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Abstract

Standard industry testing procedures provide proppant quality control and methods to
determine long term reference conductivity for proppants under laboratory conditions.
However, test methods often lack repeatable results. Additionally, the testing procedures are
not designed to account for fundamental parameters (e.g., proppant diameter, porosity, wall
effects, multi-phase/non-Darcy effects, proppant and gel damage) that greatly reduce absolute
proppant bed conductivity under realistic flowing conditions.

A constitutive model for permeability and inertial factor for flow through packed columns has
been formulated from fundamental principles. This work provides a detailed deterministic
proppant permeability correlation and defines a methodology to help explain why different
proppant types behave differently under stress. The theory also characterizes the origin of
inertial, or non-Darcy flow, based on a unique approach formulated from the extended
Bernoulli equation based on minor losses. The physical model provides insight into the
dominant parameters affecting the pressure drop in a proppant pack and improves our
understanding of fluid flow and transport phenomena in porous media.

The fundamental solution for flow through packed columns can be characterized by the sum
of viscous (Blake-Kozeny) and inertial forces (Burke-Plummer) in Ergun’s equation. Coupling
Ergun's equation with the Forchheimer equation results in a deterministic set of equations that
describe the fracture permeability and inertial factor as functions of the proppant diameter,
pack porosity, sphericity, and fracture width. Plotting the dimensionless permeability, (k/dp
2), versus the characteristic proppant porosity parameter, Ω, is a very useful diagnostic tool
that can indicate: 1) sphericity, 2) channeling, 3) crushing, 4) non-uniform sphere size distri‐
bution, 5) embedment and 6) deviation of the friction multiplier λm from Ergun's equation.

© 2013 Meyer et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The dimensionless experimental proppant permeability data can be plotted as a linear function
of dimensionless porosity with large deviations from these equations signifying poor or
inconsistent experimental results or inadequate proppant characterization. The formulated
permeability and non-Darcy equations provide the foundation for a quantitative (including
quality control of the test) and qualitative analyses for determining fracture permeability and
the inertial factor based on the physical properties of the proppant pack.

1. Introduction

Hydraulic fracturing has been the major and relatively inexpensive stimulation method used
for enhanced oil and gas recovery in the petroleum industry since 1949. The primary goal of
a hydraulic fracture treatment is to create a highly conductive flowpath for hydrocarbon
production. Fracture conductivity is defined as the product of the packed bed width and
permeability. An ideal fracture would possess infinite conductivity. However, producing
proppant packs have finite permeability and conductivity. Proppant beds are also subjected
to damage and conductivity degradation over time including proppant embedment, formation
spalling, temperature degradation, non-Darcy flow, multiphase flow, non-uniform proppant
distribution, cyclic stress, gel damage, fines migration, and other effects (Palisch et al., 2007).

The American Petroleum Institute (API) developed conductivity testing procedures outlined in
API RP-61 to provide a methodology for consistent and repeatable results. The testing condi‐
tions include using the Cooke Conductivity Cell with steel pistons loaded at 2 lb/ft2 at ambient
temperature. The stress measurements are maintained for 15 minutes with 2% KCl fluid pumped
at a rate of 2 ml/min. An industry consortium proposed changes to API RP-61 to replace the steel
pistons with Ohio Sandstone, increase the testing temperature to 150 oF or 250 oF and maintain
the stress for 50 hours. The modified API RP-61 is referred to as “long-term” conductivity, is
accepted as the standard testing procedure for proppant, and has been adopted by the Interna‐
tional Organization for Standardization (ISO) as ISO 13503-5. The original API RP-61 method is
referred to as “short-term” conductivity testing. These testing procedures provide proppant
conductivity under laminar (baseline or reference) conditions but fail to predict realistic fracture
conductivity under flowing conditions because the tests do not account for the permeability
reduction because of proppant pack damage mechanisms. There is tremendous superficial
velocity inside a producing hydraulic fracture resulting in significant energy loss from the kinetic
and viscous  energy  losses  and hydrocarbon inertial  effects.  The  constitutive  parameters
determining the pressure losses are the rate of fluid flow, viscosity and density of the fluid, size,
shape, packing orientation and surface of the proppant. In petroleum engineering for a single
phase fluid, the energy loss is typically described by a form of the Forchheimer equation (Eq. A.
20) as a sum of the Darcy and non-Darcy pressure drops

2dp
dx k

mu bru- = + (1)
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where the first term on the right hand side of this equation represents the viscous effects
and the second term the inertial  or minor loss effects.  Multiphase fluid interaction (gas-
condensate, oil-water, etc.) causes pressure losses as multiple viscosities move through the
proppant pack at different velocities (fluid mobility).  The non-Darcy beta factor,  β  ,  is  a
material property of proppant that quantifies the inertial or minor losses as a result of fluid
contraction and expansion. The greater the inertial losses, the greater the beta coefficient
which  increases  the  total  pressure  loss  in  the  proppant  pack.  The  effects  of  the  beta
coefficient  can be  reduced by increasing the  porosity  and permeability  of  the  proppant
pack, reducing the mesh distribution, and by using more spherical proppant with lower
surface friction. Proppant crush tests are one method to determine some of these physi‐
cal proppant parameters under in-situ conditions.

Standardized crush test procedures are outlined in API RP-56, RP-58 and RP-60 and are
summarized in ISO 13503-2. The intent of these tests is to provide a comparison of the physical
characteristics of various proppants including crush test results. Again, there are limitations
of the testing methodology that do not simulate actual conditions within a producing fracture.
However, the actual testing methods, specifically the loading of the cell, can be even more
immediately problematic to results. Results from eleven different companies testing a common
sample of 16/30 Brown Sand indicate varying test results between companies as high as 25%
(Palisch et al., 2009).

This work provides a detailed deterministic proppant permeability correlation and presents a
methodology to help explain why different proppant types behave differently under stress.
The governing equations for flow through pack columns are formulated in Appendix A.
Derivation of the theoretical fracture permeability and inertial coefficient, β , are also given in
Appendix A.

2. Pressure loss equations for flow through packed columns

This section summarizes the equations for viscous and inertial flow in packed columns and
presents a correlation model for fracture permeability. The flow through packed columns may
be characterized as the sum of frictional (viscous) and inertial (minor losses) forces. The
governing pressure loss equation from Eq. A.18

( )2 2

03 2 3

72 1 3 1
2 2

m

pp

dp f
dx dd

l f mu f ru
f f

- -
- = + (2)

where from experimental data λm =25 / 12 and f 0 =7 / 3 . Viscous forces dominate laminar flow
regimes while kinetic forces dominate inertial flow. Ergun developed his famous equation for
the total pressure loss in packed columns for all flow regimes by simply adding the Blake-
Kozeny equation for viscous dissipation and the Burke-Plummer equation for inertial losses.
Placing Eq. 2 in terms of dimensionless groups we have (see Eq. A.19)
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( )3
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150 1 7
1 Re 4

pddp
dx

ff
fru

æ öæ ö -
ç ÷- = +ç ÷ç ÷ç ÷ -è øè ø

(3)

This is the Ergun equation (see Bird 1960) where Re=ρυdp / μ , λm =25 / 12 and f 0 =7 / 3 have
been substituted. To account for proppant sphericity, the particle diameter in the above
equations can be replaced by ( Φdp ). Figure 1 shows the general behavior of the Ergun equation
on a log-log plot with the Blake-Kozeny and Burke-Plummer equations for reference.

Figure 1. The Ergun equation with the Blake-Kozeny and Burke-Plummer equations.

Rearranging the Forchheimer equation (Eq. 1) into dimensionless groups (see Eq. A.21) we
find

( ) 2 1 Re 1kdp dx bbru- = + (4)

where Reβk =ρυβk / μ . Multiplying Eq. 4 by 7 / 4 , replacing Reβk  with Re , and β and k  in terms
of the proppant diameter and porosity (see Eq. A.24) one can show that it is identical to Ergun’s
equation (Eq. 3).
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3. Proppant permeability formulation

The formulation of the proppant permeability (and inertial factor) is presented in Appendix
A. It can be shown (see Eq. A.23 through Eq. A.35) that the dimensionless proppant permea‐
bility in terms of the proppant diameter, porosity, slot width, and sphericity is

2
p

k
d

= WY (5)

where

( )
3 2

2 1
72 (1 ) D

m

af
l f

-
W = +

-
(6)

2
2 1

1
D

D

a
a

æ ö+
Y = F ç ÷ç ÷+ Fè ø

(7)

( ) 33 1
p pw

D
s a

d da
a

a Cw
r

f
= = =

-
(8)

Thus if the experimental proppant permeability data is fitted with Eq. 5, the dimensionless
permeability ( k / dp

2 ) should be a linear function of the characteristic proppant pack parameter
( Ω ) with the slope represented by the proppant sphericity-specific surface area parameter
( Ψ ). The proppant sphericity can then be found from the slope using Eq. 7

( )1 1Da
Y

F =
+ - Y

(9)

The above equation works well for determining the proppant sphericity provided that the
friction multiplier is a constant for all bed packing (i.e., λm =25 / 12 ), the proppant sphere size
is uniform, and that the sphericity ( Φ ) is a constant. But in reality, Φ is generally a function
of Ω , (i.e., Φ = f (Ω) ). Pan et al. (2001) proposed a four parameter model to correlate permea‐
bility with porosity and sphere size distribution for random sphere packing. However, plotting
dimensionless permeability k / dp

2 versus Ω is a very useful diagnostic tool. Large deviations
can signify poor or inconsistent experimental results, inaccurate calculation/measurement of
the mean proppant diameter (especially for slopes greater than unity), or proppant porosity
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(and width) measurement errors as a function of closure. A diagnostic plot of k / dp
2 versus Ω

will provide insight into the topics discussed above and also provide a comparison of different
proppants and their relative pack permeability as closure stress increases (i.e., low values of
Ω ). The main emphasis of this paper is not to provide a detailed deterministic proppant
permeability correlation but rather to provide a methodology to help explain and understand
why different proppant types behave differently under stress.

Although Eq. 5 is a very good correlation for diagnostics, other forms of this equation (e.g.,
k / dp

2 =a0 + a1Ω + a2Ω
2 or k / dp

2 =aΩ α ) also fit the data very well over limited ranges for some
proppants. The other major advantage of correlating the permeability data with Ω is that Ω
has the correct limits for mono-layers (i.e., as ϕ →1 , Ω →w 2 / (dp

212) ). Figures 2 and 3 illustrate
images for a 20/40 Northern White Sand and a 20/40 Brown Sand, respectively. The Northern
White has a sphericity of about 0.73 while the Brown Sand has a much lower sphericity of
about 0.5. Sintered bauxite and resin coated sands have much higher sphericity of approxi‐
mately 0.90 and 0.80-0.85 respectively as illustrated in Figures 4 and 5.

Figure 2. Northern White Sand, sphericity ~ 0.73 – Photo courtesy: Santrol.
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Figure 3. Brown Sand, sphericity ~ 0.50 – Photo courtesy: U.S. Silica Company.

Figure 4. Bauxite, sphericity ~ 0.90 – Photo courtesy: Oxane.
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Figure 5. Resin Coated Sand, sphericity ~ 0.80 – Photo courtesy: Santrol.

Figures 6 and 7 show a comparison of dimensionless permeability ( k / dp
2 ) versus the charac‐

teristic proppant pack parameter, Ω , for selected 20/40 Brown Sand (BS), 20/40 White Sand
(WS), 20/40 resin coated sand, and 20/40 bauxite proppants at a concentration of
Ca =2 lbm / f t 2 . As illustrated, these proppants generally follow the correlation of Eq. 5.
However, the substantial permeability reduction as a result of the low sphericity is evident for
the BS and to a lesser extent in the resin coated. The WS high permeability at about Ω =2e −05
is suspect (see Figure 7).
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Figure 6. Correlation of Dimensionless Permeability for various types of 20/40 Proppants - Linear Plot.

Figure 7. Correlation of Dimensionless Permeability for various types of 20/40 Proppants - Log-Log Plot.
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4. Conclusion

The fundamental solution for flow through packed columns (proppant packs) can be charac‐
terized by the sum of viscous and inertial forces (e.g., Ergun's equation). Coupling Ergun's
equation with the Forchheimer equation results in a deterministic equation for the fracture
permeability, kf  , and inertial factor, β , as functions of the proppant diameter, sphericity, pack
porosity and width. Plotting the dimensionless permeability k / dp

2 versus Ω can be a very
useful diagnostic tool that can indicate: 1) sphericity, 2) channeling, 3) crushing, 4) non-uniform
sphere size distribution, 5) embedment and 6) deviation of the friction multiplier λm from
Ergun's equation. Large deviations can also signify poor or inconsistent experimental results.
This diagnostic plot can also quantify the behavior of proppant mono-layers.

Nomenclature

aD = Dimensionless specific surface area, aD =aw / as

as = Specific surface area - sphere

aw = Specific surface area - wall

A = Cross-sectional area

Ap = Particle surface area

Ca = Concentration/area

dh  = Hydraulic diameter

dp = Proppant diameter

dp
' = Equivalent proppant diameter, dp

' =Φdp

f  = Darcy friction factor

f 0 = Burke-Plummer friction factor

g  = Gravitational constant

k  = Permeability

K  = Loss coefficient - inlet and exit

L  = Column length

L τ = Tortuous path length

Nml  = Number of minor losses
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p = Pressure

Pf  = Perimeter

q = Flow rate

Re = Reynolds number

υ = Superficial velocity

ῡ  = Cross-sectional velocity

Vp = Particle volume

w = Width

Greek

β = Inertial or beta factor

λm = Friction factor multiplier

μ = Viscosity

τw = Shear stress - wall

ϕ = Porosity

Φ = Sphericity

Ω = Characteristic proppant porosity parameter

Ψ = Sphericity-specific area parameter

ρ = Density

Subscripts

f  = Fracture

h  = Hydraulic

p = Proppant

= Sphere

w = Wall or width

Appendix A: Flow through packed columns

The solution methodology for flow through a proppant pack can be developed from flow
through packed columns as presented by Bird, Stewart, and Lightfoot (1960). Although a
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detailed derivation of the equations for determining proppant permeability and inertial effects
is not within the scope of this paper, the fundamentals are provided to give the reader an
appreciation of the dominant parameters that affect the proppant pack permeability.

As discussed by Bird et al., "the packing material may be spheres, cylinders, or various other
kinds of packing shapes. It is also assumed that the packing is everywhere uniform and that
there is no channeling of fluid (in actual practice, channeling frequently occurs and the
formulas provided are not valid). It is further assumed that the diameter of the packing is small
in comparison with the diameter of the column in which the packing is contained and that the
column diameter is constant." The impact of these last two assumptions will be addressed later
in this section.

Governing equations

The governing equations for flow through packed columns are formulated in this section.
Friction factors for packed columns, frictional pressure loss for laminar flow, and inertial flow
(non-Darcy) are presented. Derivation for the fracture permeability and inertial coefficient
( β ) are also presented.

Friction factor

The friction factor is normally defined as the ratio of friction forces to inertial forces. This factor
is commonly used to determine the frictional dissipation in closed conduits and is defined as

2 2
4 2 ( )

1 2
w hd dp dx

f
t

ru ru

-
= = (13)

where f  is the Darcy friction factor, τw is the wall shear stress, υ is the superficial velocity
( υ =q / A ), and dh  is the hydraulic diameter. The pressure gradient in the conduit is −dp / dx .
The hydraulic diameter in packed columns is sometimes replaced with the equivalent particle
diameter or other characteristic dimension.

Hydraulic diameter

The hydraulic diameter is defined as

4
h

f

Ad
P

= (14)

where Pf  is the conduit wetted perimeter and A is the flow cross-sectional area.

Laminar flow

The equation of motion for laminar flow in closed conduits (e.g., pipes, slots, annuli and other
non-circular conduits) can be represented by
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2

32 m

h

dp
dx d

l m u
- = (15)

where the average flow rate in the cross section available for flow is given by the intrinsic
velocity ῡ  , λm is a friction factor multiplier that is a function of the closed conduit geometry,
and dh  is the hydraulic diameter. Theoretically, the friction multiplier for flow of a Newtonian

fluid in a pipe, narrow elliptical slot, and rectangular slot are λm =1 , λm =π 2 / 8 , and
λm =3 / 2 , respectively.

The pressure loss in terms of the Darcy friction factor based on the cross-sectional average flow
velocity from Eq. A.3 is

2

2 h

dp f
dx d

r u
- = (16)

where the Darcy friction factor is given by

64 64
Re

m m

h
f

d
l m l

r u
= = (17)

The Reynolds number for flow of a Newtonian fluid in a conduit is defined as

Re hdr u
m

= (18)

where the cross-sectional average velocity ῡ  is related to the superficial velocity υ by the
conduit porosity (i.e., ῡ =υ / ϕ ).

Laminar flow in packed columns

The frictional pressure loss through a proppant pack (or packed bed) can be derived from Eq.
A.3

2

32 m

h

dp
dx d

l m u
- = (19)

by replacing the cross-sectional average velocity ῡ  by the superficial velocity υ (i.e.,
ῡ =υ / ϕ ) and the equivalent hydraulic diameter of the proppant pack in terms of the particle

diameter and porosity.
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The equivalent hydraulic diameter from Eq. A.2 for spherical particles with a diameter of dp

and a packed porosity of ϕ is

2
3 1h pd df

f
=

-
(20)

Substituting the hydraulic diameter and the relationship ῡ =υ / ϕ into Eq. A.7, we find

( )

( )

2 2

2

3 2

32 32

2
3 1

72 1

m m

h
p

m

p

dp
dx d

d

d

l m u l m u f

f
f

l f mu

f

- = =
æ ö
ç ÷-è ø

-
=

(21)

Experimental measurements (Bird et al. 1960) indicate that if a frictional multiplier of λm =25 / 12
is used, the above theoretical equation matches extremely well with the experimental data.
Insertion of this friction multiplier value into Eq. A.9 then gives

( )2
3 2

150 1

p

dp
dx d

f mu

f

-
- = (22)

which is the Blake-Kozeny equation. This equation is generally good for void fractions less

than 0.5 and is valid in the laminar flow regime given by 
(ρv)dp

μ(1−ϕ) <10 (Bird 1960). The bed

friction multiplier based on the proppant diameter is

( ) ( )

2

2 2

3 3

2 ( )

1 1144 300
Re Re

p

p p

p
d

m

d d

d dp dx
f

ru

f fl

f f

-
=

- -
= =

(23)

where Redp
=ρvdp / μ . The bed friction factor based on the hydraulic diameter is
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2
2 ( )

64 400 3
Re Re

h

h h

h
d

m

d d

d dp dx
f

ru
l

f f

-
=

= =
(24)

where

Re
hd hdru m= (25)

Inertial flow in packed columns

The pressure loss in packed columns as a result of inertial forces (minor losses) was originally
derived by Burke and Plummer assuming turbulent flow in packed columns (see Bird 1960).
Burke and Plummer assumed that for highly turbulent flow that the friction factor was only a
function of roughness and that the roughness characteristics were similar for all packed
columns. Based on these assumptions Burke and Plummer could then justify a constant friction
factor f 0 that would be used to characterize turbulent flow. Then from Eq. A.4 the resulting
pressure loss equation for inertial losses is

2
0

2

0 3

2

3 1
4

h

p

fdp
dx d

f
d

r u

ru f
f

- =

-
=

(26)

where the experimental data indicated that f 0≅7 / 3 . This is the Burke-Plummer equation

which is valid for 
(ρυ)dp

μ(1−ϕ) >1000 .

The form of the Burke-Plummer equation can also be derived assuming inertial forces (minor
flow loss) through the proppant pack using the extended Bernoulli equation as presented
below.

Viscous and inertial flow in packed columns

The flow through packed columns may also be characterized as a sum of frictional (viscous
losses) and inertial (minor losses) forces. The general pressure loss equation formulation based
on the extended Bernoulli equation with minor losses is

2 2
1 2

2 2h

Lp p
f k

g d g g
t u u

r
-

= +å å (27)
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or

2 2

2 2h h

L Ldp f K
dx L d L d

t tr u r u
- = +å å (28)

where L  is the length of the column and L τ is the tortuous path length the fluid takes. Further
assume that the number of minor losses Nml  in a column of length L  can be approximated by
Nml = L τ / dh  . Then the exit and entrance losses as the fluid expands and contracts through the
packed column from Eq. A.15 can be written as

( )
2 2

1
2 2

0

2 2

2 2

ml

h

N

inlet exit
ih h

d
h h

Ldp f K K
dx L d d

f f
d d

t r u r u

r u r u

=
- = + +

= +

å
(29)

The inertial pressure loss is identical to the form of the Burke-Plummer equation even though
one was based on inertial effects and the other on turbulence. This, however, should not be
surprising since both inertial and turbulent losses are proportional to ρυ 2 . Substituting the
bed friction factor and superficial velocity into Eq. A.16, we find

2

02 2
32

2
m

h h

dp f
dx d d

l mu ru
f f

- = + (30)

or

( )2 2

03 2 3

72 1 3 1
2 2

m

pp

dp f
dx dd

l f mu f ru
f f

- -
- = + (31)

where from experimental data λm =25 / 12 and f 0 =7 / 3 .

Ergun’s equation

The total pressure loss formulation for all flow regimes may thus be obtained by simply adding
the Blake-Kozeny equation for viscous dissipation and the Burke-Plummer equation for
inertial losses. The above equation can be written in terms of the dimensionless groups as
follows
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( )3

2

150 1 7
1 Re 4

pddp
dx

ff
fru

æ öæ ö -
ç ÷- = +ç ÷ç ÷ç ÷ -è øè ø

(32)

This is the Ergun equation (Bird 1960) where Re=ρυdp / μ , λm =25 / 12 and f 0 =7 / 3 have been
substituted.

Darcy and non-darcy flow

The equation to describe non-Darcy flow is a form of the Forchheimer (1901) equation

2dp
dx k

mu bru- = + (33)

where k  is the permeability of the porous media and β is the non-Darcy or inertial factor.
Clearly, the first term in this equation accounts for viscous effects and the second term for
inertial or minor loss effects.

Rearranging Eq. A.20 in terms of the dimensionless groups we find

( ) 2 1 Re 1kdp dx bbru- = + (34)

where the dimensionless Reynolds number for non-Darcy flow is given by

Re k
k

b
rub
m

= (35)

Rewriting Eq. A.17 in terms of the fracture permeability k  and inertial factor β from Eq. A.20,
we have

2

02 2

2

32
2

m

h h

dp f
dx d d

k

l mu ru
f f

mu bru

- = +

= +

(36)

where

2
0

2 and 
32 2

h

m h

d f
k

d
f

b
l f

= = (37)
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Placing β in terms of the fracture permeability we find

0
3

3 4 1
72 m

f

k
b

l f
= (38)

Sphericity

Sphericity is a measure of how closely a grain approaches the shape of a perfect sphere
compared to roundness which is a measure of the sharpness of grain corners. The sphericity
of a particle is the ratio of the surface area of a sphere (with the same volume as the given
particle) to the surface area of the particle

( )2 31 3 6 p

p

V

A

p
F = (39)

where Vp is the volume and Ap is the surface area of the particle. For non-spherical particles
the characteristic particle diameter in the above equations must be replaced by

'
p pd d= F (40)

Proppant permeability

The proppant permeability can be theoretically calculated from Eq. A.24 provided that the
hydraulic diameter and porosity are known. The hydraulic diameter for flow in a slot of width
( w ), packed with a proppant of uniform porosity ( ϕ ), and diameter ( dp ) from Eq. A.2 is

( )
4

h
s w

d
a a

f
=

+ (41)

where the specific surface areas for the proppant spheres and fracture wall are
as =6(1−ϕ) / dp and aw =2 / w , respectively.

The proppant permeability in terms of the proppant diameter, porosity, slot width, and
sphericity is found by substituting Eq. A.26 through A.28 into A.24

( )

23 2 2

2 1
3 172 (1 )

p p

m

d d
k

w
f

fl f

-
æ öF F
ç ÷= +ç ÷-- è ø

(42)
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The permeability for flow through an open slot or channel (i.e., no proppant as ϕ →1 ) with a
slot width of w from Eq. A.29 is

2 29
72 12m

w wk
l

= = (43)

where λm =3 / 2 for slot flow.

The dimensionless form of Eq. A.29 is

( )

23 2
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æ öFF
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(44)

or
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Eq. A.32 illustrates that the dimensionless permeability ratio ( k / dp
2 ) is a linear function of the

characteristic proppant pack parameter ( Ω ), and the proppant sphericity-specific surface area
parameter ( Ψ ) for all proppants. The dimensionless specific area ratio of the fracture (slot
wall) and proppant is represented by aD .

Pan et al. (2001) provides a good review of permeability versus porosity correlation for random
sphere packing. Pan also proposed a modification to Ergun's equation for low Reynolds
number with a four parameter fit model to correlate k / dp

2 as a function of porosity and sphere
size distribution.
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