s anticipated insight continental drift and plate tectonics would become part of the core
of recent parascript studies [6].

Klassen [6] and Brooks [7,8] concluded that the history of the impact of parasite studies in
evolutionary biology had been significantly outstanding during the first half of the 20th century.
During the critical years of debates on the mechanisms of evolution, e.g., selectionism vs. non-
selectionist alternatives (end of 19th and first decades of the 20th century), parasites were at the
core of such discussions. Yet, the demise of evolutionary studies on parasites occurred after
the inception of the Modern Synthesis of Evolution [8], mainly because parasites fell into
discredit as dead evolutionary ends, and as degenerate organisms living at the expense of their
hosts. As Fahrenholz viewed it [6,8], parasite evolution just mirrored host evolution. So why
bother study parasites under an evolutionary perspective?

American parasitologist Harold W Manter kept alive parasite evolutionary studies during the
1940’s and through the rest of his life. These studies were mainly historical biogeographic,
although he considered that the interplay between ecology and evolution is the language of
parasitology. He viewed such studies as bilingual messages that parasites conveyed, one from
the ecological realm and one from evolutionary biology. He named this type of studies,
parascript. Today we can interpret parascript studies as global research programmes that study
parasite ecology and evolutionary biology from the distinct standpoints of microevolution and
macroevolution.

Parascript studies were initially explored by helminthologists [6,7,8,9] but unknowingly left
out a great deal of information on insect ectoparasites as voiced by Ròzsa [10] (but see [11]).
Parascript studies, therefore, should not be restricted to the type of parasite. Parascript studies
should encompass all different types of parasites, whether ecto or endoparasitic. Yet, the
differences between them help monitor distinct levels of ecosystem structuring. It is probable
that helminth parasites have been surveyed more in relation to historical biogeographical
research than ectoparasites in general mainly because Professor Manter was a helminthologist.
Currently, parascript is the study of parasites that connect the phylogenetic, biogeographical,
historical, and ecological realms, where parasites play an important role as ‘thermometers’ of
environmental status and decidedly offer information on geomorphologic changes of the
earth’s crust, biogeography, and ecological status, where parasites as part of the interactor
universe of their hosts can indicate the connections within trophic foodwebs, migrations,
colonizations, and in situ speciation. They are an important if not one of the most important
components of biomass in coastal ecosystems [12]. In the words of Hoberg and Klassen [9]:
“parasites serve as keystones for understanding the history of biotas because of their critical
value as phylogenetic, ecological and biogeographic indicators of their host groups.”

2. Objectives

The aim of this chapter is to succinctly review past and present research on parasite historical
biogeography and concludes what shape could take future research. Parasites have lent
themselves to phylogenetic, ecological, and biogeographical analyses ever since von Ihering
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maintained that parasites represent conservative lineages and evolve in isolation [4] (now
called allopatric speciation). It was Metcalfe [6,8,13] who actually anticipated the necessity of
having phylogenies of both hosts and parasites.

Phylogenetic systematics in particular has played a strong guiding role in parasite historical
biogeography during the 20th century and well within the present one [8,14,15]. Parasite
ecology has generally followed a distinct path (but see [16,17,8]) that is the consequence of the
divorce between ecology and historical biogeography (16,17,18,19] but as rich in conclusions
as the evolutionary part. The integration of both disciplines has been named ‘parascript’ and
to a considerable extent, is part of historical ecology studies [1]. Parascript studies have
generally dealt with the reconstruction of ancient distributions and geological events, so
generally parascript studies have been equated with historical biogeography. Today, different
‘branches’ of historical biogeographical research have expanded into two seemingly different
research programmes: event-based historical biogeography and discovery-based historical
biogeography (‘pattern based’ of Ronquist and Sanmartin [20]). Parasite historical biogeogra‐
phy has benefited from both approaches, but mainly from the latter [21].

Historical background notwithstanding, the present review is centered on metadata based on
the relative number of studies published on parasites and historical biogeography that
generally utilize phylogenies as initial hypotheses of distribution and area delimitation. When
taxon cycles are involved in the discussion, I assume both vicariance and dispersal, according
to Halas et al. [22].

It is inevitable to ask why, despite the previous work done [8,15], hotly debated, on methods
of historical biogeography, parasite biologists insist on reconstructing host-parasite phyloge‐
nies first and add as secondary and unchanging information, geographic distribution? The
answer offered by historical biogeography cannot be more persuasive, as this chapter unfolds.

3. Definitions

Several definitions are necessary when discussing historical biogeography and parascript.
Terms have been discussed in several renderings [7,8,15,16,23]. It  is outside the scope of
this chapter to enter such a discussion. Although the most debated terms in evolutionary
biology  of  parasites  have  revolved  around  the  words  ‘coevolution’  and  ‘coadaptation’
(and  its  derivatives),  these  definitions  are  nearly  related  to  historical  biogeographical
concepts,  especially  when  ‘coevolution’  is  interpreted  as  homologous  to  ‘vicariance’.
Historical biogeography is the study of the phylogenetic relationships of different taxa and
the areas where they currently live in and where they probably were previously distribut‐
ed. For some authors [24] it is the study of the evolution of areas and their taxa inhabit‐
ing them. The point of  departure of all  these definitions is  the fact  that earth and biota
evolve simultaneously, at least as a starting or null hypothesis. It is better to say that earth
and biota can chronologically evolve in parallel because simultaneity could confound the
timing of vicariant and dispersal phenomena.
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Vicariance in temporal terms actually recovers only that part of the evolution of earth and biota
that occur simultaneously if earth evolution is deemed as the separation of landmasses, major
continental blocks, ocean and river basins, and mountain uplifting that leaves a permanent
effect on species. These effects can be traced to speciation events and host-switching, or
hybridization, among other phenomena. Dispersal under these terms is the movement,
idiosyncratic or concerted (as in range expansions or geodispersal) of whole populations or
communities of organisms over those earthly barriers already in existence, due to changes in
climate or the breakdown of previous barriers.

4. Methods

Database information today is a primer for further research. It is desirable that databases are
compiled and then published for the rest of colleagues interested in following some lines of
research, especially those who are newcomers to a field of study.

Databases consulted for the present chapter included mainly Web of Science® (WS 1899-
present) because other databases (Current Contents Connect® (1998-present), Biological
Abstracts® (1993-present), Zoological Record® (1976-present), and Journal Citation Re‐
ports®), are integrated to the WS, have a smaller year-span search record, and the records
found in them approximate but are not as complete as those of WS.

I followed in the lead of Poulin and Forbes [25] on the web-based research they employed on
host-parasite interactions. The database was developed as a result of the current objective
experience that is contained in the literature and research programmes that exploit to its full
extent the parascript concept, as defined by Manter [1], and further developed by Brooks and
McLennan [8], Hoberg and Klassen [9] and Hoberg et al. [26], among others and in posterior
publications by themselves and other researchers. Results were then incorporated into the
following categories.

4.1. Database entries

Entries were included accordingly as: general type of macroparasite, inferred historical
biogeographical patterns, time dimension, terrestrial geomorphological features, taxon level
analyzed, methods applied to historical biogeography analysis, and number of papers. Entries
included word combinations as ‘metadata* parasites* historical biogeography’, ‘parascript*
parasites’, ‘parasites* biogeography’, ‘parasites* historical biogeography’, ‘parascript’ as a
stand-alone, ‘parasite* biogeography’ and finally ‘parasite* historical biogeography’.

4.1.1. General type of macroparasite

Helminths, arthropods –three distinct entries were developed, one that included simultane‐
ously ecto and endohelminths, a second that only included ectoparasites such as mites, ticks
and lice, and a third one that included other types of arthropod parasites, e.g., Coleoptera,
Lepidoptera, Hymenoptera, Crustacea (Copepoda), and so forth. Pests are not included,
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although agricultural studies represent an area where several discoveries on parasite-host
interactions have had their point of departure [27].

4.1.2. Inferred historical biogeographical patterns

General type of inferred speciation was used as explanation for perceived patterns of historical
biogeography. I only grouped all inferred phenomena under two headings – vicariance and
dispersal. In the former I considered several names by which vicariance has come down in the
literature: coevolution (of parasites/areas), structure of trees not attributable to chance, host-
shifts promote speciation ≈ vicariance, cospeciation. Dispersal could be recovered from the
records as colonization, chance, non-vicariant processes, range expansion, and geodispersal.
Whether all of these designations are equivalent or not exactly equivalent to vicariance or
dispersal should not concern us here, as the major debates over historical biogeography clearly
are between ‘vicariancists’ and ‘dispersalists’ with a variety of definitions according to patterns
observed [23]. In the case of dispersion there is evidence that it is a phenomenon not due to
chance solely but owes its resulting patterns to other simultaneous events in time, or nearly
simultaneous events in time such as environmentally promoted range expansion [28]. When
the pattern inferred includes both vicariance and dispersal, I included a third entry.

4.1.3. The time dimension

Time is another entry that should be considered [29,20]. Needless to say, time is of central
importance in historical biogeographical studies [8]. Yet only in later papers time has become
more explicit a variable, and not just a framework, as molecular clocks have entered the arena
of historical biogeography through phylogeography [26,30-35].

I recorded entries according to the The Beringian Coevolution Project (BCP, [26]) publications
that have a clear use of the terms “deep-time” and “shallow-time”. Therefore, I recorded deep
time as >1x106 years and shallow time as <1x106 years. As many authors seem to combine in
their researches explanations that include both age groupings, -in recent papers there seems
to be an increase in the use of molecular clock data and phylogeography- I added the category
deep/shallow time.

4.1.4. Terrestrial geomorphological features

The terrestrial geomorphological features by scale were included in the analysis according to
the hierarchical classification of Baker [36]. Authors hardly mention any of these features. The
data were entered according to Table 1 but deliberately left out most of those areas that are
not mentioned. Area delimitation is still a problem in historical biogeography. No two authors
could really agree as to what an area is actually in historical biogeographical studies. ‘General
areas’ is a term often found in the earlier literature on historical biogeography. The first
attempts in parasite historical biogeography (summarized in [8]) clearly used drifting conti‐
nental masses through time, which represents apparently unequivocal designation to discrete
areas. Yet, when other geomorphological features are analyzed, authors have resorted to ocean
basins, river basins, intermontane geological features, subcontinental regions or vague
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geographical references, like ‘eastern’ or ‘western’ areas. There should be an explicit hierarch‐
ical usage of these areas for historical biogeographical phenomena operate at different
geographical and time scales. Other authors prefer to substitute areas with events [37].

Order Approximate

Spatial Scale (km2)

Characteristic Units (with examples) Approximate Time

Scale of

Persistence (years)

1 10 7 Continents, ocean basins 10 8 – 10 9

2 10 5 – 10 6 Physiographic provinces, shields, depositional plains,

continental-scale river drainage basins (e.g., Amazon,

Mississippi Rivers, Danube, Rio Grande)

10 8

3 10 4 Medium-scale tectonic units (sedimentary basins, mountain

massifs, domal uplifts

10 7 – 10 8

4 10 2 Smaller tectonic units (fault blocks, volcanoes, troughs,

sedimentary sub-basins, individual mountain zones)

10 7

5 10 - 10 2 Large-scale erosional/depositional units (deltas, major

valleys, piedmonts)

10 6

6 10 -1 - 10 Medium-scale erosional/depositional units or landforms

(floodplains, alluvial fans, moraines, smaller valleys and

canyons)

10 5 – 10 6

7 10 -2 Small-scale erosional/depositional units or landforms

(ridges, terraces, and dunes)

10 4 – 10 5

8 10 -4 Larger geomorphic process units (hillslopes, sections of

stream channels)

10 3

9 10 -5 Medium-scale geomorphic process units (pools and riffles,

river bars, solution pits)

10 2

10 10 -8 Microscale geomorphic process units (fluvial and eolian

ripples, glacial striations)

10 -1 – 10 4

Table 1. Classification of Terrestrial Geomorphological Features by Scale. Modified from Baker [36] (http://
disc.sci.gsfc.nasa.gov/geomorphology/GEO_1/GEO_CHAPTER_1.shtml).

4.1.5. Taxon level analyzed

Parasites and hosts have decoupled evolutionary histories [8,23,38] when colonization, host-
switching or failure to speciate concurrently with hosts has occurred. Analyzes involving
distinct taxon levels have made it clear that parasites seem to speciate in correlation with a
change in their physical conditions [39]. The level at which parasites seem to speciate more
frequently is at the family level of hosts, correlated with dispersal [38-40]. A distinction
between host and parasite levels involved in historical biogeography is at times explicit in such
studies. Parasite taxon and host level were recorded as: 1=species (or isolate)/genus, 2=genera
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(or tribes)/family or subfamily, 3=family/order, 4=order/class, and 5=multiparasite assemb‐
lages. When families belonged to the same order, order level was entered; when families
corresponded to different orders, multiparasite assemblage was entered instead. I recorded
intermediate hierarchical taxon levels as the immediate level above.

4.1.6. Methods applied to historical biogeography analysis

Not all methods were incorporated in the analysis, but only those that have been most widely
used [20,41].

Panbiogeography is not considered here a historical biogeographic method for it does not
consider the time dimension. Interesting research on panbiogeographic tracks of helminth
parasites have been published, especially for central Mexico [42,43]. Nevertheless, it is
considered here that historical biogeography should begin with phylogenetic reconstructions,
where the time dimension is implicitly or explicitly incorporated into such explanations.
Parsimony analysis of endemisms (PAE) papers were not considered as well, as PAE is a non-
historical method. PAE relies on current distribution information of organisms, as it analyzes
areas of endemism rather than phylogenetic frameworks of the groups studied rendering it
unsuitable as a method of historical biogeography [44].

Separate entries for method employed in historical biogeographical inference were incorpa‐
rated into the analysis. The combinations of words for generating these data were: Top‐
ic=(PARASITES* TREEMAP); (PARASITES* BROOKS PARSIMONY ANALYSIS*
HISTORICAL BIOGEOGRAPHY), (PARASITES* PARSIMONY* ANALYSIS* FOR COMPAR‐
ING TREES* PACT* HISTORICAL BIOGEOGRAPHY) (PARASITES* DISPERSAL* VICAR‐
IANCE* ANALYSIS* HISTORICAL BIOGEOGRAPHY).

When explanation for a pattern is referred to a previous work by the same author it is consid‐
ered as extending her/his hypotheses to works examined.

4.1.7. Number of papers

The number of papers based on the indicated word combinations was recovered as well as the
number of citations per year. I justify this part because it is interesting how the number of
publications on historical biogeography of parasites, especially eukaryotes, has fluctuated
since the early 1980’s. The number of citations was taken into account as a measure of how
many times published works have been used among researchers of historical biogeography
of parasites.

5. Results

The analysis of the database herein presented comprises mainly metazoan parasites of
vertebrates, because most of the work on historical biogeography of parasites comes from these
phyla. To my knowledge, no one has attempted a complete metanalysis of the works published
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on the historical biogeography of parasites from its beginnings to this time. The following
pretends to be a brief account of the data base search undertaken.

No entries for ‘metadata* parasites* historical biogeography’ were found. This means that
there are no metadata analyses of the historical biogeography of parasites. When the words
‘parascript* parasites’ was entered only 2 entries were recovered in all databases mentioned
above, i.e., Brooks and McLennan’s [8] book on parascript and Nadler’s [45] review in
Science. Nevertheless, what is probably the only attempt of reviewing the data on marine
parasites from a historical biogeographical standpoint was published nearly 10 years ago [9].
Therefore, more than 20 searches were made by combining ‘parasites* biogeography’,
‘parasites* historical biogeography’, ‘parascript’, among others. The entries ‘parasite* bio‐
geography’ gave 2677 records, while narrowing to ‘parasite* historical biogeography’ gave 209
records in an early search (136 in a later one, the origin of that difference could not be assessed).
Most of the latter records were contained in the former and because the former did not contain
additional information on historical biogeography, I chose the latter 209 records for a metadata
analysis.

From the initial 209 entries recovered from the WS, 205 qualified initially for historical
biogeography and parasites. When research was narrowed to those papers that concluded
with historical biogeography + parasites results, only 75 papers that explicitly report results
on the historical biogeography of parasites could be detected. Among these papers blood
parasites [46,47,48], plant parasites, mistletoes in South America [49], and fungi [50] are
included because it seems that there is a growing interest in historical biogeographical research
in non-metazoan eukaryotes that have been used as tags for migratory vertebrates.

Despite the importance of parasites and the consequences of parasitism in modern times, as
exemplified by the appearance of emerging infectious diseases [51], the evidence of the
interplay between taxon pulses and ecological fitting [28] in the structuring of host-parasite
communities in the Holarctic region (and purportedly in other regions of the globe) and its
restructuring derived from climatic cycling and current climatic change [26], it is surprising
that only circa 200 entries with the words ‘parasite historical biogeography’ could be recovered.
It is evident that a certain number of published works that do not include, happen to mention,
or were careful not to mention these words have been excluded from the aforementioned
database. For example, Brooks and McLennan’s [8,15,16] and references therein] works are not
included, when they actually contain the words ‘historical biogeography’ and ‘parasites’
repeatedly. Not a single paper of Nieberding and Morand [30-34] is ever mentioned, or the
recent book edited by Morand and Krasnov [35] on the biogeography of parasites.

5.1. General type of macroparasite

Metadata analysis of historical biogeographical studies of host/parasite/area (Figure 1)
indicates that helminth phyla have been the most studied group and within these helminths
of freshwater and marine fish, mammals, and birds of the Holartic region [26,30-34], followed
afar by bird and mammal ectoparasites (lice and ticks) from northern latitudes, as well [11,23].
A similar situation was recorded 10 years ago from marine parasite historical biogeography
[9, Table 1] where 68 works are recorded, among those 51 dealt with helminths (those authors
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had made clear they centered their analysis on these phyla) and 8 with arthropods, plus 8
theoretical works (20 up to 2012). Researchers on arthropod ectoparasites such as lice and ticks
seem to have preferred to study host-parasite coevolution rather than their historical biogeog‐
raphy [23,41] though paradoxically some of the first attempts at tracking historical biogeo‐
graphical patterns used lice as tags for historical biogeography [13].

Figure 1. Metadata analysis of parasite historical biogeography. Parasites groups* and papers referring to their histor‐
ical biogeography. Source of data: Web of Science® (1899-present). * virus, fungi or protozoans not included

5.2. General type of inferred pattern of historical biogeography

A significant conclusion of these analyses (Figure 2) is that 15% of the papers analyzed have
recorded patterns of historical biogeography of parasites as vicariant phenomena that involve
speciation (coevolution) whereas dispersal events, or host-switching events account for 45%.
Papers that mention both vicariance and dispersal account for 40%, a figure near to that of
papers that explain pattern with dispersal. If combined, 39% of papers favour vicariance as an
explanation and 61% dispersal. Dispersion and related phenomena are favored in parasite
historical biogeography as the explanation for modern and historical patterns of parasite
distribution across and within continents. Differences in the relative occurrence of one or the
other phenomenon rely on methods used. Generally, works that employ a priori considera‐
tions of parasite evolution and use vicariance as a constraint, recover vicariant patterns, as in
the initial versions of TreeMap [23,52]. When no hypothetical considerations are entertained
a priori, multiple instances of vicariance and dispersal are recovered [53] for multiple lineages
of both parasites and hosts [54]. The consequences of this are manifold but at least a couple
can be identified. Parasites tend to disperse from host taxon to host taxon without changing
their morphology (but can modify their life cycles), i.e., they are resource trackers [55]. The
other consequence relevant to historical biogeography is that a limited number of species of
parasites will disperse into large areas invading new hosts and causing pandemics or even
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epidemics [51] and probably leave significant and discoverable tracks in geologic time due to
coupled phenomena related to range expansion with little morphological change [55].

Brooks and McLennan [8,15] were the first to suggest that parasites exhibit stronger historical
associations “with the areas in which they evolved and lived than with the particular species
of hosts they inhabit” [13]. Such statement has been confirmed by the empirical data recovered
by parascript studies. Metadata analysis herein included reinforces this view, where mention
of a weak cophylogenetic signal is common in these papers. A similar conclusion had already
been reached by Manter [56], under a different approach, when comparing helminth faunas
of marine fish, although he added a second explanation, namely, that parasites lag behind their
hosts in evolutionary time. The consequences of such a discovery has far-reaching implications
in the management of large areas of the globe related to human health, livestock, agriculture,
migrations, and climatic change.

Figure 2. Geographical pattern. Source of data: Web of Science® (1899-present).

This has several implications for the present and future of parascript studies. First, it seems
unreliable to ascertain that host/parasite relationships, in a historical perspective, correspond
to what has been formerly called parasite specificity. It is now understood that parasites do
not track host species, but tend to track host resources that can be represented across different
taxa and therefore, are plesiomorphic. It is humans who define host taxa, not parasites [15]. A
parasite-centered point of view would be that of “what hosts suits me is what host is my feeding
site”.

5.3. The time dimension

Previous analyses [9] and the one included in this chapter, reflect a deep concern of researchers
of historical biogeography for deep time and deep time combined with shallow time (Figure
3). This is actually the case when an increase in works of phylogeography is recorded.
Nevertheless, the WS database includes few of these. Major works on the phylgoeography and
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comparative phylogeography of parasites and hosts include explanations on recent (shallow)
and ancient (deep) biogeographical phenomena [26, 30-34,57]. Now there is a whole new
universe of research where there is growing room for inferring simultaneity of speciation of
parasites, hosts, and historical divergence or dispersal into new areas. There have been serious
statistical analyses involving simultaneity of divergence [58] in free living organisms, but still
not enough on parasites. This is reflected in parascript studies in that most of the cladograms
of parasites and areas published up to this day lack an explicit hypothesis of the timing of
historical events [6,20,28]. In the case of parasites, a lack of fossil evidence seemingly hampers
such a calculation, but the growth of research of molecular clocks for both parasites and hosts
might be promising [28]. Speculation enters the arena here when we try to deduct the origin
of a parasite clade derived from its probable most ancient host. Some attempts have been made
earlier [59] with fossils of hosts as calibration points for parasite clades. Nevertheless, the lack
of fossils for the parasite associate will always remain and heavy reliance on what host taxon
was the original one adds up to this uncertainty. Despite this fact, hypotheses of the original
hosts of several endoparasitic [9,60] and ectoparasitic taxa [54] have been utilized as departing
points for assessing the origin of particular parasite clades. Parasite counts of modern clades
and the use of appropriate net diversification intervals could give some insight as to the
antiquity of some key clades [38].

Figure 3. Metadata analysis of parasite historical biogeography. Depth of time. Web of Science® (1899-present).

5.4. Terrestrial geomorphological features

According to the classification of geomorphological features, historical biogeography parasi‐
tologists are deeply concerned with large continental areas in their analyses (Figure 4). As
parasites speciate seemingly with geomorphological changes it is hardly surprising that the
higher hierarchical levels of parasite/area were considered as the first targets of historical
biogeography. The Holarctic regions has been the most intensively studied [26, 30-34,57].
Southern regions of the earth have been less explored; among these, South America and
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Australia have been the most intensively studied, at the drainage level in the former (Amazon
and Paraná drainages mainly) [61-64] and at the continental scale in the latter. It is important
to note that areas as terminals in phylogenetic analyses are equal or less in numbers if compared
to parasite terminals. Despite the quality of works done on the northern areas of this planet,
there are still no independent estimates of the histories of areas [65], where geological studies
need to be consulted by parasitologists. Nevertheless, during the modern era of parascript
studies, there has been a concern for formulating independent area cladograms of e.g., the
breakup of Pangea [8]. Despite the fact that molecular studies have increasingly become
incroporated into the historical biogeography of parasites, the breakup of Pangea [66] has
remained a very good starting point for historical biogeographical studies and a well sup‐
ported hypothesis of tectonic plate movements. The latter studies will certainly incorporate
more information to the point where it will probably be difficult to discover single independent
area histories, especially if dispersal or range expansions are being identified as the engine of
parasite speciation. Yet, it would be unvaluable information if independent geological
information was explicitly incorporated into historical parascript studies [65].

Figure 4. Metadata analysis of parasite historical biogeography. Geolomophological features. Source of data: Web of
Science® (1899-present). See Table 1 for descriptions of orders.

5.5. Taxon level analyzed

Species level studies seem to be preferred over higher taxonomic levels or multi parasite
assemblages (Figure 5). This might represent the difficulties in assessing parasite communities
from host assemblages. Additionally, this could reflect that the study of parasite historical
biogeography has centered on core species within parasite communities.

Quite a different result was recovered from hosts. A preference for multi host assemblages
was recovered in the study of parasite historical biogeography (Figure 6). This could reflect
the interest on different host taxa, the availability of different species of hosts or the presence
of single parasite species in different hosts.
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Despite the foregoing, a correlation appears between the distinct levels of parasite and host
taxa involved in historical biogeographical studies (Figure 7). It is particularly interesting to
note that a direct relationship exists between the host taxon level and parasite taxon level. This
reflects that as the level of host taxon sampling increases there is an increase in the number of
distinct parasite species sampled.

Figure 5. Parasite taxon levels analyzed in historical biogeographical studies.

Figure 6. Metadata analysis of parasite historical biogeography. Host taxa levels analyzed in historical biogeographi‐
cal studies. Source of data: Web of Science® (1899-present).
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Figure 7. Correlation between host and parasite taxon level. (correlation coefficient = 0.46,t = 1,d.f. = 6, p>0.01).

5.6. Methods employed in historical biogeography of parasites

Parsimony analysis of host/parasite/area seems to be the dominant optimality criterion for
proposing hypotheses of historical biogeography of helminth parasites (Figure 8) while other
methods, i.e., component analysis, dispersal-vicariance, among others, have more often been
implemented with helminth endoparasites and arthropod ectoparasites phylogenies. Never‐
theless, other methods have recently gained acceptance and have been preferred over parsi‐
mony and component analyses for the study of historical biogeography [20] but have not been
developed in relation to host/parasite/area biogeographic reconstruction. The number of
citations amongst the different methods used during the development of parasite historical
biogeography have been manifold, but all of them can be grouped mainly in two camps,
although there is a growing tendency to use probabilistic methods, probably as a reflection of
what is the general trend in phylogenetic reconstruction [20]. Among the parsimony methods
and the non-parsimonious methods, I explored the number of citations for at least the four
most recurrent used and cited methods: TreeMap [23 and references therein, 52], BPA [8, 15,
16, 67-69], PACT [70-72], and DIVA [73]. The most cited method is DIVA [73]. This could only
mean that methods that include both dispersal and vicariance as their working hypothesis
have been favored over those that favor maximum cospeciation. DIVA has been equated to
secondary BPA [68]. Parsimony methods seemingly took a higher stand during the develop‐
ment of parasite historical biogeography. Nevertheless, statistical-based methods seem to be
gaining ground [20] mainly because there is an actual increase in molecular phylogenies (and
phylogeographical studies) as compared to recently published morphological phylogenies,
although it must be kept in mind that statistical methods can be and have been applied to
morphological phylogenies.
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Figure 8. Number of citations per major method used for historical biogeography reconstruction of parasites. Source
of data: Web of Science® (1899-present). G- methods used with other groups other than parasites; P- parasite groups.

Analytical methods of patterns and processes in historical biogeography have tended to favor
other groups than parasites (Figure 8). DIVA, despite its widespread use, has been very limited
in dealing with parasite groups. No wonder, BPA is the method that has been more commonly
utilized by parasitologists.

5.7. Number of papers

Figures 9 and 10 bring together the number of papers written on the historical biogeography
of parasites in general and the number of citations per paper. Number of papers is one and
more generally two orders of magnitude below the number of citations per paper. The most
cited paper is on the historical biogeography of Drosophila spp. in Africa [74]. The next most
cited paper is a work by Rod Page that conflates genes, organisms, and areas without a
distinction between hierarchical levels [75]. It is difficult to explain why the number of papers
plot is bimodal whereas the citations plot is nearer to an exponential curve. It can be seen that
the increase in the use of molecular biology in phylogenetic systematics and phylogeography
has increased the number of publications. Interest on this research area has expanded to other
regions of the world. As for citation increase, the only other conclusion that can be reached at
this stage of research is that historical biogeography of parasites papers have had an enormous
impact in areas beyond parasitologists traditional lines of research.
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Figure 9. Number of publications on historical biogeography of parasites per year. Source of data: Web of Science®
(1899-present).

Figure 10. Number of citations on historical biogeography of parasites per year. Source of data: Web of Science®
(1899-present).

6. Discussion

A metadata analysis of the historical biogeography of parasite studies had never been
attempted before. The analyses practiced to the present data were kept as clear as possible.
Several shortcomings stemmed from these type of analyses. The most immediate one is related
to the combination of several taxa in one paper, e.g., helminths and arthropods. Nevertheless,
I found only a single paper that included analysis both on parasitic copepods and endohel‐
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minths [76]. Several methods of analyses in a single paper are generally more common. Despite
this fact, those papers recovered were substantially TreeMap-oriented or BPA-oriented. PACT
is an analysis that has hardly been exploited. Probabilistic analyses are still in their beginnings,
so we must see a substantial growth in usage of these methods in the present decade. An in-
depth analysis of every single paper included in the present chapter would want from space
and reading time. Let this brief account of the use of parascript studies, or studies related to
the historical biogeographical part be a starting line for further accounts.

The most outstanding problem in modern historical biogeography a decade ago was related
to the most approximate method(s) that recovered most of the information contained in
parasite/hosts/area phylogenies in order to offer approximate historical biogeographical
reconstructions. Nevertheless, numbers indicate there was more concern for reconstructing
coevolutionary scenarios than for historical biogeography reconstructions. Under this heading
methods have diversified, but today little attention is paid as to what method is used. Instead,
the main concerns centers more and more as to the number of genes used to reconstruct
phylogenies and then afterwards what the shape of the phylogeny tells us about the biogeog‐
raphy of the taxon or taxa studied. There are substantially excellent reviews on the state of the
art in coevolution studies [20]. Yet, there is a need for an equivalent review on historical
biogeographical methods that brings together the best ideas from each camp. New computer
methods are being implemented, but the assumptions have remained the same. What is notable
is that the null hypotheses for historical biogeographical studies depart each day more and
more from the original ’coevolutionary’ assumption. Parsimony methods have brought about
this departure and have influenced all those methods that originally belonged to the ’maxi‐
mum coevolution’ camp. Parsimony methods have moved on and have incorporated cost
analysis [41]. Yet some of the methods mentioned in Ronquist and Sanmartin [20] for free-
living organisms have not been explored in host/parasite/area research programmes. Non-
parsimony methods, such as ML and Bayesian, have not been incorporated yet into parascript
studies but will certainly do in the near future.

7. Conclusions

There is little room for doubt that parascript studies, as envisioned by Harold Manter [1], are
in the need to enter the application arena. The results obtained by major research programmes,
namely the Beringian Coevolutionary Project (BCP), are moving into the direction of a more
propositive agenda than ever. This does not mean that data collecting is going to be disre‐
garded. On the contrary, there is today a growing need to increase the number of parasite
specimens and hosts as never before.

From the foregoing analysis it seems that the state of the art in parascript studies will head
towards a more comprehensive understanding of the biosphere [26]. Regardless of the method
employed, it seems that careful and detailed phylogenetic reconstruction, both morphological
and molecular, lies at the heart of a sound historical biogeographical reconstruction of events
in the earth’s past and present. The predictive nature of parascript studies is still being worked
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out, with significative advances stemming from the BCP. One lesson is that methods must lie
deep within phylogenetic studies and especially should be fed by the backup and background
supported by museum collections of parasites throughout the world [77]. Repositories of
parasite specimens cannot be supplanted by any other means of information repository. The
very nature of parascript studies depends on well documented specimens that must be
deposited in recognized collections around the world. The very curatorial nature of parascript
needs a complete overhaul around the most outstanding academic institutions of the world,
where most of the information for the historical biogeography of parasites lies for future
generations to study the biodiversity on this planet Earth.
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