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1. Introduction

This paper studies a broad class of large supergames, i.e.,infinitely repeated games played

by (infinitely) many players. By relating each supergame to a relevant stochastic process of

strategy configuration, we first investigate the existence, uniqueness and stability of invariant

measures which represent the long-run equilibrium plays. Then we study the relationship

between those invariant measures and the solution concepts evolved from the game theory

literature.

In our stylized class of supergames, game players are located on the vertex set of a graph,

typically the d-dimensional integer lattice, Zd (see Fig.1-3). The spatial arrangement and the

location of a particular player have no tangible restriction other than offering a convenient

way to establish a neighborhood structure, since in the class of games which we study the

individual players are assumed to be identical.

Each player plays a continent stage game, only with her neighbor, in each and every period of

discrete times. Players may or may not have chances to change their strategy simultaneously

at every period of time. We endow the graph with a pre-specified ordering according to

which is the global updating rule. Supergames differ from one another possibly because of

differences in the stage games or differences in the orderings.

When a player is on her turn to update her strategy, the following features of bounded

rationality are assumed:

(1) Although all players may employ mixed strategy, each player can only observes an track

of the history of pure strategies of her relevant neighbors. In a series of studies Kalai and

*This work was presented in part at the International Conference on Intelligent Computation Technology and
Automation(ICICTA), May 11-12, 2010, Changsha, China, and at The International Conference on Computer and
Management (CAMAN 2011), May 19-21, 2011, Wuhan, China. A slightly different version has been published in Journal
of Mathematical Sciences: Advances and Applications, Vol.13, No.1, 21-46, 2012.

©2013 Ye et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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(a) one dimensional lattice Z

(b) 2-dimensional rectangle lattice Z
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(c) 3-dimensional cubic lattice Z
3

Figure 1. Lattices Zd

Labra(1990[6],1991a[7],1991b[8]) investigated, in a finite-player supergame, the possibility for

the players to learn to play Nash equilibria by keeping track of the history players, engaging

in Baysian learning and taking best response policy. In this paper we do not intend to extend

their results to large supergames although it may be an interesting topic. Relevant problems

have been investigated in the literature of Cellular Automata (for example,see [4,10,11]).

(2) To make a strategy choice, the player only takes into account her neighbors’ plays in the

previous period. She is not sensitive enough to instaneously make response to the change in

their neighbors’ plays and to play based on her inference of her neighbors’ current and future

plays.

(3) The player may or may not have full control over her choices in the sense that she may

or may not be able to use the best response strategy. The possibility of choosing strategy a

versus strategy b depends on the difference in average payoffs accrued by playing a against

her neighbors versus by playing b.

In summary, the class of games which we study in this paper is a class of infinitely repeated

games with infinite numbers of players. Each player is directly connected only with her finite

neighbors. The information flow is very close to the traditional open-loop setting.
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On the Long-Run Equilibria of a Class of Large Supergames1 3

In Section 2 we describe the general formulation of the class of supergames by offering the

ingredients needed. We relate each game setting to a stochastic process which represents

the evolution of the strategy configuration of the game. This enables us to investigate the

evolution of the supergame by looking at the invariant measure of the relevant stochastic

process. For the whole class of games we first prove the existence of invariant measures and

then study the relationship among the concepts of invariant measures, reversible measures,

ergodic measures, Gibbs measures and Markovian random fields.

In Section 3, we derive invariant measures for some special supergames. We assume that

each person located on the vertices of the rectangle lattice plays two-person two strategies

games with her 4 neighbors simultaneously. The payoff function is symmetric. We prove

some results on the existence of ergodic measures. In this Section, we also investigate another

class of supergames. We assume that each person located on the vertices of the rectangle

lattice plays four 4-person team games or 4-person 2-pairs team games simultaneously with

her neighbors. The formula of invariant measure which represents the long-run equilibrium

plays with symmetric payoffs is obtained.

Section 4 is the conclusion. Some speculations on possible future research of other type

supergames on different lattices are discussed.

2. General formulation of a class of large supergames

This section is devoted to describe the general formulation of a class of supergames.

Subsection 2.1 presents the ingredients. Subsection 2.2 introduces the strategy evolution

process(SEP). Subsection 2.3 depicts all the subclass of games. Subsection 2.4 contains general

results on the existence of invariant distribution, reversibility and ergodicity of the SEP.

2.1. Ingredients

The class of large supergames which we investigate in this paper has the following

ingredients:

The players:

We assume that players are located on the sites of a graph G = {V, E}, where V is the vertex

set and E the edge set of the graph. In this work we assume that V is a lattice, usually Zd or

its finite sublattice. We also assume that all the players are identical.

Neighborhood:

A neighborhood system N = {Ni; i ∈ V} is assigned with each specific model. N is a

collection of nonempty subsets of the vertices of V such that

(i) i does not belong to Ni for all i ∈ V;

(ii) i ∈ Nj if and only if j ∈ Ni, for all i, j ∈ V;

Ni is called the neighborhood of i. We define the set Wi = Ni ∪ {i}. A clique C of V is either

a single vertex or a nonempty subset of vertex set of V such that all vertices that belong to C

are neighbors of each other.
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To simplify the model we assume that the neighborhood structure is translation invariant. For

example, in Zd cases, the invariance of the neighborhood system means that i ∈ Nj if and only

if i + k ∈ Nj+k. Since Ni = (i − j) + Nj for any i, j ∈ Zd, from Ni = i + N0, which 0 is the origin

vertex of Zd, we deduce that all the information of the neighborhood structure is contained in

N0. For V ⊂ Z, the neighborhood N0 is usually taken as N0 = {−s,−s+ 1, · · · ,−1,+1, · · · , s}
for some s > 0. For V ⊂ Z2, the two commonest choices for N0 are the following

NN
0 = {(1, 0), (−1, 0), (0, 1), (0,−1)} the von Neumann neighborhood,

NM
0 = NN

0 ∪ {(1, 1), (1,−1), (−1, 1), (−1,−1)} the Moore Neumann neighborhood.

Stage games:

In our class of supergames, some stage games are played over discrete time t ∈ Zd. At

each discrete time every player plays a finite-strategy n-person game simultaneously with

his neighbors. Mixed strategy is used in general. At the end of each stage game, every player

obtains information about the pure strategies that his neighbors took in the finished game

and then may revise his strategy, under some global ordering of updating, for the next game

according to these information and the payoff that he received. Then the game is repeated

again.

Strategy and payoff:

Let Ai be the finite set of all possible pure strategies that the player i can take and assume that

Ai = A for all i ∈ V. In a n-person game, let Q(x1, · · · , xn), x1, · · · , xn ∈ A be the payoff to the

player who plays x1 ∈ A, when his relavent neighbors play (x2, · · · , xn) ∈ An−1. We assume

Q(x1, · · · , xn) that is invariant under any permutation of (x2, · · · , xn).

Ordering of strategy changes:

At each period of time, all players may or may not update their strategies simultaneously.

Instead, associated with each game is an ordering according to which the players change their

strategies. Such an ordering over V which is pre-specified as in extensive form games, is

represented by the global updating rule.

The global updating rule will be called synchronous if all the players change their strategies

simultaneously at the same time; sequential, if they change their strategies one by one under

a fixed ordering; group − sequential, if the players within a group change their strategies

simultaneously at the same time, but different groups change their strategies one group at

a time under a fixed ordering; and asynchronous if at a given time only one player - selected

by random with uniform probability - updates his strategy. The sequential and asynchronous

updating rules are applicable only for the case with finite players(i.e., V is finite).

2.2. Strategy evolution process(SEP)

The dynamics of a supergame is characterized by a stochastic process which is called strategy

evolution process(SEP) in this paper. Technically, the SEP for a large supergame is a Markov

chain whose state at time t is denoted by Xt = {Xt,i; i ∈ V}. It takes value over Ωt = Ω = AV

which is called configuration space of the SEP at time t. xt = {xt,i; i ∈ V} is the realization

of Xt. Equivalently we may model the state of SEP at time t by a probability distribution µt
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on AV . Suppose that the configuration xt−1 determines the strategy of player i at time t with

probability(called local transition probability)

pi(xt,i|xt−1) = pi(xt,i|xt−1,j; j ∈ Wi) (2.1)

Note that

∑
xt,i∈A

pi(xt,i|xt−1,j; j ∈ Wi) = 1, f or all i ∈ V. (2.2)

Let P(y|x) be the global one-step transition probabilities from x to y. They are defined for

different global updating modes as follows, respectively.

(i)Synchronous: the global transition probabilities of the SEP are defined by

P(xt|xt−1) = ∏
i∈V

pi(xt,i|xt−1,j; j ∈ Wi) (2.3)

(ii)Group-sequential:

In this work we discuss a specific mode of group-sequential rules, say even-odd sequential

rule for Zd model. We partition the lattice Zd into two disjoint equivalent sublattices, say VE

and VO, arranged so that the nearest neighbor sites lie in different sublattices. The player

i ∈ VE updates his strategy at even time t with the local transition probability given by (2.1).

Then the global transition probabilities for the SEP is given by

P(xt|xt−1) =

⎧

⎨

⎩

∏
i∈VE

pi(xt,i|xt−1,j; j ∈ Wi), xt,i = xt−1,i, for any i ∈ VO

0, otherwise
(2.4)

If t is odd, the updating rule is obtained by reversing the rules of VE and VO.

(iii)Asynchronous:

In this case, we assume that V is finite, ‖V‖ = M. We denote by x(i, y) the configuration that

is identical to x, except the strategy of player i is y ∈ A. Then

P(x|y) = P(Xt = x|Xt−1 = y)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
M ∑i∈V Pi(Xt,i = xi|Xt−1 = x), if y = x

1
M Pi(Xt,i = xi|Xt−1 = x(i, y)), if y = x(i, y) �= x

0, otherwise

(2.5)

2.3. Subclasses

In the remaining of this section, we prove some results which apply to the whole class. The

class of supergames that we study is rather broad. All the subclasses can be represented in the

following chart:

219On the Long-Run Equilibria of a Class of Large Supergames
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The ordering pattern of

strategy updating

Number of persons in a stage game

two four four in two pairs

Synchronous yes yes yes

Asynchronous yes yes yes

Group-sequential yes yes yes

Each cell in the chart can be further divided into four subcells according to homogeneity and

symmetry of the payoff. For detail see the next section.

2.4. Invariant measures, ergodicity and reversibility

We are interested in the condition on the local transition probability for the existence and the

uniqueness of the invariant measure, the ergodicity and reversibility of the SEP. For the same

local transition rule given by (2.1), what are the differences between the invariant measures for

the SEP with different type of global updating rules? In certain cases there may exist multiple

invariant measures. This phenomena is called phase transition.

We are also interested in the inverse problem-for a given distribution π on AV find all the SEP

with π as their invariant measures, specifically when π is Gibbsian.

The answers of these problems vary for different types of transition and updating rules. Finite

V or infinite V will imply different results too. We will discuss them separately in the next

section.

The global transition probabilities (2.3), (2.4) or (2.5) defines a discrete-time Markov process

on the configuration space AV . Given a measure ρt−1 on the configuration xt−1 (2.3), (2.4) or

(2.5) defines a probability measure ρt = ρt−1P on xt.

ρt(dxt) =
∫

ρt−1(dxt−1)P(dxt|xt−1)

We say that a measure ν is stationary or time invariant if ν = νP. The following result is well

known.

Lemma 2.1. The invariant measures for the time evolution form a nonempty convex set.

Proof: See [9].

For the SEP with certain type of updating rule we define the following. A SEP is ergodic if the

chain is regular, i.e., it has a unique invariant measure which almost surely describes the limit

behavior of the SEP. A SEP will be called Gibbsian, if its invariant measure corresponds to the

probability distribution of a Markov random field(MRF) on AV , i.e.,

lim
t−→∞

Pr(Xt = x) = π(x) =
1

Λ
exp[−U(x)], (2.6)

with π(x) > 0 for all x ∈ Ω, Λ the normalization constant, and U(x) = ∑C vC(x), where

the summation is taken over the cliques of V, and where the function vC(.) is called potential
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function. We call a SEP reversible if the corresponding chain is reversible. It is well known

that the reversibility is equivalent to the detailed balance condition.

π(y)P(x|y) = π(x)P(y|x). (2.7)

Any reversible probability distribution is invariant since (2.7) implies that

π(x) = ∑
y

π(y)P(x|y). (2.8)

Theorem 2.1. A SEP is Gibbsian if and only if it is reversible.

Proof: See [9].

3. Invariant measures for some special models

In this section we study the above-mentioned problems in detail and depth for some special

game setting. The discussion is organized according to the number of players in a game.

3.1. Two-person game

In this subsection we discuss the case that the players are located on V which may be Zd

or its finite sublattice with the neighborhood structure of von Neuman type, i.e., N0 =
{j = (j1, · · · , jd); |j| = ∑

d
k=1 j2k = 1}. Every player plays a q-strategy two person game

simultaneously with each of his nearest neighbors (Z2 case see Fig. 2). We denote by

Qij = {Qij(x, y); x, y ∈ A} the payoff matrix of player i playing with player j. Qij is called

symmetric if Qij(x, y) = Qji(y, x) for all x, y ∈ A.

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Figure 2. Supergame based on basic two-person games on Z2

A game played by all nearest pairs on V is called homogeneous if the same payoff function is

assigned for all pair players. Otherwise, it is called nonhomogeneous. We will discuss them

separately.

221On the Long-Run Equilibria of a Class of Large Supergames
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At the end of each game, player i receives payoff Qij(y, x) if he plays strategy y while his

neighbor j plays strategy x; so his total payoff from playing strategy y is the sum of the payoffs

received from playing y against each of his neighbors. Then player i may revises his strategy

from y to z, under the given global updating rule, for the next game with probability

pi(z|x(i, y)) =
1

λ
exp{β

1

‖Ni‖
∑

j∈Ni

[Qij(z, xj)− Qij(y, xj)]}

=
1

λ′ exp{β
1

‖Ni‖
∑

j∈Ni

Qij(z, xj)}. (3.1)

where

λ = ∑
z∈A

exp{β
1

‖Ni‖
∑

j∈Ni

[Qij(z, xj)− Qij(y, xj)]

λ′ = ∑
z∈A

exp{β
1

‖Ni‖
∑

j∈Ni

Qij(z, xj)}

‖N‖ is the cardinality of set N. Note that both λ and λ′ depend on xNi = {xj : j ∈ Ni}. We

may write them by λ(xNi ) and λ′(xNi ). Roughly speaking, the probability the player i switchs

his strategy from y to z is proportional to the utility differences for these two strategies. We

will discuss three cases.

3.1.1. Homogeneous game with symmetric payoff

In this case all the payoff functions equals to Q which is symmetric. The local transition

probability will read as

pi(z|x(i, y)) =
1

λ
exp{β

1

‖Ni‖
∑

j∈Ni

[Qi(z, xj)− Qi(y, xj)]}

=
1

λ′ exp{β
1

‖Ni‖
∑

j∈Ni

Qi(z, xj)}. (3.2)

To discuss different global updating rule we denote Vn = {j = (j1, · · · , jd) ∈ Zd; |jk| ≤
n f or 1 ≤ k ≤ d} and assume that V is some finite cubic with this type. ‖V‖ = M.

(i)Asynchronous and even-odd sequential cases

Theorem 3.1. Consider a large homogeneous supergame with finite players located on a lattice V. The

payoff matrix of a two-person game is symmetric. Then the SEP whose asynchronous global transition

probability is given by (2.5) with the above local transition rule (3.2) and the SRP whose even-odd

sequential global transition probability is given by (2.4) with the above local transition rule (3.2) have

the following distribution on AV as their reversible invariant measure

π(x) =
1

Λ
exp{β

1

‖N0‖
∑

<i,j>

Q(xi, xj)} (3.3)

222 Game Theory Relaunched
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where the summation is taken over all nearest neighboring pairs of players, and

Λ = ∑
x

exp{β
1

‖N0‖
∑

<i,j>

Q(xi, xj)}

Proof: We only need to check (2.7) for y = x(i, y) for the asynchronous case and y whose even

(or odd) coordinates are different from those of x for even-odd sequential case.

(a)Asynchronous cases

π(x)P(x(i, y)|x)

=
1

Λ
exp{

β

‖N0‖
[ ∑
<j,k>,j,k �=i

Q(xj, xk) + ∑
j∈Ni

Q(xi, xj)]} ·
1

Mλ′(xNi )
exp{

β

‖N0‖
∑

j∈Ni

Q(y, xj)}

=
1

Λ
exp{

β

‖N0‖
[ ∑
<j,k>,j,k �=i

Q(xj, xk) + ∑
j∈Ni

Q(y, xj)]} ·
1

Mλ′(xNi )
exp{

β

‖N0‖
∑

j∈Ni

Q(xi, xj)}

= π(x(i, y))P(x|x(i, y))

(b)Even-odd sequential cases

We denote by x(E, yE)(x(O, yO)) for the configuration whose even components equals yE =
{yj, j ∈ VE}, while the odd components equal yO = {xi, i ∈ VO}(vice versa for x(O, yO)). We

need to prove (2.7) for y = x(E, yE)(or x(O, yO)). In fact

π(x)P(x(E, yE)|x)

=
1

Λ
exp{

β

‖N0‖
∑

<j,k>

Q(xj, xk)} ∏
i∈VE

1

λ′(xNi )
exp{

β

‖N0‖
∑

j∈Ni

Q(y, xj)}

=
1

Λ
exp{

β

‖N0‖
∑

<i,j>,i∈VE ,j∈VO

Q(yi, xj)} ∏
i∈VE

1

λ′(xNi )
exp{

β

‖N0‖
∑

j∈Ni

Q(xi, xj)}

= π(x(E, yE))P(x|x(E, yE)).

(ii)Synchronous cases

The global transition probability is given by (2.3) with the above local transition rule (3.2). The

above distribution π(·) in (3.3) is not the invariant distribution of this SEP.

For even-odd sequential and asynchronous models, it has been realized that there is

an intimate relation between d-dimensional time evolution and equilibrium statistical

model(ESM) in (d + 1)-dimension, the extra dimension being the discrete time ([3], [9]). In

fact, we can consider x = {xt}t∈Z as a configuration on the space-time lattice Zd+1 .

It is easy to see that if the transition probability pi(xt,i|xt−1) are all strictly positive, then µν is a

Gibbsian measure on AZd+1
. When V is infinite there are various ways to define finite-volume

Gibbs states in the thermodynamical limit, yielding the space-time measure µν of the time

evolution as an infinite-volume Gibbs measure. From the theory of ESM, it is important to

223On the Long-Run Equilibria of a Class of Large Supergames
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note that there may exist more than one Gibbs measure on AZd+1
which indicates the existence

of more than one stationary or periodic measure ν for the time evolution as a phase transition.

Example : binary strategy game

We assume that each player has only two choices of strategies which may be identified as

{-1,+1} for simplicity and convenience. The payoff matrix is given by

Q =

(

Q(+1,+1) Q(+1,−1)

Q(−1,+1) Q(−1,−1)

)

=

(

a b

b d

)

(3.4)

Or we may write Q(x, y) in the following form

Qi(x, y) = Q(x, y) = Jxy + K(x + y) + L for all i ∈ I (3.5)

where J, K and L are uniquely determined by a, b and d; and vice versa.

Q(+1,+1) = a = J + 2K + L

Q(+1,−1) = Q(−1,+1) = b = −J + L

Q(−1,−1) = d = J − 2K + L;

or

J =
1

4
(a − 2b + d)

K =
1

4
(a − d)

L =
1

4
(a + 2b + d).

(i)Asynchronous case

The invariant probability measure can be written as the following form

π(x) =
1

Λ
exp{β

1

‖N0‖
∑

<i,j>

Q(xi, xj)}

=
1

Λ
exp{β

1

‖N0‖
∑

<i,j>

[Jxixj + K(xi + xj) + L]}

=
1

Λ′ exp{ J̃ ∑
<i,j>

xixj + K̃ ∑
i∈V

xi} (3.6)

where J̃ =
βJ

‖N0‖
and K̃ =

4βK
‖N0‖

. This is the well known Ising model. From standard point

of view J̃ represents local pair interaction, and K̃ represents the global interactions. It is

interesting to notice that the payoff matrix Q contains information of both local and global
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interactions. This is not surprising because the game is homogeneous, i.e., the same payoff

matrix is assigned for all two-person games.

(ii)Even-odd sequential case

The invariant measure has same form of (3.6). It is well known that this model exhibits

the phenomena of phase transition in certain cases when V is infinite. To see this we first

consider the SRP with even-odd sequential updating rule for each Vn and denote by πn(·) the

corresponding invariant measures. Then let n −→ ∞, Vn spreads to cover the whole lattice

Zd. It is well known that there is a unique limiting distribution of sequence {πn} when d = 1.

While d = 2 the situation becomes complex but more interesting.

There is no phase transition whenever K̃ �= 0, i.e., there exists only one invariant measure.

When K̃ = 0(i.e., a = d) there is a value J̃c > 0 called critical value such that, for 0 ≤ J̃ ≤ J̃c, no

phase transition occurs; but if J̃ > J̃c, phase transition does occur. The critical value is about

J̃c = 0.44(see [1],[9]). Notice that a = d means Q(+1,+1) = Q(−1,−1), and J = 1
2 (a − b). So

when a is sufficiently larger than b, phase transition occurs.

Furthermore, there exist only two extreme distributions π+ and π− which are all transition

invariant in 2-dimension such that all other invariant measure π can be expressed as convex

combination of them, i.e.,

π = pπ+ + (1 − p)π−

where 0 ≤ p ≤ 1( see [1]). The marginal distributions of π+ and π−at single site satisfy

π+(+1) = π−(−1) > 2/3

(see [9]). This means that under π+(π−), all players favor strategy +1(-1). Note that there are

two Nash Equilibrium states for which all players play strategy +1 or -1.

For d ≥ 3, the phase diagrams are more complex and not completely known.

(iii)Synchronous case

To find the invariant measure is, in general, a difficult task.

Remarks: For the SEP of a large homogeneous supergame with asymmetric payoff under

different global updating rule with the local transition probability given by (3.1), the invariant

Gibbsian measure may not exist, in general. But for some special payoff it exists. Also for

binary strategy game it always exists.

3.1.2. Nonhomogeneous game with symmetric payoff

Now we consider the case of nonhomogeneous game with symmetric payoff. We assign

different payoff function Qij(x, y) for different pairs of players i and j, but assume that all

payoff are symmetric, i.e., Qij(x, y) = Qji(y, x). Then we have similar results. For the SEP

with synchronous and even-odd sequential global updating rule associated with the local

transition probability (3.1) the invariant measure is then given by

π(x) =
1

Λ
exp{

β

‖N0‖
∑

<i,j>

Qij(xi, xj)}
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3.2. Four-person team game

We return to the model on Z2. This time we assume that the four players located on the

vertices of a basic square � = {(i1, i2), (i1, i2 + 1), (i1 + 1, i2 + 1), (i1 + 1, i2)} form a team to

play a four-person team game. Let �(i, j, k, l) to be the square with vertices i, j, k and l in

clockwise order. Denote by Si the set of basic squares which contain vertex i, and S the set of

all basic square.

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

Figure 3. Supergame based on 4-person team games

Each player is a member of four four-person teams consisting of his neighbors. At each

time every player plays finite-strategy four-person team games with four neighboring teams

simultaneously(see Fig. 3).

Suppose that the payoff function Q = {Q(x, y, z, u); x, y, z, u ∈ A} is symmetric. The local

transition probability for the SEP is given by

pi(z|x(i, y)) =
1

λ
exp{

β

4 ∑
�(i,j,k,l)∈Si

[Qi(z, xj, xk, xl)− Qi(y, xj, xk, xl)]}

=
1

λ′ exp{
β

4 ∑
�(i,j,k,l)∈Si

Qi(z, xj, xk, xl)} (3.7)

where.

λ = ∑
z∈A

exp{
β

4 ∑
�(i,j,k,l)∈S

[Qi(z, xj, xk, xl)− Qi(y, xj, xk, xl)]}

λ′ = ∑
z∈A

exp{
β

4 ∑
�(i,j,k,l)∈Si

Qi(z, xj, xk, xl)}.

We discuss homogeneous game with symmetric payoff only and claim that for the SEP with

asynchronous global updating rule associated with the local transition probability (3.7). The

226 Game Theory Relaunched



On the Long-Run Equilibria of a Class of Large Supergames6 13

invariant measure is given by

π(x) =
1

Λ
exp{

β

4 ∑
�(i,j,k,l)∈S

Q(xi, xj, xk, xl)}. (3.8)

Example: binary strategy game

We assume that each player has only two choices of strategies which may be identified as

{+1,−1}. The payoff function is symmetric. We denote

Q(x, y, z, u) = Hxyzu + I(xyz + yzu + zux + xyu)

+J(xy + xz + xu + yz + yu + zu) + K(x + y + z + u) + L

where H, I, J, K and L are uniquely determined by a, b, c, d and e and vice versa.

Q(+1,+1,+1,+1) = a = H + 4I + 6J + 4K + L

Q(+1,+1,+1,−1) = b = −H − 2I + 2K + L

Q(+1,+1,−1,−1) = c = H − 2J + L

Q(+1,−1,−1,−1) = d = −H + 2I − 2K + L

Q(−1,−1,−1,−1) = e = H − 4I + 6J − 4K + L

or

H =
1

16
(a − 4b + 6c − 4d + e)

I =
1

16
(a − 2b + 2d − e)

J =
1

16
(a − 2c + e)

K =
1

16
(a + 2b − 2d − e)

L =
1

16
(a + 4b + 6c + 4d + e)

The invariant measure π(x) is a Ising model with one-site, two-site,three-site and four-site

intersections.

π(x) =
1

Λ
exp{H̃ ∑

�(i,j,k,l)∈S

xixjxkxl + Ĩ ∑
∆(i,j,k)∈T

xixjxk + J̃ ∑
<i,j>

xixj + K̃ ∑
i∈I

xi} (3.9)

where H̃ =
βH
4 , Ĩ =

4βI
4 , J̃ =

6βJ
4 and K̃ =

4βK
4 ; ∆(i, j, k) the triangle with the vertices i, j and

k.

3.3. Four-person two-pair game

We consider another type of 4-person game for Z2 model. This time we assume that four

players within a basic square form two pairs along the diagonal lines (example includes
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bridge-a card play). Therefore each player plays four 4-person 2-pairs games simultaneously

every time (see Fig. 4).
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Figure 4. Supergame based on 4-person 2-pairs games on Z2

If the strategies of four players located on the sites of a basic square �(i, j, k, l) are (x, y, z, u),
then the payoff function is defined by Q((x, z), (y, u)), x, y, z, u ∈ A. Again we assume that

each player has only two choices of strategies which may be identified as A = {+1,−1}, and

the payoff function Q is symmetric between pairs (x, z) and (y, u) and within each pair, i.e.,

Q((x, z), (y, u)) = Q((z, x), (y, u)) = Q((y, u), (x, z))

It can be represented as the following:

Q(x, y, z, u) = Hxyzu + I(xyz + yzu + zux + xyu)

+ J1(xz + yu) + J2(xy + yz + zu + ux) + K(x + y + z + u) + L

where H, I, J1, J2, K and L are uniquely determined by a, b, c, d, e and f and vice versa.

Q((+1,+1), (+1,+1)) = a = H + 4I + 2J2 + 4J2 + 4K + L

Q((+1,+1), (+1,−1)) = b = −H − 2I + 2K + L

Q((+1,+1), (−1,−1)) = c = H + 2J1 − 4J2 + L

Q((+1,−1), (+1,−1)) = d = H − 2J1 + L

Q((+1,−1), (−1,−1)) = e = −H + 2I − 2K + L

Q((−1,−1), (−1,−1)) = f = H − 4I + 2J1 + 4J2 − 4K + L
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or

H =
1

16
(a − 4b + 2c + 4d − 4e + f )

I =
1

16
(a − 2b + 2e − f )

J1 =
1

16
(a + 2c − 4d + f )

J2 =
1

16
(a − 2c + f )

K =
1

16
(a + 2b − 2e − f )

L =
1

16
(a + 4b + 2c + 4d + 4e + f )

We define synchronous, even-odd sequential and asynchronous global updating rules as

before. The local transition probability is defined by

Pi(z|x(i, y)) =
1

Λ
exp{

β

4 ∑
�(i,j,k,l)∈Si

Q((z, xk), (xj, xl))}. (3.10)

where

λ = ∑
z∈A

exp{
β

4 ∑
�(i,j,k,l)∈Si

Q((z, xk), (xj, xl))}.

For the SEP with asynchronous and even-odd sequential global updating rules we can prove

that the invariant measure is given by

π(x) =
1

Λ
exp{H̃ ∑

�(i,j,k,l)∈S

xixjxkxl + Ĩ ∑
∆(i,j,k)∈T

xixjxk + J̃1 ∑
diagonal<i,k>

xixk

+ J̃2 ∑
horizonal or vertical<i,j>

xixj + K̃ ∑
i∈I

xi}. (3.11)

where

Λ = ∑
x

exp{
β

4 ∑
�(i,j,k,l)∈S

Q((xi, xk), (xj, xl))}.

and H̃ =
βH
4 , Ĩ =

βI
4 , J̃1 =

βJ1

4 , J̃2 =
2βJ2

4 , K̃ =
4βK

4 . Notice that the pair interaction

for diagonal pairs is different from that for horizontal and vertical pairs. When c = d, i.e.,

J1 = J2, ( J̃1 = J̃2) this reduces the model of 4-person game. The invariant measure is another

new type of Ising model with one-site, two-site, three-site and four-site interactions. We

also conjecture that for some set of parameters there exists phase transition. This is again

an interesting problem needed to be pursued.
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4. Further researches

We conclude with a few remarks about the possible problems for future research along this

line.

(i) In Section 3 we have discussed some reversible SEP with certain types of global and local

transition probability. We treated symmetric payoff. For asymmetric payoff, the situation

becomes more complicated. A famous example is so-called Prisoner’s Dilemma. The payoff

of this two-person two-strategies game is given by

Q =

(

Q(+1,+1) Q(+1,−1)
Q(−1,+1) Q(−1,−1)

)

=

(

(a, a) (b, c)
(c, b) (d, d)

)

(4.1)

The long run behavior exhibits complex dynamics.

(ii) For q-strategies (q > 2) with the general payoff function which is not necessarily

symmetric, the process may not be reversible. A simple example is called Rock-Paper-Scissors

game, in which there are three strategies: rock(R), paper(P) and scissor(S). The payoff is given

by

Q =

⎛

⎝

Q(R, R) Q(R, P) Q(R, S)
Q(P, R) Q(P, P) Q(P, S)
Q(S, R) Q(S, P) Q(S, S)

⎞

 =

⎛

⎝

(0, 0) (−1, 1) (1,−1)
(1,−1) (0, 0) (−1, 1)
(−1, 1) (1,−1) (0, 0)

⎞

 (4.2)

This is also an example of zero-sum game. It is interesting to find other or possible all

asymmetric payoff functions with which the SEP could be reversible.

(iii) For synchronous global updating rule, it seems more difficult to find the invariant

measure.

(iv) We may consider various types of team games. For example we may consider the

2-dimensional Union Jack lattice (see Figure 5). The player located on the vertex of the lattice

plays three-person team game for players located on the triangle((i1, i2), (i1 + 1, i2), (i1, i2 +
1)), ((i1, i2), (i1 − 1, i2), (i1, i2 − 1)), ((i1, i2), (i1 + 1, i2), (i1, i2 − 1)), ((i1, i2), (i1 − 1, i2), (i1, i2 +
1)) for Z2 model, or five-person star-team game for site ((i1, i2), (i1 + 1, i2), (i1, i2 + 1), (i1 −
1, i2), (i1, i2 − 1)). They may deduce different results, specifically, different behavior of phase

transition are expected.

(v) We may consider models on other lattices. Besides the above-mensioned 2-dimensional

Union Jack lattice, there is a rich theory on the lattices including tree, other two and

three-dimensional lattice models, such as 2-dimensional triangle lattice, 2-dimensional

honeycomb lattice, 2-dimensional Kagome lattice, 3-dimensional cubic lattice, 3-dimensional

face-centered lattice, 3-dimensional body-centered cubic lattice. Also the supergame on small

world network is worth to be pursued. Different behavior of phase transition of the invariant

measures for these lattices has been found. we have treated the supergame on trees and the

result is reported in [12].

(vi) It is also interesting to pursue the inverse problem-for a given Gibbsian invariant measure

what is the sufficient and necessary conditions on the local transition probabilities(or on the

payoff) for Gibbsian SEP with different global updating rules.

230 Game Theory Relaunched



On the Long-Run Equilibria of a Class of Large Supergames8 17

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 5. 2-dimensional Union Jack lattice

(vii) For those models for which the theoretical analysis is difficult, the numerical simulation

could be of great help. We will report some numerical results elsewhere.

Overall this work is the first step to treat the SEP for large supergame over discrete time. More

and deeper results are expected when we pursue the above problems.
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