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1. Introduction

In this chapter the transmission of massless and massive Dirac fermions across
two-dimensional p-n and n-p-n junctions of graphene which are high enough so that they
correspond to 2D potential steps and square barriers, respectively is investigated. It is
shown that tunneling without exponential damping occurs when an relativistic particle
is incident on a very high barrier. Such an effect has been described by Oskar Klein in
1929 [1] (for an historical review on klein paradox see [2]). He showed that in the limit
of a high enough electrostatic potential barrier, it becomes transparent and both reflection
and transmission probability remains smaller than one [3]. However, some later authors
claimed that the reflection amplitude at the step barrier exceeds unity [4,5], implying that
transmission probability takes the negative values.

Throughout this chapter, these negative transmission and higher-than-unity reflection
probability is refereed to as the Klein paradox and not to the transparency of the barrier in
the limit V0 → ∞ (V0 is hight of the barrier). However, by considering the massless electrons
tunneling through a potential step which can correspond to a p-n junction of graphene, as
the main aim in the first section, it is be clear that the transmission and reflection probability
both are positive and the Klein paradox is not then a paradox at all. Thus, one really doesn’t
need to associate the particle-antiparticle pair creation, which is commonly regarded as an
explanation of particle tunneling in the Klein energy interval, to Klein paradox. In fact it
will be revealed that the Klein paradox arises because of not considering a π phase change
of the transmitted wave function of momentum-space which occurs when the energy of
the incident electron is smaller than the height of the electrostatic potential step. In the
other words, one arrives at negative values for transmission probability merely because of
confusing the direction of group velocity with the propagation direction of particle’s wave
function or equivalently- from a two-dimensional point of view- the propagation angle with
the angle that momentum vector under the electrostatic potential step makes with the normal
incidence. Then our attentions turn to the tunneling of massless electrons into a barrier with
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the hight V0 and width D. It will be found that the probability for an electron (approaching
perpendicularly) to penetrate the barrier is equal to one, independent of V0 and D. Although
this result is very interesting from the point of view of fundamental research, its presence in
graphene is unwanted when it comes to applications of graphene to nano-electronics because
the pinch-off of the field effect transistors may be very ineffective. One way to overcome these
difficulties is by generating a gap in the graphene spectrum. From the point of view of Dirac
fermions this is equivalent to the appearing of a mass term in relativistic equation which
describes the low-energy excitations of graphene, i.e. 2D the massive Dirac equation:

H = −ivFσ.∇ ± ∆σ
z (1)

where ∆ is equal to the half of the induced gap in graphene spectrum and it’s positive
(negative) sign corresponds to the K (K′) point. Then the exact expression for T in gapped
graphene is evaluated. Although the presence of massless electrons which is an interesting
aspect of graphene is ignored, it”l be seen that how it can save us from doing the calculation
once more with zero mass on both sides of the barrier, but non-zero mass inside the barrier.
This might be a better model for two pieces of graphene connected by a semiconductor
barrier (see fig. 6). Another result that show up is that the expression for T in the former
case shows a dependence of transmission on the sign of refractive index, n, while in the latter
case it will be revealed that T is independent from the sign of n.

From the above discussion and motivated by mass production of graphene, using 2D massive
Dirac-like equation, in the next sections, the scattering of Dirac fermions from a special
potential step of height V0 which electrons under it acquire a finite mass, due to the presence
of a gap of 2∆ in graphene spectrum is investigated [2], resulting in changing of it’s spectrum
from the usual linear dispersion to a hyperbolic dispersion and then show that for an electron
with energy E < V0 incident on such a potential step, the transmission probability turns out
to be smaller than one in normal incident, whereas in the case of ∆ → 0, this quantity is
found to be unity. In graphene, a p-n junction could correspond to such a potential step if it
is sharp enough [6-7].

Here it should be noted that for building up such a potential step, finite gaps are needed to be
induced in spatial regions in graphene. One of the methods for inducing these gaps in energy
spectra of graphene is to grow it on top of a hexagonal boron nitride with the B-N distance
very close to C-C distance of graphene [8,9,10]. One other method is to pattern graphene
nanoribbons.[11,12]. In this method graphene planes are patterned such that in several
areas of the graphene flake narrow nanoribbons may exist. Here, considering the slabs with
SiO2-BN interfaces, on top of which a graphene flake is deposit, it is then possible to build
up some regions in graphene where the energy spectrum reveals a finite gap, meaning that
charge carriers there behave as massive Dirac fermions while there can be still regions where
massless Dirac fermions are present. Considering this possibility, therefore, the tunneling
of electrons of energy E through this type of potential step and also an electrostatic barrier
of hight V0 which allows quasi-particles to acquire a finite mass in a region of the width D

where the dispersion relation of graphene exhibits a parabolic dispersion is investigated. The
potential barrier considered here is such that the width of the region of finite mass and the
width of the electrostatics barrier is similar. It will be observed that this kind of barrier is not
completely transparent for normal incidence contrary to the case of tunneling of massless
Dirac fermions in gapless graphene which leads to the total transparency of the barrier

New Progress on Graphene Research4



[13,14]. As mentioned it is a real problem for application of graphene into nano-electronics,
since for nano-electronics applications of graphene a mass gap in itŠs energy spectrum is
needed just like a conventional semiconductor. We also see that, considering the appropriate
wave functions in region of electrostatic barrier reveals that transmission is independent of
whether the refractive index is negative or positive[15-17]. There is exactly a mistake on this
point in the well-known paper "The electronic properties of graphene" [18].

In the end, throughout a numerical approach the consequences that the extra π-shift might
have on the transmission probability and conductance in graphene is discussed [19].

2. Quantum tunneling

According to classical physics, a particle of energy E less than the height V0 of a potential
barrier could not penetrate it because the region inside the barrier is classically forbidden,
whereas the wave function associated with a free particle must be continuous at the barrier
and will show an exponential decay inside it. The wave function must also be continuous on
the far side of the barrier, so there is a finite probability that the particle will pass through
the barrier( Fig. 1). One important example based on quantum tunnelling is α-radioactivity
which was proposed by Gamow [20-22] who found the well-known Gamow formula. The
story of this discovery is told by Rosenfeld [23] who was one of the leading nuclear physicist
of the twentieth century.

In the following, before proceeding to the case of massless electrons tunneling in graphene,
we concern ourselves to evaluation of transmission probability of an electron incident upon
a potential barrier with height much higher than the electron’s energy.

2.1. Tunneling of an electron with energy lower than the electrostatic potential

For calculating the transmission probability of an electron incident from the left on a potential
barrier of hight V0 which is more than the value of energy as indicated in the Figure 1 we
consider the following potential:

V(x) =







0 x < 0
V0 0 < x < w
0 x > w

(2)

For regions I, the solution of Schrodinger’s equation will be a combination of incident and
reflected plane waves while in region II, depending on the energy, the solution will be either
a plane wave or a decaying exponential form.

ψI = eikx + re−ikx (3)

ψI I = aeiqx + be−iqx (4)

ψI I I = teikx (5)
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Figure 1. Schematic representation of tunneling in a 2D barrier.

where a, b, r, t are probability coefficients that must be determined from applying the
boundary conditions. k and q are the momentum vectors in the regions I an II, respectively:

k =

√

2mE

h̄2
, (6)

q =

√

2m(E − V0)

h̄2
. (7)

We know that the wave functions and also their first spatial derivatives must be continuous
across the boundaries. Imposing these conditions yields:















1 + r = a + b
ik(1 − r) = iq(a − b)
aeiqD + be−iqD = teikD

iq(aeiqD
− be−iqD)a = ikteikD

(8)

The transmission amplitude, t is easily obtained:

t =
4e−ikDkq

(q + k)2e−ikD
− (q − k)2eikD

, (9)
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Figure 2. A p-n junction of graphene in which massless electrons incident upon an electrostatic region with no energy gap so

that electrons in tunneling process have an effective mass equal to zero.

which from it the transmission probability T can be evaluated as:

T = |t|2 =
16k2q2

(q + k)2e−ikD − (q − k)2eikD
. (10)

For energies lower than V0, the wave decays exponentially as it passes through the barrier,
since in this case q is imaginary. Also note that the perfect transmission happens at qD = nπ

(n an integer). This resonance in transmission occurs physically because of instructive and
destructive matching of the transmitted and reflected waves in the potential region. Now
that we have got a insight on the quantum tunneling phenomena in non-relativistic limit, the
next step is to extent our attentions to the relativistic case.

3. Massless electrons tunneling into potential step

Here, first a p-n junction of graphene which could be realized with a backgate and could
correspond to a potential step of hight V0 on which an massless electron of energy E is
incident ( see Fig 2) is considered. Two region, therefore, can be considered. The region for
which x < 0 corresponding to a kinetic energy of E and the region corresponding to a kinetic
energy of E −V0. In order to obtain the transmission and reflection amplitudes, we first need
to write down the following equation:

H = vFσ.p + V(r), (11)

where

V(r) =

{

V0 x > 0
0 x < 0

(12)

The above Dirac equation for x > 0 has the exact solutions which are the same as the free
particle solutions except that the energy E can be different from the free particle case by the
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addition of the constant potential V0. Thus, in the region II, the energy of the Dirac fermions
is given by:

E = vF

√

q2
x + k2

y + V0, (13)

where q is the momentum in the region of electrostaic potential. The wave functions in the
two regions can be written as:

ψI =
1√
2





1

λeiφ



 ei(kx x+kyy) +
r√
2





1

λei(π−φ)



 ei(−kx x+kyy), (14)

and

ψI I =
t√
2





1

λ′ei(θ+π)



 ei(qx x+kyy), (15)

where r and t are reflected and transmitted amplitudes, respectively, λ′ = sgn(E − V0) is
the band index of the wave function corresponding to the second region (x > 0) and φ =

arctan(
ky

kx
) is the angle of propagation of the incident electron wave and θ = arctan(

ky

qx
) with

qx = ±

√

[
(V0 − E)2

v2
F

]− k2
y, (16)

is the angle of the propagation of the transmitted electron wave1 and not, as it should be, the
angle that momentum vector q makes with the x-axis. The reason will be clear later.

The following set of equations are obtained, if one applies the continuity condition of the
wave functions at the interface x = 0:

1 + r = t (17)

λeiφ − rλe−iφ = λ′teiθ , (18)

which gives the transmission amplitude, t, as follows:

t =
2λ cos φ

λ′eiθ + λe−iφ
. (19)

Multiplying t by it’s complex conjugate yields:

tt∗ =
2 cos2 φ

1 + λλ′cos(φ + θ)
. (20)

1 By this definition θ falls in the range − π
2 < θ < − π

2 .

New Progress on Graphene Research8



Here it should be noted that the transmission probability, T, as we see later, is not simply
given by tt∗ unlike to the refraction probability, R, which is always equal to rr∗:

R = rr∗ =
1 − λλ′cos(φ − θ)

1 + λλ′cos(φ + θ)
. (21)

The reader can easily check that using the relation:

R + T = 1. (22)

Physically the reason that T is not given by tt∗ is because in the conservation law:

∇.j +
∂

∂t
|ψ|2, (23)

which gives for the probability current

j = vFψ†
σψ, (24)

it is the probability current, j(x, y), that matters, which is not simply given by probability
density |ψ|2. The probability current also contains the velocity which means that if velocity
changes between the incoming wave and the transmitted wave, T is not, therefore, given
by |t|2, however there is the ratio of the two velocities entering. Here, in order to find the
transmission, since the system is translational invariant along the y-direction, we get

∇.j(x, y) = 0, (25)

which implies that:

jx(x) = constant. (26)

Hence one can write the following relation:

jix + jrx = jtx, (27)

where jix, jrx and jix denote the incident, reflected and transmission currents, respectively.
From this equation it is obvious that:

1 = |r|2 + |t|2
λλ′ cos θ

sin φ
(28)

One can then obtain the transmission probability from the relation (R+T=1) as:
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T =
2λλ′ cos θ cos φ

1 + λλ′cos(φ + θ)
. (29)

This equation shows that for an electron of energy E > V0, the probability is positive and
also less than unity, whereas for an electron of energy E < V0, as in this case we have
λ = 1 and λ′ = sgn(E − V0) = −1, we find that the probability is negative and therefore
the reflection probability, R, exceeds unity as it is clear from (21). In fact the assumption
of particle-antiparticle (in this case electron-hole) pair production at the interface was
considered as an explanation of these higher-than-unity reflection probability and negative
transmission and has been so often interpreted as the meaning of the Klein paradox. In
particular, throughout this chapter, these features are refereed to as the Klein paradox.

Another odd result will be revealed, if we consider the normal incident of electrons upon the
interface of the potential step. Assuming an electron propagating with propagation angle
φ = 0 on the potential step, we see that both R and T, in this case, become infinite which
does not make sense at all because it would imply the existence of a hypothetical current
source corresponding to the electron-hole pair creation at interface of the step. In other
words no known physical mechanism can be associated to this results.

As it will be clear in what follows the negative T and higher than one reflection probability
that equations (29) and (21) imply, arises from the wrong considered direction of the
momentum vector, q, of the wave function in the region II. In fact, in the case of E < V0,
momentum and group velocity vg which is evaluated as:

vg =
∂E

∂qx
=

qx

E − V0
, (30)

have opposite directions because we assumed that the transmitted electron moves from left
to right and therefore vg must be positive implying that qx has to assign it’s negative value,
meaning that the direction of momentum in the region II differs by 180 degree from the
direction of which the wave packed propagates. In the other words in the case of E < V0,
the phase of the transmitted wave function in momentum-space undergoes a π change in
transmitting from the region I to region II. Thus, the appropriate wave functions in the
momentum space, ψI I , is:

ψI I =
t
√

2





1

λ′ei(θ+π)



 , (31)

which from them T and R are given by:

T = −
2λλ′ cos θ cos φ

1 + λλ′ cos(φ + θ)
. (32)
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R ==
1 + λλ′ cos(φ − θ)

1 − λλ′ cos(φ + θ)
. (33)

These expressions now reveal that both transmission and reflection probability are positive
and less than unity. It also shows that if electron arrives perpendicularly upon the step,
the probability to go through it is one which is is related to the well-known "absence of
backscattering" [24] and is a consequence of the chirality of the massless Dirac electrons [25].
Notice that in the limit V0 >> E, since in this case qx → ∞ and therefore θ → 0, transmission
and reflection probability are:

T(φ) =
2 cos φ

1 + cos φ
, (34)

and

R(φ) =
1 − cos φ

1 + cos φ
. (35)

As it is clear in the case of normal incident the p-n junction become totally transparent, i.e.
T(0) = 1.

4. Ultra-relativistic tunneling into a potential barrier

In this section the scattering of massless electrons of energy E by a n-p-n junction of graphene
which can correspond to a square barrier if it is sharp enough I address as depicted in figure
3. By writing the wave functions in the three regions as:

ψI =
1
√

2





1

λeiφ



 ei(kx x+kyy) +
r
√

2





1

λei(π−φ)



 ei(−kx x+kyy), (36)

ψI I =
a
√

2





1

λ′eiθt



 ei(qx x+kyy) +
b
√

2





1

λ′ei(π−θt)



 ei(qx x+kyy), (37)

ψI I I =
t
√

2





1

λeiφ



 ei(kx x+kyy), (38)

we’ll be able to calculate T only by imposing the continuous condition of wave function at
the boundaries and not it’s derivative. Note that, in the case of E < V0, θt = θ +π is the angle
of momentum vector q, measured from the x-axis while θ is the angle of propagation of the
wave packed and, therefore, shows the angle that group velocity, vg, makes with the x-axis2.

2 Notice that if one consider the case E > V0, one then see that θt = θ, implying that momentum and group velocity
are parallel.
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Figure 3. an one dimensional schematic view of a n-p-n junction of gapless graphene. In all three zones the energy bands are

linear in momentum and therefore we have massless electrons passing through the barrier.

By applying the continuity conditions of the wave functions at the two discontinuities of the
barrier (x = 0 and x = D), the following set of equations is obtained:

1 + r = a + b (39)

λeiφ
− λre−iφ = λ′aeiθt

− λ′be−iθt (40)

aeiqx D + be−iqx D = teikx D (41)

λ′aeiθt+iqx D
− λ′be−iθt−iqx D = λteiφ+ikx D. (42)

Here, as previous sections, the transmission amplitude in the first region (incoming wave) is
set to 1. For solving the above system of equations with respect to transmission amplitude,
t, we first determine a from (41) which turns out to be:

a = te−iqx D+ikx D
− be−2iqx D, (43)

and then substituting it in equation (42), b can be evaluated as:

b =
teiqx D+ikx D(λ′eiθt − λeiφ)

2λ′ cos θt
(44)

Now equation (40) by the use of relation (39) could be rewritten as follows:

2λ cos φ = a(λ′eiθt + λe−iφ)− b(λ′e−iθt
− λe−iφ). (45)

New Progress on Graphene Research12



Thus, by plugging a and b into this equation, after some algebraical manipulation t can be
determined as:

t = −e−ikx D 4λλ′ cos φ cos θt

eiqx D[2 − 2λλ′ cos(φ − θt)]− e−iqx D[2 + 2λλ′ cos(φ + θt)]
(46)

Up to now, we have only obtained the transmission amplitude and not transmission
probability. One can multiply t, by itŠs complex conjugation and get the exact expression
for the transmission probability of massless electrons as:

T(φ) =
cos2 φ cos2 θt

(cos φ cos θt cos(qxD))2 + sin2(qxD)(1 − λλ′ sin φ sin θt)2
(47)

It is evident that T(φ) = T(−φ) and for values of qxD satisfying the relation qxD = nπ,
with n an integer, the barrier becomes totally transparent, as in this case we have T(φ) = 1.
Another interesting result will be obtained when we consider the scattering of an electron
incident on the barrier with propagation angle φ = 0 (φ → 0 leading to θt → 0 and π for
the case of E > V0 and E < V0, respectively) which imply that, no matter what the value of
qxD is, the barrier becomes completely transparent, i.e. T(0) = 1. However for applications of
graphene in nano-electronic devices such as a graphene-based transistors this transparency
of the barrier is unwanted, since the transistor can not be pinched off in this case, however,
in the next section by evaluating the transmission probability of a n-p-n junction of graphene
which quasi-particles can acquire a finite mass there, it will be clear that transmission is
smaller than one and therefore suitable for applications purposes. Turning our attention
back to expression (47), it is clear that if one considers the cases E > V0 and E < V0 with
the same magnitude for x-component of momentum vector q, corresponding to same values
for |V0 − E|, would arrive at the same results for transmission probability, irrespective of
whether the energy of incident electron is higher or smaller than the hight of the barrier3.
This is a very interesting result because it shows that transmission is independent of the
sign of refractive index n of graphene, since for the case of E < V0 group velocity and
the momentum vector in the region II have opposite directions and graphene, therefore,
meets the negative refractive index. There is a mistake exactly on this point in [18]. In this
paper the angle that momentum vector q makes with the x-axis have been confused with
the propagation angle θ. In fact the negative sign of qx have not been considered there and
therefore expression for T which is written there as

T(φ) =
cos2 φ cos2 θ

(cos φ cos θ cos(qxD))2 + sin2(qxD)(1 − λλ′ sin φ sin θ)2
, (48)

results in different values for probability when |E − V0| is the same for both cases of
E > V0 and E < V0. In other words, the π phase change of the transmitted wave function

3 Because if we assume that energy of incident electron is smaller than height of the barrier, the band index λ′ assigns
it’s negative value, meaning that the transmission angle θt is θt = θ + π and therefore we get sin θt = − sin θ.
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in momentum-space in the latter case is not counted in. It is worth noticing that both
expressions for normal incident lead to same result T(0) = 1.

For a very high potential barrier (V0 → ∞), we have θ → 0 , π, and, therefore, we arrive at
the following result for T:

T(φ) =
cos2 φ

cos2 φ cos2(qxD) + sin2(qxD)
=

cos2 φ

1 − cos2(qxD) sin2 φ
, (49)

which reveals that for perpendicular incidence the barrier is again totally transparent.

5. Tunnelling of massive electrons into a p-n junction

In the two previous sections the tunneling of massless Dirac fermions across p-n and
n-p-n junctions was covered. In this section the massive electrons tunneling into a two
dimensional potential step (n-p junction) of a gapped graphene which shows a hyperbolic
energy spectrum unlike to the linear dispersion relation of a gapless graphene is discussed
(see Fig. 4). The low energy excitations, therefore, are governed by the two dimensional
massive Dirac equation. Thus, in order to calculate the transmission probability, we first need
to obtain the eigenfunctions of the following Dirac equation which describes the massive
Dirac fermions in gapped graphene so that we’ll be able to write down the wave functions
in different regions:

H = vFσ.p + ∆σz, (50)

where 2∆ is the induced gap in graphene spectrum and σ = (σx, σy) with

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

, (51)

the i=x,x,z, Pauli matrix. Now for obtaining the eigenfunctions one may rewrite the
Hamiltonian as:

H =

(

∆ vF|p|e
−iϕp

vF|p|e
iϕp ∆

)

, (52)

where

ϕp = arctan(py/px). (53)

As one can easily see the corresponding eigenvalues are given by:

E = λ
√

∆2 + v2
FP2, (54)
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Figure 4. Massive Dirac electron tunneling into a step potential of graphene. As it is clear an opening gap in graphene

spectrum makes electrons to acquire an effective mass of ∆/2v2
F in both regions

where λ = ± correspond to the positive and negative energy states, respectively. Now in
order to obtain the eigenfunctions, one can make the following ansatz:

ψλ,k =
1√
2





uλ

vλ



 ei(kx x+kyy), (55)

where we’ve used units such that h̄ = 1. Plugging the above spinors into the corresponding
eigenvalue equation then gives:

uλ =

√

√

√

√
1 +

λ∆
√

∆2 + v2
Fk2

, vλ = λ

√

√

√

√
1 − λ∆

√

∆2 + v2
Fk2

eiϕk . (56)

The wave functions, therefore are given by:

ψλ,k =
1√
2













√

1 + λ∆√
∆2+v2

Fk2

λ
√

1 − λ∆√
∆2+v2

Fk2
eiϕk













ei(kx x+kyy). (57)

It is clear that in the limit ∆ → 0, one arrives at the same eigenfunctions

ψλ,k =
1√
2





1

λeiϕk



 ei(kx x+kyy), (58)
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as those of massless Dirac fermions in graphene.

Now that we have found the corresponding eigenfunctions of Hamiltonian (4.52), assuming
an electron incident upon a step of height V0, we can write the single valley Hamiltonian as:

H = vFσ.p + ∆σz + V(r), (59)

where V(r) = 0 for region I (x < 0) and for the region II (x > 0), massive Dirac fermions feel
a electrostatic potential of hight V0 with the kinetic energy E − V0. The wave functions in the
two regions then are:

ψI =
1
√

2





α

γλeiφ



 ei(kx x+kyy) +
r
√

2





α

γλei(π−φ)



 ei(−kx x+kyy) (60)

and

ψI I =
t
√

2





β

λ′ηeiθt



 ei(qx x+kyy), (61)

where in order to make things more simple, the following abbreviations is introduced:

α =

√

√

√

√
1 +

λ∆
√

∆2 + v2
F(k

2
x + k2

y)
, γ =

√

√

√

√
1 −

λ∆
√

∆2 + v2
F(k

2
x + k2

y)
, (62)

β =

√

√

√

√
1 +

λ′∆
√

∆2 + v2
F(q

2
x + k2

y)
, η =

√

√

√

√
1 −

λ′∆
√

∆2 + v2
F(q

2
x + k2

y)
. (63)

Imposing the continuity conditions of ψI and ψI I at the interface leads to the following
system of equations:

α + αr = βt, (64)

λγeiφ − λγre−iφ = λ′ηteiθt , (65)

which solving them with respect to r and t gives

r =
λeiφ − λ′ αη

βγ eiθt

λ′ αη
βγ eiθt + λe−iφ

, (66)
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and

t =
2λ cos φ

η
γ λ′eiθt +

β
α λe−iφ

. (67)

From (1.66) it is straightforward to show that R is:

R =
Nr − 2λλ′Sr cos(φ − θt)

Nr + 2λλ′Sr cos(φ + θt)
, (68)

where

Nr =
β2γ2 + α2η2

β2γ2

= 2
E|V0 − E| − λλ′

∆
2

E|V0 − E| − λλ′∆2 − λ|V0 − E|∆ + λ′E∆

= 2
E|V0 − E| − λλ′

∆
2

(|V0 − E|+ λ′∆)(E − λ∆)
(69)

and

Sr =
αη

βγ

=
E|V0 − E| − λλ′

∆
2 + λ′E∆ − λ|V0 − E|∆

E|V0 − E| − λλ′∆2 − λ′E∆ + λ|V0 − E|∆

=
(|V0 − E|+ λ′

∆)(E − λ∆)

(|V0 − E| − λ′∆)(E + λ∆)
(70)

In the limit ∆ → 0 we get the same reflection as that of massless case. In the limit of no
electrostatic potential we arrive at the logical result R = 0. This is important because we see
later that for a special potential step in this limit R is not zero. Now one remaining problem
is to calculate the transmission probability. So, considering equation (67) and:

jinx = λαγ cos φ, jrx = −λαγ cos φ, jtx = λ′ηβ cos θt (71)

T is found to be:

T = |t|2
λλ′ηβ cos θt

αγ cos φ

=
4λλ′St cos φ cos θt

Nt + 2Stλλ′ cos(φ + θt)
, (72)
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where the following abbreviations is defined:

St =
ηβ

αγ
=

[

v2
Fq2

∆2 + v2
Fq2

∆
2 + v2

Fk2

v2
Fk2

]
1
2

=
q

k

E

|V0 − E|
, (73)

and

Nt =
η2α2 + β2γ2

α2γ2

= 2
E(E|V0 − E| − λλ′

∆
2)

v2
Fk2|V0 − E|

. (74)

At this point one can obtain T(0) as follows:

T(0) = 2
v2

F|kx||qx|

E|V0 − E| − λλ′∆2 + v2
F|kx||qx|

. (75)

Note that St and Nt are positive. It is clear that in the case of V0 → 0 and V0 → ∞ T is one.
Also note that in the limit of ∆ → 0, as:

E|V0 − E| = v2
F|kx||qx|, (76)

we see that probability is unity in agreement with result obtained for massless case. Another
interesting result that expression for T shows is that probability is not independent of the
band index contrary to the a gapless step that leaded to no independency to band index, λ
and λ′.

6. The barrier case

Opening nano-electronic opportunities for graphene requires a mass gap in it’s energy
spectrum just like a conventional semiconductor. In fact the lack of a bandgap on graphene,
can limit graphene’s uses in electronics because if there is no gaps in graphene spectrum one
can’t turn off a graphene-made transistor . In this section, motivated by mass production
of graphene, we obtain the exact expression for transmission probability of massive Dirac
fermions through a two dimensional potential barrier which can correspond to a n-p-n
junction of graphene, and show that contrary to the case of massless Dirac fermions which
results in complete transparency of the potential barrier for normal incidence, the probability
transmission, T, in this case, apart from some resonance conditions that lead to the total
transparency of the barrier, is smaller than one. An interesting result is that in the case of qx

satisfy the relation qxD = nπ, where n is an integer, we again see that tunneling is easier for
a barrier than a potential step, i.e the resonance tunneling is occurred.
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Figure 5. An massive electron of energy E incident on a potential barrier of hight V0 and thickness of about 50 nm. The
opening gap in the all three zones are of the same value and therefore the tunneling phenomenon occurs in a symmetric

barrier.

As depicted in the figure 5 there are three regions. The first is for x < 0 where the potential
is equal to zero. The second region is for 0 < x < D where there is a electrostatic potential
of hight V0 and finally, the third region is defined for x > 0 and as well as the first region
we have V0 = 0. At this point, using equations of previous sections, we are able to write the
wave functions in these three different regions in terms of incident and reflected waves. The
wave function in region I is then given by:

ψI =
1
√

2

(

α

λγeiφ

)

ei(kx x+kyy) +
r
√

2

(

α

λγei(π−φ)

)

ei(−kx x+kyy). (77)

In the second region we have:

ψI I =
a
√

2

(

β

λ′ηeiθt

)

ei(qx x+kyy) +
b
√

2

(

β

λ′ηei(π−θt)

)

ei(−qx x+kyy). (78)

In the third region we have only a transmitted wave and therefore the wave function in this
region is:

ψI I I =
t
√

2

(

α

λγeiφ

)

ei(kx x+kyy) (79)

With the continuity of the spinors at the discontinuities, we arrive at the following set of
equations:

α + αr = βa + βb (80)

λγeiφ − λγre−iφ = ηλ′aeiθt − ηλ′be−iθt (81)
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βaeiqx D + βbe−iqx D = αteikx D (82)

ηλ′aeiθt+iqx D − ηλ′be−iθt−iqx D = γλteiφ+ikx D (83)

Here in order to obtain the transmission T we first solve the above set of equations with
respect to transmission amplitude t. So we first need to calculate the coefficients r,a, and b.
From (82), a can be written as follows:

a =
α

β
te−iqx D+ikx D − be−2iqx D, (84)

which writing it with respect to transmission amplitude requires to plug b which one can
obtain it using the equation (83) as:

b =
teiqx D+ikx D(λ′ αη

β eiθt − λγeiφ)

2λ′η cos θt
, (85)

into the corresponding equation for a. Rewriting (81) by the use of relation α + αr = βa + βb
as:

2λ cos φ = a(λ′ η

γ
eiθt + λ

β

α
e−iφ)− b(λ′ η

γ
e−iθt − λ

β

α
e−iφ), (86)

and then using the equations (85) and (86), the expression for transmission amplitude yields:

t =
−4e−ikx Dλλ′ cos φ cos θ

[eiqx D(N − 2λλ′ cos(φ − θ))− e−iqx D(N + 2λλ′ cos(φ + θ))]
, (87)

where

N =
ηα

βγ
+

βγ

ηα
. (88)

It is straightforward to show that:

N = 2
E|V0 − E| − λλ′

∆
2

v2
Fkq

, (89)

where

E =
√

∆2 + v2
F(k

2
x + k2

y) (90)

|V0 − E| =
√

∆2 + v2
F(q

2
x + k2

y) (91)

k =
√

k2
x + k2

y (92)

q =
√

q2
x + k2

y. (93)
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Finally by multiplying t by it’s complex conjugation, one can obtain the exact expression for
the probability transmission of massive electrons, T, as:

T(φ) =
cos2 φ cos2 θ

(cos φ cos θ cos(qxD))2 + sin2(qxD)( N
2 − λλ′ sin φ sin θ)2

. (94)

It is clear that in the Klein energy interval (0 < E < V0), λ and λ′ has opposite signs so
that the term N/2 in the above expression is bigger than one and, therefore, we see that
unlike to the case of massless Dirac fermions which results in complete transparency of
the potential barrier for normal incidence, the transmission T for massive quasi-particles in
gapped graphene is smaller than one something that is of interest in a graphene transistor.
It is obvious that substituting ∆ with −∆ does not change the T, and hence the result for the
both Dirac points is the same, as it should be.

Now considering an electron incident on the barrier with propagation angle φ = 0, we know
that θt becomes 0 (π), depending on the positive (negative) sign of λ′. So in the normal
incidence probability reads:

T(0) =
2

2 + (N − 2) sin2(qxD)
(95)

Now if the following condition is satisfied:

qxD = n
π

2
, (96)

the equation for probability results in:

T(0) =
2

N
=

v2
F|kx||qx|

E|V0 − E| − λλ′∆2
(97)

At this point it is so clear that the transmission depends on the sign of λλ′ = ±. In the
other words, this equation for the same values of |V0 − E|, depending on whether E is higher
or smaller than V0, results in different values for T. The result that have not been revealed
before. In the limit |V0| >> |E|, the exact expression obtained for transmission would be
simplified to:

T(φ) ≃
cos2 φ

1 − sin2 φ cos2(qxD)
(98)

which reveals that in this limit, T(0) is again smaller than one while in the case of qxD
satisfying the condition qxD = nπ, with n an integer, we still have complete transparency.
Furthermore from equations (90) to (93) it is clear that in the limit ∆ → 0, we get N/2 =
1 and, therefore, one arrives at the same expressions for T(φ) corresponding to the case
of massless Dirac fermions i.e. equations (48) and (49). Notice that there is transmission
resonances just like other barriers studied earlier. It is important to know that resonances
occur when a p-n interface is in series with an n-p interface, forming a p-n-p or n-p-n junction.
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7. Transmission into spatial regions of finite mass

In this section the transmission of massless electrons into some regions where the
corresponding energy dispersion relation is not linear any more and exhibits a finite gap
of ∆ is discussed. Thus, the mass of electrons there can be obtained from the relation
mv2

F = ∆. Starting by looking at a two demential square potential step and after obtaining
the probability of penetration of step by electrons, transmission of massless electrons into
a region of finite mass is investigated and then see how it turns out to be applicable in a
transistor composed of two pieces of graphene connected by a conventional semiconductor
or linked by a nanotube.

7.1. Tunnelling through a composed p-n junction

In this section the scattering of an electron of energy E from a potential step of hight V0 which
allows massless electrons to acquire a finite mass in the region of the electrostatic potential
is investigated(see Fig. 6). The electrostatic potential under the region of finite mass is:

V(r) =







0 x < 0
V0 0 < x < D
0 x > D

(99)

Assuming an electron of energy E, propagating from the left, the wave functions then in the
two zones can be written as:

ψI =
1
√

2





1

λeiφ



 ei(kx x+kyy) +
r
√

2





1

λei(π−φ)



 ei(−kx x+kyy) (100)

ψI I =
t
√

2





β

λ′ηeiθt



 ei(qx x+kyy) (101)

where

β =

√

√

√

√
1 +

λ′∆
√

∆2 + v2
F(q

2
x + k2

y)
, η =

√

√

√

√
1 −

λ′∆
√

∆2 + v2
F(q

2
x + k2

y)
, (102)

and r and t are reflected and transmitted amplitudes, respectively. Applying the continuity
conditions of the wave functions at x = 0 yields:

1 + r = βt (103)

λeiφ − rλe−iφ = λ′ηteiθt (104)
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Figure 6. A special potential step of height V0 and width D which massless electrons of energy E under it acquire a finite mass.

Solving the above equations gives us the following expression for |t|2 and R:

|t|2 =
2 cos2 φ

1 + λλ′ηβcos(φ + θt)
, (105)

and

R = rr∗ =
1 − λλ′ηβcos(φ − θt)

1 + λλ′ηβcos(φ + θt)
(106)

where

ηβ =

[

v2
F(q

2
x + k2

y)

v2
F(q

2
x + k2

y) + ∆2

]
1
2

=
vFq

|V0 − E|
(107)

For obtaining the transmission probability we need to evaluate the x-component of
probability current in two regions. Using equation (24) we get:

jinx = λ cos φ (108)

jrx = −λ cos φ|r|2 (109)

jtx = λ′ηβ cos θt|t|
2. (110)

Here notice that, using the probability conservation law and the fact that our problem is
time independent and invariant along the y-direction, jx, then has the same values in the two
regions. So by the use of relation (27) the following equation come outs:

1 − |r|2 =
λλ′ηβ cos θt

cos φ
|t|2, (111)
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which once again shows that the probability, T, is not given by |t|2 and instead is:

T =
λλ′ηβ cos θt

cos φ
|t|2. (112)

The probability, therefore, is given by:

T(φ) =
2λλ′ηβ cos θt cos φ

1 + λλ′ηβcos(φ + θt)
. (113)

This result shows that the relation T(φ) = T(−φ). Thus, the induced gap in graphene
spectrum has nothing to do with relation this relation. We now turn our attention to the
case in which an electron is incident perpendicularly upon the step. The probability for this
electron to penetrate the step is:

T(0) =
2ηβ

1 + ηβ

=
2vF|qx|

|V0 − E|+ vF|qx|
, (114)

which shows there is no way for the electron to pass into the step with probability equal to
one. However if we consider a potential step which is high enough so that we’ll be able to
write

|V0 − E| =
√

v2
Fq2

x + ∆2 ≈ vF|qx|, (115)

we see the step becomes transparent. So by increasing the potential’s hight, more electrons
can pass through the step. Notice that probability is independent of λλ′ unlike to the result
(72) [19]. Also note that in the limit ∆ → 0, qx we can write:

vF|qx| = |V0 − E| (116)

which immediately gives T(0) as:

T(0) = 1, (117)

Also note that since for normal incidence we have E = vFkx, from the equation (114) it is
evident that in the case of no electrostatic potential (V0 = 0) we get:

T =
2qx

kx + qx
, R =

kx − qx

kx + qx
, (118)
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Figure 7. An massless electron of energy E incident (from the left) on a potential barrier of height V0 and width D, which

acquires a finite mass under the electrostatic potential, due to the presence of a gap of 2∆ in the region II. The effective mass

of electron in this region is then m = ∆/v2
F

which shows that probability always remains smaller than one, as there is no way for k and
q to be equal4. Turning our attention back to equation (113), we see that in the limit ∆ → 0
one arrives at the following solution for T:

T =
2λλ′ cos θt cos φ

1 + λλ′cos(φ + θ)
, (119)

which is just the transmission of massless Dirac fermions through a p-n junction in gapless
graphene. This expression now reveals in the limit V0 >> E ≈ ∆ it can be simplified to the
following equation

T =
2 cos φ

1 + cosφ
, R =

1 − cos φ

1 + cosφ
(120)

which show that for normal incidence the transmission and reflection probability are unity
and zero, respectively.

Here, before proceeding to some numerical calculations in order to depict consequences
that the π phase change might have on the probability, I attract the reader’s attention to
this fact that, the phase change of the wave function in momentum space is equivalent to the
rotation of momentum vector, q by 180 degree, meaning that the direction of momentum and
group velocity is antiparallel which itself lead to negative refraction in graphene reported by
Cheianov [26,27]. As it clear for imaginary values of qx an evanescent wave is created in the
zone I and a total reflection is observed.

Now, before ending, in order to emphasize on the importance of the π-phase change
mentioned earlier some numerical calculations depicting the transmission probability is
shown in Fig. 8 which reveal a perceptible difference between result obtained based on
considering the π − shi f t and those obtained if one ignores it. As it is clear for an electron
of energy E = 85meV, barrier thickness of 100nm and height of V0 = 200meV the probability
gets smaller values if the extra phase is not considered. This means that considering the

4 There is no need to say that when there is no electrostatic potential qx is positive
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Figure 8. left: Transmission probability as a functions of incident angle for an electron of energy E = 85meV, D = 100nm and

V0 = 200meV. Right: Transmission in gapped graphene for gap value of 20meV as a functions of incident angle for an electron

of energy E = 85meV, D = 100nm and V0 = 200meV.

Büttiker formula [28] for conductivity lower conductance is predicted in absence of the extra
phase. As it is clear the chance for an electron to penetrate the barrier increases if one chooses
the appropriate wave function in the barrier.

The potential application of the theory of extra π phase consideration introduced in the
previous sections [19] is that we can have higher conductivity in graphene-based electronic
devices and also the results of this work is important in combinations of graphene flakes
attached with different energy bands in order to get different kind of n-p-n junctions for
different uses. Notice that for nanoelectronic application of graphene the existence of a mass
gap in graphene’s spectrum is essential because it leads to smaller than one transmission
which is of most important for devices such as transistors and therefore the results derived
in this work concerning gapped graphene could be applicable in nanoelectronic applications
of graphene.

In the end of this chapter I would like to remind that one important result that obtained is
that Klein paradox is not a paradox at all. More precisely, it was demonstrated theoretically
that the reflection and transmission coefficients of a step barrier are both positive and less
than unity, and that the hypothesis of particle-antiparticle pair production at the potential
step is not necessary as the experimental evidences confirm this conclusion [29].
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