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1. Introduction

Autophagy is a cellular stress-adaptive process in which double-membrane structures called
autophagosomes engage in protein degradation, cellular differentiation, apoptosis and antigen
processing, and are recycled to sustain cellular metabolism [1-11]. It is a self-digesting
mechanism responsible for removal of long-lived proteins and damaged organelles by
lysosomes, and opposing roles in cell death and survival have been described for autophagy.

Autophagy is a multifaceted process, and alterations in autophagic signaling pathways are
frequently observed in cancer. Cancer is a disease generated by mutation, selection and
genome instability in the resulting tumor tissue, and is considered to be the second leading
cause of death in western countries after heart disease [12, 13]. Autophagy can be activated by
various stimuli including hypoxia during the tumor formation [14]. One hypothetical mech‐
anism is that autophagy promotes tumor cell survival in response to diverse stresses [15].
Furthermore, autophagy spatially and temporally regulates tumor development by suppress‐
ing tumor growth through regulating cell proliferation in the early stages of tumorigenesis
[16]. Conversely, when autophagy is reduced, it contributes to tumor formation and growth
by the breakdown of tumor cells following autophagy-related cell death, leading to tumor cell
survival [17]. There is a controversy about the roles of autophagy in cancer [1, 3, 18]. In this
review, we outline the multiple roles of autophagy in cancer, including gene expression, gene
mutation, and chemotherapy.

2. Autophagy-related genes in cancer

2.1. ATG genes

Most recently, molecular genetic analyses have focused on the function of autophagy-related
gene (ATG) products. ATG products are implicated in autophagosome formation and associat‐
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ed pathways. In humans, there are more than 30 known ATG genes, some of which have
mononucleotide repeats with seven or more nucleotides. Of the many genes associated with
autophagy, ATG genes are the main regulators and implementers of the autophagy process [19].

Beclin-1 (encoded by BECN1 gene, a mammalian orthologue of yeast Atg6) protein, a compo‐
nent of PI3-kinase complexes, is a key regulator in the vesicle nucleation process of autophagic
programmed cell death [20-22].The role of autophagy in tumor suppression is known to be as
a result of allelic loss of the essential autophagy genes. Beclin-1 and Beclin-1+/− mice were shown
to be tumor prone, indicating that BECN1 is a haploinsufficient tumor suppressor gene [20,
21], and allelic deletion and point mutations of BECN1 gene and loss of Beclin-1 expression is
found with high frequency in human breast, ovarian and prostate cancers [22, 23]. Lee et al.
detected 11 somatic mutations of the BECN1 gene, including three missense mutations (N8K,
P350R and R389C) in coding sequences and eight mutations in introns [24]. These mutations
were observed in five gastric, three colorectal, one lung and one breast carcinoma. However,
the expression of Beclin-1 is known to be upregulated in colon and gastric cancers [25]. It also
reported that Atg4C-deficient mice are prone to tumors [26].

Frameshift mutations of genes with mononucleotide repeats are features of cancers with
microsatellite instability (MSI). Mononucleotide repeat frameshift mutations in ATG genes are
common in gastric and colorectal carcinomas with high MSI, and possibly contribute to cancer
development by deregulating the autophagy process. Kang et al. detected truncation muta‐
tions of three genes (ATG2B; c.3120delA, ATG5; c.704delA and ATG9B; c.293delC) in high MSI
cancers (gastric and colorectal) by single-strand conformation polymorphism analysis [27]. In
particular, ATG5 is a protein involved in the early stage of autophagosome formation [18, 28].
ATG5 high expression was altered in prostate cancers and other data showed a low incidence
of ATG5 mutations in gastric hepatocellular, and colorectal cancers with MSI [29, 30]. It is
important to identify the expression and mutation status of a gene in cancers to understand
its role in cancer development. These frameshift mutations or SNPs in ATG genes may alter
the autophagic cell death in cancers and might contribute to the pathogenesis of human
cancers.

2.2. UVRAG

As an ATG-related gene, the ultraviolet (UV) radiation resistance-associated gene (UVRAG) was
initially identified as a gene that is responsible for the partial complementation of UV sensitiv‐
ity in xeroderma pigmentosum cells, and binds with Beclin-1/PI3-kinase and Bif-1, a Bax
activator to induce autophagy formation and suppress the tumorigenic activity of cancer cells
[31, 32]. It has been reported that UVRAG exon 8 frameshift mutations containing c.709delA or
c.708_709delAA mutations were found in gastric and colorectal cancers with MSI [33, 34].

2.3. IRGM

In the autophagy pathway, the immunity-related guanosine triphosphatase (GTPase) family,
M (IRGM), plays a central function and appears to have an important role in the activation of
the pathway. IRGM is located on chromosome 5q33.1, and its mRNA transcripts can be found
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in five different 3′-splicing isoforms [35, 36]. Recent evidence indicates that variants of the
IRGM locus, especially those in the promoter region, may be correlated with differential
expression, and consequently the efficacy of autophagy is affected by alterations in IRGM
regulation [36-38]. IRGM has two major SNPs (rs13361189 and rs4958847) associated with
chronic inflammatory digestive diseases. It is not known exactly why IRGM rs4958847 but not
rs13361189 polymorphism has reported to influence susceptibility to gastric cancer [39].

2.4. RASSF1

The RAS association domain family 1A (RASSF1A) is one of the most epigenetically silenced
elements in human cancers. The tumor suppressor gene, RASSF1A, has been reported to play
a role in diverse activities including cell cycle regulation, apoptosis and modulation of
autophagy or genomic instability [40]. It is also associated with epigenetic silencing of other
proteins including that of death-associated protein kinase (DAPK) [41-44]. DAPK is a unique
calcium/calmodulin-activated serine/threonine kinase involved in autophagy-related signal‐
ing pathways [45-48]. RASSF1A can also promote cell death utilizing the association with the
anaphase promoting complex protein cdc20 and the autophagic protein, C19ORF5/MAP1S
[49]. Expression of the longer isoform of RASSF1A (39 kDa predicted peptide) is lost or
downregulated in many lung tumor lines [50, 51]. Agatheanggelou et al. also reported that
RASSF1A inactivation by methylation and loss is a critical step in lung cancer [52]. Epidemio‐
logical studies have identified an association between the RASSF1A A133S polymorphism and
cancer risk including breast cancer, lung cancer, and hepatocellular carcinoma [53-57].
Moreover, several studies have shown that expression loss by promoter-specific hypermethy‐
lation of RASSF1A is one of the most common early events in hepatocellular carcinoma that
play important roles in tumorigenesis and metastasis of hepatocellular carcinoma [58, 59].
A133S and S131F polymorphisms resulted in the lost ability of RASSF1A to inhibit growth and
cyclin D1 expression, suggesting an important role in tumor suppression [60, 61]. Moreover,
Gordon et al. reported that E246K, C65R, R257Q RASSF1A polymorphisms were related to
tumor suppressor function [62]. Additional evidence suggests that RASSF1C may be a tumor
suppressor gene in prostate and renal carcinoma cells but not in lung cancer cells [63]. It has
reported that the loss of RASSF1C results in the downregulation of proliferation of lung and
breast cancer cells, suggesting a prosurvival role for RASSF1C [64-66]. Recently, it has been
suggested that a possible pathogenic role for RASSF1C in cancer may exist, as its expression
was more than 11-fold greater in pancreatic endocrine tumors than in normal tissue [67].

2.5. NOD2

The nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is a member of
the Nod-like receptor family and associates with the cell surface membrane. NOD2 activation
controls the induction of autophagy, or apoptosis [68-70]. Four major NOD2 single nucleotide
polymorphisms are correlated with increased risk of colorectal cancer, and a possible associ‐
ation of the NOD2 P268S polymorphism with rectal and gastric cancers has been identified
[71-78]. A recent meta-analysis also provided good evidence that NOD2 R702W, G908R, and
most significantly, 3020insC, polymorphisms were associated with increased risk of colorectal
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cancer [79]. Other studies also found significant associations with laryngeal, lung, and ovarian
cancers [80, 81]. In contrast, Suchy et al. found the association of the TNFα-1,031 T/T genotype
and NOD2 3020insC polymorphism may act as a modifier to reduce colorectal cancer risk [82].
Further research of NOD2 polymorphisms and gene–gene interactions will provide a more
comprehensive insight into the associations described here.

3. Analysis of autophagy by immunohistochemistry

Recently, the role of autophagy in cancer development and progression has been investigated
using immunohistochemistry. Immunohistochemical methods have been developed that
supplement the detection of autophagy via genetic analyses. Many antibodies for autophagy
detection are routinely used for immunohistochemistry against proteins involved in autoph‐
agy pathways [83-86] (Table 1).

Antibody ref. No

LC3 (rabbit polyclonal antibody) [86]

Source; (1: x, dilution rate) Medical & Biological Laboratories, Japan

Antigen retrieval method
Pressure cooker (110C-120C) for 10 min;

10 mM citrate buffer, pH 6.0

Sample type
Formalin-fixed, paraffin-embedded

specimens

Staining pattern Invariably granular cytoplasmic staining

LC3 [100]

Source; (1: x, dilution rate) Novus Biologicals, USA; (1:400)

Antigen retrieval method
High temperature and pressure, citrate

buffer

Sample type
Formalin-fixed, paraffin-embedded

specimens

Staining pattern Cytoplasmic staining

Beclin-1 (rabbit monoclonal antibody) [95]

Source; (1: x, dilution rate) Abcam, UK; (1:100)

Antigen retrieval method
Microwave oven for 15 min, 10 mM citrate

buffer, pH 6

Sample type
Formalin-fixed, paraffin-embedded

specimens

Staining pattern Cytoplasmic staining

Beclin-1 (rabbit polyclonal antibody) [97]

Source; (1: x, dilution rate) Abcam, UK; (1:100)

Antigen retrieval method
Microwave oven, 10 mM citrate buffer,

pH 6

Autophagy - A Double-Edged Sword - Cell Survival or Death?220



Antibody ref. No

Sample type
Formalin-fixed, paraffin-embedded

specimens

Staining pattern

Membrane-plasma, cytoplasm and nucleus

in the cancer cells and no or modest

staining in the adjacent noncancerous

tissue

Beclin-1 (rabbit polyclonal antibody) [25]

Source; (1: x, dilution rate) Novus Biologicals, USA

Antigen retrieval method

Pressure cooker inside a microwave oven

at 700 W for 30 min, 10 mM citrate buffer,

pH 6.0

Sample type

Microarray recipient block was constructed

containing paraffin-embedded colorectal

adenocarcinoma tissue samples from 103

archival patient specimens

Staining pattern Cytoplasmic staining

Beclin-1 [100]

Source; (1: x, dilution rate) Cell Signaling, USA; (1:100)

Antigen retrieval method
High temperature and pressure, citrate

buffer

Sample type
Formalin-fixed, paraffin-embedded

specimens

Staining pattern Cytoplasmic staining

BIF-1 (mouse monoclonal antibody) [98]

Source; (1: x, dilution rate) Imgenex, USA; (1:2500)

Antigen retrieval method
standard cell conditioning (Ventana

Medical Systems, USA)

Sample type
Formalin-fixed, paraffin-embedded core

sections on a tissue array

Staining pattern Cytoplasmic staining

ATG5 (rabbit polyclonal antibody) [30]

Source; (1: x, dilution rate) Abcam, UK; (1:800)

Antigen retrieval method

Pressure cooker inside a microwave oven

at 700 W for 30 min, 10 mM citrate buffer,

pH 6.0

Sample type
Formalin-fixed, paraffin-embedded

specimens

Staining pattern Cytoplasmic and/or nuclear

Table 1. Immunohistochemical analysis of autophagy-related proteins.
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3.1. Proteins involved in autophagy

3.1.1. LC3

Microtubule-associated protein 1 light chain 3 (LC3) is an autophagosomal orthologue of yeast
ATG8, with approximately 30% amino acid homology [87, 88]. LC3 is a specific marker of
autophagosome formation. LC3-I is localized to the cytoplasm, whereas LC3-II binds to
autophagosomes [89].

3.1.2. Beclin-1 (ATG6)

Beclin-1 is a mammalian homolog of the yeast ATG6 protein. The expression of Beclin-1 protein
has been reported in tumor tissues such as breast, ovarian, prostate, lung, brain, stomach and
colorectum [25, 90]. Beclin-1 was found to be deregulated in human cancers and may play a
role in the tumorigenesis and/ or progression of human cancers [21, 91]. It is required for
autophagic induction and is a haploinsufficient tumor suppressor.

3.1.3. ATG5

ATG5 is a key regulator of autophagic and apoptotic cell death, and is involved in the early
stages of autophagosome formation [18, 28]; binding of ATG5 with ATG12 contributes to
autophagosome formation, which sequesters cytoplasmic materials before lysosomal delivery
[18]. It is suggested that ATG5 is involved in both apoptotic and autophagic cell death [92].

3.1.4. Bax-interacting factor -1

Bax-interacting factor-1 (Bif-1) protein is a member of the endophilin B family, which plays a
critical role in cell death, including autophagy and apoptosis. Loss of Bif-1 suppresses
programmed cell death and promotes tumorigenesis [93, 94].

3.1.5. GABARAP

Gamma-aminobutyric acid type A receptor-associated protein (GABARAP) is one of the
mammalian homologue of yeast ATG8. It is involved in autophagosome formation during
autophagy and was first identified in the brain, but is widely expressed in a variety of normal
tissues. Recent reports have suggested that GABARAP is an essential component of autophagic
vacuoles in addition to its role as an intracellular trafficking molecule [87,88].

3.2. Expression of autophagy-related proteins in gastrointestinal cancers

Resent reports have demonstrated the expression of autophagy-related proteins in gastroin‐
testinal carcinomas. Chen et al. examined the expression levels of Beclin1 in gastric carcinomas
and adjacent normal gastric mucosal tissues by immunohistochemistry. According to their
results, high levels of Beclin-1 expression were observed in 90/155 (58.1%) of gastric carcino‐
mas, in 24/60 (40.0%) of adjacent mucosal tissues and in 13/30 (43.3%) of normal gastric mucosa
tissues (P=0.036). Decreased expression of Beclin-1 in cancer cells was significantly correlated
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with poor differentiation, nodal and distant metastasis, advanced TNM stage, and tumor
relapse. More importantly, decreased expression of Beclin-1 was associated with shorter
survival as evidenced by univariate and multivariate analysis. Chen et al. concluded that
decreased expression of Beclin-1 in gastric carcinoma may be important in the acquisition of
a metastatic phenotype, suggesting that decreased Beclin-1 expression, as examined by
immunohistochemistry, is an independent biomarker for poor prognosis of patients with
gastric carcinoma [95].

In contrast, using a tissue microarray approach, Ahn et al. investigated Beclin-1 protein
expression in 103 colorectal and 60 gastric carcinoma tissues by immunohistochemistry. The
expression of Beclin-1 was detected in 50/60 (83%) of gastric carcinomas and 98/103 (95%) of
colorectal carcinomas. Conversely, the normal mucosal cells of both the stomach and colon
showed no or very weak expression of Beclin-1. There was no significant association of Beclin-1
expression with clinicopathological characteristics, including invasion, metastasis and stage.
Their data indicate that Beclin-1 inactivation by loss of expression may not occur in colorectal
and gastric cancers. Rather, increased expression of Beclin-1 in the malignant colorectal and
gastric epithelial cells compared with their normal mucosal epithelial cells suggests that neo-
expression of Beclin-1 may play a role in both colorectal and gastric tumorigenesis [25].

An et al. analyzed ATG5 protein expression by immunohistochemistry and ATG5 somatic
mutations by single-strand conformation polymorphism in cancer cells and the normal
mucosal cells of gastrointestinal tissues. Their results showed that ATG5 protein was well
expressed in normal stomach, colon, and liver epithelial cells, while it was lost in 21/100 (21%)
of gastric carcinomas, 22/95 (23%) of colorectal carcinomas, and 5/50 (10%) of hepatocellular
carcinomas. Furthermore, such loss of ATG5 expression was observed in the cancers irrespec‐
tive of the histological subtypes and TNM stages. Also, they found that only 1.5% (2/135) of
these cancers harbored ATG5 mutations. They suggested that loss of ATG5 expression may
play a role in the pathogenesis of some gastric and colorectal cancers [30].

Colorectal carcinoma is one of the most common cancers in the world and the incidence rate
is rising. Miao et al. performed experiments to investigate a possible correlation between
GABARAP expression in colorectal carcinoma and clinicopathological parameters, including
patient survival times. Their results showed that the expression of GABARAP protein was
significantly higher in colorectal cancers (51.5%) than the adjacent matched non-tumor tissues
(33.0%), and overexpression of GABARAP was significantly correlated with a low grade of
differentiation and shortened overall survival. They described GABARAP protein expression
as a new prognosis marker in colorectal carcinoma [96].

Li  et  al.  analyzed  the  expression  of  Beclin-1  protein  in  stage  IIIB  colon  carcinoma  by
immunohistochemistry  and  correlated  it  with  survival.  Their  results  showed  Beclin-1
immunostaining was distributed in the plasma membrane, cytoplasm and nuclei of tumor
cells in 98/115 cases (85.2%). Modest or no Beclin-1 expression was observed in adjacent
non-cancerous tissues. Higher levels of Beclin-1 expression were strongly associated with
longer survival.  Both univariate  analysis  and multivariate  analysis  showed that  Beclin-1
expression  levels  and  invasive  depth  of  primary  mass  (T  stage)  were  independent

Role of Autophagy in Cancer
http://dx.doi.org/10.5772/55315

223



prognostic  factors.  They  suggested  that  Beclin-1  is  a  favorable  prognostic  biomarker  in
locally advanced colon carcinomas [97].

Bif-1 protein plays a critical role in cell death, including autophagy and apoptosis. Coppola et
al. examined Bif-1 expression level in colorectal carcinoma using semiquantitative immuno‐
histochemistry and microarray analysis of archival specimens. Bif-1 expression was negative
in 23/102 (22.5%) of colorectal carcinomas. Moderate to strong Bif-1 staining was identified in
37/102 (36.3%) of the tumors, and weak staining was noted in 42/102 (41.2%). Moderate to
strong Bif-1 immunoreactivity was shown in 26/38 (68.4%) normal colorectal mucosa, and none
were negative. In 12/38 (31.6%) cases, the normal colorectal mucosa demonstrated weak Bif-1
stain. The mean staining scores (intensity and percentage of positively stained cells) for
colorectal carcinomas and normal colorectal mucosa differed significantly (P=0.0003). The
percentage of cases with negative expression also differed significantly between normal
colorectal mucosa and colorectal carcinoma (P=0.002). Decreased Bif-1 expression in colorectal
carcinomas was confirmed at the mRNA level by microarray analysis. They concluded Bif-1
was downregulated during the transition from normal colorectal mucosa to colorectal
adenocarcinoma, a novel finding in agreement with the tumor suppressor function of Bif-1 [98].

LC3 is a one of the most useful markers of autophagy. Yoshioka et al. evaluated LC3 expression
in gastrointestinal cancers by immunohistochemistry to elucidate the role of autophagy in
human cancer development. LC3 expression was compared with Ki-67 staining and expression
of carbonic anhydrase IX, a hypoxic marker. LC3 was expressed in the cytoplasm of cancer
cells, but not in non-cancerous epithelial cells. Furthermore, high expression of LC3 was
observed in 56/106 (53%) of esophageal, 22/38 (58%) of gastric and 12/19 (63%) of colorectal
cancers. The immunoreactive score (intensity and percentage of positively stained cells) of LC3
gradually increased during the early stages of esophageal carcinogenesis in low- and high-
grade intraepithelial neoplasia and T1 carcinoma, but did not change in later cancer progres‐
sion (T2–T4 carcinomas). In early esophageal carcinogenesis, LC3 expression correlated with
the Ki-67 labeling index (P=0.0001), but showed no significant association with carbonic
anhydrase IX expression. In esophageal cancers, LC3 expression did not correlate with various
clinicopathological factors, including survival. LC3 is also upregulated in various gastroin‐
testinal cancers and is partly associated with Ki-67 index. Their results suggest that LC3
expression is advantageous to cancer development, especially in early-phase carcinogenesis.
Taken together, these findings suggest that LC3 expression is advantageous to cancer devel‐
opment in early phase of carcinogenesis [99].

Ahn et al. reported that Beclin-1 expression was detected in 95% of colorectal carcinomas
examined. In contrast, normal mucosal cells of colon showed no or very weak expression of
Beclin-1. There was no significant association of Beclin-1 expression with clinicopathological
characteristics, including invasion, metastasis and stage [25].

Guo et al. performed experiments to investigate the utility of Beclin-1 and LC3, in predicting
the efficiency of cetuximab in the treatment of advanced colorectal cancer. Their results showed
that Beclin-1 and LC3 expression was significantly correlated (r=0.44, P<0.01), and patients
with low Beclin-1 expression had longer progression-free survival than those with high
Beclin-1 expression [100].
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4. Autophagy in cancer chemotherapy

One of the standard modalities for treatment of patients with cancer is chemotherapy.
Cytotoxic drug treatment often triggers autophagy, particularly in apoptosis-defective cells,
and this excessive cellular damage combined with attempts to remediate that damage through
progressive autophagy can promote autophagic cell death [101]. Platinum-containing cisplatin
is one of the most extensively used chemotherapeutic agents, and remains the first-line
treatment in various types of cancer [102]. Cisplatin-based chemotherapy frequently resulted
in acquired resistance of cancer cells. Sirichanchuen et al. indicated that the levels of LC3-
related autophagy were significantly lower in cisplatin resistant cells, and autophagosome
formation was dramatically reduced in the resistant cells [103]. Patients with low LC3 expres‐
sion had a higher objective response rate amongst advanced colorectal cancer patients treated
with cetuximab-containing chemotherapy [100]. Expression of ATG5 sensitizes tumor cells to
chemotherapy, but its silencing results in resistance to cisplatin therapy combined with AKT
inhibitor treatment, thus revealing a key role for autophagy in chemoresistance [92]. Auto‐
phagic cell death is activated in cancer cells that are derived from different tissues in response
to anticancer therapies [101, 104]. Combination therapy with erlotinib and cisplatin is an
effective treatment against erlotinib-resistant cancer by targeting (downregulating) ATG3-
mediated autophagy and induction of apoptotic cell death. Autophagy may delay apoptotic
cell death caused by DNA-damaging agents and hormonal therapies such as tamoxifen. On
the contrary, autophagy has a role as a cell survival pathway. Therefore, autophagy is also
induced as a protective and survival mechanism. A major regulator of autophagy is the
mammalian target of rapamycin (mTOR) pathway, which consists of two distinct signaling
complexes known as mTORC1 and mTORC2 [105]. Thus, results all suggest the role of
autophagy in attenuation of chemotherapy-induced cell death or survival.

5. Conclusion

Autophagy is involved in metabolism, cell-death, stress response and carcinogenesis. Several
key autophagic mediators containing ATG-related proteins, LC3, Bif-1, GABARAP, UVRAG,
IRGM, RASSF1, or NOD2, play pivotal roles in autophagic signaling networks in cancer. By
these tumor-suppressive mechanisms in early-stage carcinogenesis, autophagy promotes
genomic stability in carcinomas, and possibly contributes to cancer development.

Furthermore, immunohistochemical methods have been developed that supplement the
detection of autophagy via genetic analyses. These are especially important since diagnosis of
autophagic vacuoles using the classical method of electron microscopy is time-consuming,
labor-intensive and costly. Many antibodies for autophagy detection are routinely used for
immunohistochemistry. These autophagosomes then fuse with lysosomes to generate autoly‐
sosomes. Therefore, LC3 is an efficient and reliable marker for the detection of autophagosome
formation.

Autophagy or ‘self-eating’ is frequently activated in tumor cells treated with chemotherapy.
In cancer therapy, adaptive autophagy in cancer cells sustains tumor growth and survival in
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the face of the toxicity of cancer therapy. However, in certain circumstances, autophagy
mediates the therapeutic effects of some anticancer agents. During tumor development and in
cancer therapy, autophagy has been reported to have paradoxical roles in promoting both cell
survival and cell death.

Autophagy may play a variety of physiological roles in cancer progression at each stage in
various cancers. Further investigations are required to clarify the biological role of autophagy-
related proteins so as to estimate their potential value in the diagnosis and treatment of cancer.
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