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1. Introduction 

With regard to the incidence of peripheral nerve diseases and peripheral nerve damage after 

surgical procedures, there are reports of sexual dimorphism, no sexual dimorphism, and 

little sexual dimorphism. However, details of the morphology and sexual dimorphism in the 

characteristics of peripheral nerves have not been available in textbooks. I morphometrically 

analyzed peripheral nerves and clarified these issues. 

2. Materials and methods  

The materials used in this study were Japanese oculomotor nerves, ophthalmic nerves, 

inferior alveolar nerves, abducent nerves, facial nerves, vestibular nerves, cochlear nerves, 

and vagus nerves, recurrent laryngeal nerves in the cranial nerve group; Japanese femoral 

nerves and tibial nerves in the spinal nerve group; and Japanese greater splanchnic nerves 

and lesser splanchnic nerves in the autonomic nerve group. All the cadavers were 

donated with the individual’s consent. We proceeded to perform this research in 

accordance with the law concerning autopsy and preservation of corpses, and concerning 

donation for medical and dental education. In no case was there a history of peripheral 

nerve disorders such as neuroparalysis or schwannoma, or of treatment with toxic agents 

or irradiation therapy. The causes of death did not directly or indirectly influence the 

nervous system, so the peripheral nerves were considered to be normal. I used right side 

specimens of right-handed persons to avoid any interaction between the effects of sex and 

side. Moreover, the age of specimens showed no significant difference between female 

and male specimens. The data on the above pairs of groups were thus independent of the 

aging process. The methods for preparation of sections, also described in our previous 

report [1], were as follows: 
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2.1. Fixation 

The fixation involved a two-step process. For the first step, all the cadavers were fixed with 

a 10% solution of formalin (3.7% formaldehyde) within 24 h postmortem. After resecting the 

peripheral nerves, a 10% solution of formalin (3.7% formaldehyde) was used for immersion 

for at least a week. The solution was changed once in the first 30–60 min and again, later if 

desired. 

The formalin-fixed materials were then transferred without washing to the secondary 

fixative (1:4 mixture of 5% K2Cr2O7 and 5% K2CrO4) and maintained at room temperature for 

2 weeks. If the solution became turbid or precipitated it was changed. After this, the fixation 

was continued at 37°C for an additional week. The volume of fixative used was at least ten 

times the volume of the specimens. 

2.2. Washing 

The fixed materials were washed in running water for around 24 h. We used a siphon-

operated automatic pipette washer with the materials packed in a small plastic basket. 

2.3. Dehydration and celloidin embedding 

1. 50% ethanol, for several days  

2. 70% ethanol, for several days 

The alcohol in steps 1 and 2 was changed if it became yellow. 

3. 90% ethanol, overnight  

4. 95% ethanol, overnight  

5. Pure ethanol, one night or more 

6. Ether/ethanol, 1:1 overnight 

7. 1% celloidin in ether/ethanol, several days 

8. 7% celloidin, several days 

9. 14% celloidin for embedding, several weeks 

10. Immerse hardened celloidin embedded blocks in 90–95% ethanol for several hours 

11. Maintained celloidin blocks in 70% ethanol prior to sectioning 

2.4. Staining procedures 

Modified luxol fast blue-periodic acid Schiff-hematoxylin (LPH) triple stain. 

1. Cut sections 15 μm thick and place in 90% ethanol 

2. Rinse sections in 95% ethanol 

3. Keep at 58°C overnight in LFB solution (0.1% solution of luxol fast blue by dissolving 

1.0 g of the substance in 1,000 ml of 95% ethanol) placed in a shallow sealed jar. 

4. Immerse in 95% ethanol and wash off excess stain 

5. Wash in distilled water 
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6. Differentiate in 2% saturated lithium carbonate (= 0.03% Li2CO3) for 60 min 

7. Continue differentiation with one or two changes of 70% ethanol until myelin sheaths 

can be distinguished. If necessary, repeat steps 5 through 7 until there is sharp contrast 

between myelin sheaths and surrounding structures. 

8. Finish differentiation by rinsing in 95% ethanol 

9. Wash in distilled water (two changes) 

10. Oxidize for 5 min in 0.5% periodic acid 

11. Wash in distilled water (several changes) 

12. Immerse for 15 min in Schiff’s reagent 

13. Immediately transfer to 5% sodium hydrogen sulfite and leave for about 5 min, 

changing the solution three times 

14. Wash in distilled water (several changes) 

15. Immerse sections for around 5 min in Mayer’s hematoxylin solution 

16. Wash sections in distilled water (several changes) until sections turn bluish. 

17. Rinse in 90–95% ethanol 

18. Dehydrate sections in n-butyl alcohol (three changes) 

19. Clear sections in xylene (three changes) 

20. Mount in balsam  

2.5. Morphometry 

I observed the fascicles at low power (Fig. 1). I covered the entire area of the distributed 

myelinated axons in the peripheral nerve by moving the eyepiece grid vertically and 

horizontally. I confirmed that I could distinguish myelinated structures from vessels in the 

tissue with a computer or grouped unmyelinated axons with the naked eye in each grid. I 

counted the myelinated axons and measured the transverse area and perimeter of the 

myelinated axons in a square eyepiece grid at high power (Fig. 2). To avoid duplicate 

counts, I counted and measured all axons on the side of the grid that did not come into 

contact with the other grids. In the case of grids adjacent to the other grids, I counted and 

measured only the axons on the lower right side of the grid, not those on the upper left side. 

I used a microscope in transmitted light mode (BX50, Olympus, Tokyo, Japan) equipped 

with a high-resolution digital camera (ColorView12, Soft Imaging System, Münster, 

Germany), a motorized XYZ stage (Märzhäuser, Wetzlar-Steindorf, Germany), a stage 

controller (Märzhäuser, Wetzlar-Steindorf, Germany), and a computer (Precision 530, Dell, 

Austin, TX, USA) with analyzing system software (analySIS 3.0, Soft Imaging System, 

Münster, Germany) to store data on-line, do calculations, and perform statistical analyses. 

Circularity ratios (CR) were calculated as follows: CR = 4πA/L2 (A = area in mm2; L = 

perimeter in mm). 

If a circle is regular, the ratio has a maximum value of 1.0, and if it is irregular, the value is 

less than 1. This indicates how near or far each irregularity is from a regular round figure, 

allowing quantitative comparison of round figures. 
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Figure 1. A low-power view of the inferior alveolar nerve from a 65-year-old woman, modified LPH 

stain. Scale bar 200 μm 

 

Figure 2. A high-power view of the facial nerve from a 44-year-old woman, modified LPH stain. Axons 

were stained dark purple or black, and surrounded by a myelin sheath stained deep green. Scale bar 50 μm 
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2.6. Statistical analyses 

All statistical analyses were performed using JMP statistical software version 9.0.3 (SAS 

Institute Inc. Cary, NC, USA) on a Macintosh personal computer. 

Researchers have studied shrinkage of embedding materials, and found that celloidin and 

plastination embedding exhibit less shrinkage (around 10%) than paraffin and other 

embeddings [2]. Therefore, although I measured every myelinated axon, I calculated the 

average transverse area and perimeter of myelinated axons after excluding data far from the 

median (15%) due to shrinkage. 

Morphological differences between female and male specimens were analyzed by applying 

a parametric unpaired t test (where data were normally distributed with equal variance) to 

the total number of myelinated axons and the average transverse area, perimeter and CR. A 

p value of <0.05 was considered to indicate a statistically significant difference.  

3. Results  

3.1. Number of myelinated axons 

We estimated the total number or number per unit area of myelinated axons (NM) in the 

peripheral nerves (Table 1). The myelinated nerve fibers appeared as a blue-green myelin 

sheath surrounding a dark purple or black axon (Fig. 2). According to the data, there was no 

statistically significant difference in the total number of myelinated axons between the 

female and male specimens of the peripheral nerves, except for the vestibular nerve (P < 

0.05; Table 1). 

3.2. Average transverse area of myelinated axons 

The average transverse area of myelinated axons (ATA) in the peripheral nerves was 

calculated (Table 1). According to the data, there was no statistically significant difference in 

the average transverse area of myelinated axons between the female and male specimens of 

all calculated peripheral nerves (P < 0.05; Table 1). 

3.3. CR of myelinated axons 

The average CR of myelinated axons (ACR) in the peripheral nerves was calculated (Table 1) 

and there was no statistically significant difference in the average CR of myelinated axons 

between the female and male specimens of the peripheral nerves, except for the vagus nerve 

(P < 0.05; Table 1). 

4. Discussion 

Researchers have reported that a decrease in the number and size of myelinated axons 

influences the occurrence of peripheral nerve palsy or neuropathy [3-6], and a lower CR of 

myelinated axons has been partly implicated in the degeneration of nerve fibers [7]. A 
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smaller NM, ATA, and lower ACR of myelinated axons would help explain the sex 

difference in the incidence of peripheral nerve palsy and neuropathy. 

 

Nerve Side Sex 
Number of 

Specimens 
Age 

Total Number or 

Number /Unit area

Average 

Transverse Area 

(μm2) 

Average 

Circularity Ratio 

Oculomotor R F 10 70.8 ± 8.6 18,905 ± 4,861 5.59 ± 1.54 0.83 ± 0.07 

R M 10 72.5 ± 8.9 18,523 ± 5,700 6.28 ± 1.95 0.83 ± 0.06 

p value P=0.65 P=0.79 P=0.62 P=0.82 

95% CI −6.5 to 9.9 −5,359 to 4,595 −0.97 to 2．34 −0.06 to 0.06 

Ophthalmic R F 22 75.2 ± 13.8 34 ± 11 / 16×16 μm2 4.86 ± 2.27 0.83 ± 0.05 

R M 22 73.3 ± 15.7 36 ± 7 / 16×16 μm2 4.88 ± 1.38 0.84 ± 0.06 

p value P=0.82 P=0.47 P=0.94 P=0.65 

95% CI −15.8 to 12.0 −7 to 11 −1.75 to 1.79 −0.04 to 0.07 

Inferior 

Alveolar 
R F 11 72.5 ± 8.6 21,885 ± 7,711 34.90 ± 8.97 0.87 ± 0.03 

R M 11 75.6 ± 7.3 23,623 ± 6,684 30.95 ± 8.76 0.86 ± 0.05 

p value P=0.32 P=0.55 P=0.62 P=0.77 

95% CI −4.0 to 10．2 −4,680 to 8,157 −11.84 to 3.93 −0.05 to 0.03 

Abducent R F 10 73.8 ± 7.4 1,854 ± 343 4.34 ± 0.75 0.80 ± 0.08 

R M 10 75.6 ± 9.3 2,139 ± 502 3.46 ± 0.50 0.76 ± 0.06 

p value P=0.68 P=0.40 P=0.09 P=0.75 

95% CI −10.5 to 14．1 −341 to 911 −1.81 to 0.05 −0.14 to 0.07 

Facial R F 10 65.9 ± 15.9 6,023 ± 955 6.34 ± 0.92 0.80 ± 0.04 

R M 10 65.1 ± 15.2 6,466 ± 735 6.27 ± 0.74 0.79 ± 0.03 

p value P=0.91 P=0.26 P=0.86 P=0.85 

95% CI −13.8 to 15.4 −357 to 1,244 −0.71 to 0.85 −0.13 to 0.10 

Vestibular R F 12 75.4 ± 9.6 18,022 ± 2,780 * 3.76 ± 0.65 0.88 ± 0.03 

R M 12 74.2 ± 10.2 21,002 ± 4,636 * 3.56 ± 0.93 0.86 ± 0.08 

p value P=0.69 P=0.04 P=0.56 P=0.93 

95% CI −9.7 to 7．2 −256 to 6,217 −0.88 to 0.48 −0.07 to 0.03 

Cochlear R F 12 68.7 ± 18.0 23,597 ± 5,377 1.81 ± 0.40 0.86 ± 0.01 

R M 12 72.0 ± 17.9 26,598 ± 6,177 1.78 ± 0.30 0.86 ± 0.02 

p value P=0.75 P=0.30 P=0.69 P=0.62 

95% CI −19.7 to 26.4 −4,449 to 10,450 −0.48 to 0.43 −0.02 to 0.01 

Vagus R F 15 75.9 ± 15.4 1,413 ± 274 1.12 ± 0.33 0.79 ± 0.06 * 

R M 15 77.8 ± 11.2 1,331 ± 192 1.21 ± 0.30 0.83 ± 0.06 * 

p value P=0.79 P=0.72 P=0.57 P=0.03 

95% CI −8.1 to 11.9 −257 to 94 −0.15 to 0.32 −0.00 to 0.09 

Recurrent 

Laryngeal 
R F 10 78.7 ± 10.2 14 ± 2 / 33×33 μm2 10.06 ± 3.15 0.88 ± 0.04 

R M 10 73.0 ± 8.8 14 ± 3 / 33×33 μm2 10.38 ± 2.57 0.89 ± 0.06 

p value P=0.28 P=0.96 P=0.96 P=0.51 

95% CI −15.5 to 5．3 −3 to 3 −2.77 to 3.41 −0.05 to 0.08 

Femoral R F 10 83.7 ± 9.9 26.7 ± 11.7 5.06 ± 1.54 0.93 ± 0.08 

R M 10 76.4 ± 11.8 30.4 ± 10.9 6.09 ± 1.84 0.92 ± 0.07 

p value P=0.31 P=0.52 P=0.31 P=0.70 

95% CI −20.0 to 5.4 −9.5 to 16.9 −0.94 to 3.01 −0.09 to 0.07 

Tibial R F 10 84.9 ± 12.3 1,023 ± 680 2.60 ± 0.39 0.94 ± 0.05 

R M 10 82.5 ± 9.9 1,491 ± 1,061 3.20 ± 0.75 0.90 ± 0.09 

p value P=0.61 P=0.72 P=0.07 P=0.57 

95% CI −16.2 to 11.5 −602 to 1,538 −0.11 to 1.31 −0.12 to 0.05 
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Nerve Side Sex 
Number of 

Specimens 
Age 

Total Number or 

Number /Unit area

Average 

Transverse Area 

(μm2) 

Average 

Circularity Ratio 

Greater 

Splanchnic 
R F 15 73.3 ± 15.6 8 ± 2 / 16×16 μm2 5.18 ± 1.36 0.88 ± 0.07 

R M 15 72.9 ± 12.1 9 ± 2 / 16×16 μm2 5.54 ± 1.26 0.87 ± 0.06 

p value P=0.93 P=0.43 P=0.35 P=0.71 

95% CI −10.8 to 10.0 −1 to 2 −0.62 to 1.33 −0.06 to 0.04 

Lesser 

Splanchnic 
R F 15 73.7 ± 15.5 12 ± 6 / 16×16 μm2 1.63 ± 0.96 0.85 ± 0.10 

R M 15 72.1 ± 12.5 14 ± 7 / 16×16 μm2 1.55 ± 0.62 0.86 ± 0.11 

p value P=0.66 P=0.43 P=0.88 P=0.96 

95% CI −12.3 to 9.1 −3 to 8 −0.67 to 0.52 −0.08 to 0.10 

* Indicates a significant difference (p < 0.05). 

Each value is the mean ± SD 

CI confidence interval 

Table 1. Nerve fiber analysis of peripheral nerves in humans. 

4.1. Oculomotor nerve  

Cabrejas et al. reported epidemiological data on oculomotor nerve palsy that there were 

59.1% males, with no statistically significant difference between females and males (p = 

0.574) [8]. Moreover, Ohguro et al. reported finding differences in oculomotor nerve palsy 

with causative disease incidence according to sex, but they reported finding no significant 

difference in oculomotor nerve palsy with unknown cause incidence according to sex [9]. 

According to the data in this study, there was no statistically significant difference in the 

NM, ATA, or ACR of myelinated axons between the female and male specimens of the 

oculomotor nerve (P < 0.05; Table 1). My findings may partly explain why there is no 

significant sex difference in the incidence of oculomotor nerve palsy. 

4.2. Ophthalmic nerve 

Researchers have reported that the incidence rate of trigeminal neuralgia (TN) was slightly 

higher for females than for males. For example, the female-to-male ratio was 1.74:1 in the 

Katusic et al. study [10] and 3:2 in another study by Ashkenazi and Levin [11]. It has been 

proposed that the symptoms of TN are caused by demyelination of the nerve leading to 

ephaptic transmission of impulses. Surgical specimens have demonstrated this 

demyelination and close apposition of demyelinated axons in the trigeminal root of patients 

with TN [12]. Results from experimental studies suggest that demyelinated axons are prone 

to ectopic impulses, which may transfer from light touch to pain fibers in close proximity 

(ephaptic conduction) [12]. Current theories regarding the cause of this demyelination 

center on vascular compression of the nerve root by aberrant or tortuous vessels. Accepting 

current theories, neurovascular (or microvascular) decompression, when a pad is placed 

between a vessel and the nerve, has been found empirically to be an effective treatment for 

TN in cases resistant to medical therapy, and as many as 90% of cases have been relieved 

[13-15]. Barker et al. reported that 706 patients (around 60%) were female of 1185 patients 
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who underwent microvascular decompression, and female sex was a risk factor for 

recurrence after microvascular decompression (hazard ratio 1.3; P = 0.06) [16]. According to 

the data here, there was no statistically significant difference in the NM, ATA, or ACR of 

myelinated axons between the female and male specimens of the ophthalmic nerve (P < 0.05; 

Table 1). Therefore, a vascular abnormality in the female TN may be one reason why TN has 

a female preponderance, but morphology in the characteristic nerve does not appear to 

explain the sex difference in the incidence of TN. 

4.3. Inferior alveolar nerve 

Inferior alveolar nerve (IAN) damage can occur after an IAN block [17, 18] or following oral 

and maxillofacial surgical procedures [19-24]. With regard to the incidence of IAN damage 

after these procedures, Haas and Lennon reported no significant sex difference (ratio of 

affected females to males, 72:68) [25]. Kipp et al. also reported that the incidence was 7% in 

both sexes, indicating no significant sex difference [26], while Harn and Durham reported 

that there was little sex difference in postinjection lingual nerve injuries (ratio of affected 

females to males, 24:17) [27]. Meanwhile, sexual dimorphism that results in the incidence 

being almost twice as high in females than in males has been reported [17, 28, 29]. Pogrel 

and Thamby [17] found the difference in referral rates for male and female patients difficult 

to explain. They mentioned that there have been studies suggesting that nerves respond 

differently to injury in female animals than in male animals [30]. Coyle et al. [31] reported 

that female rats were more prone to developing tactile allodynia than male rats after partial 

sciatic nerve ligation. These reports [30, 31] may partially explain the indicated sex 

difference in the incidence of IAN damage. According to this study’s data, there was no 

statistically significant difference in the NM, ATA, or ACR of myelinated axons between the 

female and male IAN specimens (P < 0.05; Table 1). Heasman and Beynon [32] reported a 

difference between the total number of myelinated axons in the human IAN of dentate and 

edentulous groups as significant (P < 0.001) and suggested axonal atrophy in the main nerve 

trunk following tooth loss. As each cadaver in this study had 7 teeth (central incisor, lateral 

incisor, canine, first premolar, second premolar, first molar, and second molar) on the side of 

the mandible that I used, I considered that this result was not affected by the dentulous 

condition. Therefore, the results of this study suggest a nonsignificant sex difference in the 

incidence of IAN damage, supported by the morphometric analysis. These findings may 

partly explain why there is no significant sex difference in the incidence of IAN damage. 

4.4. Abducent nerve 

Patel et al. reported 69 male (50%) and 68 female (50%) cases of abducent nerve palsy or 

paresis [33]. According to this study, ATA in the female abducent nerve was larger than that 

in the male abducent nerve, but there was no statistically significant difference in the NM, 

ATA, or ACR of myelinated axons between the female and male specimens of the 

oculomotor nerve (P < 0.05; Table 1). My findings may partly explain why there is no 

significant sex difference in the incidence of abducent nerve palsy or paresis. 
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4.5. Facial nerve 

Campbell and Brundage [34] reported that the incidence rate of Bell’s palsy (BP) was slightly 

higher for females than for males (rate ratio = 1.16). Meanwhile, Monini et al. [35] reported 

that males were slightly more affected (53.7%) than females. However, many researchers 

have reported finding no significant difference in BP incidence according to sex, as Tiemstra 

and Khatkhate [36] recently reported. In this study, there was no statistically significant 

difference in the NM, ATA, or ACR of myelinated axons between the female and male facial 

nerve specimens (P < 0.05; Table 1). These findings may partly explain why there is no 

significant sex difference in the incidence of BP. 

4.6. Vestibular nerve 

The incidence of vestibular dysfunction has a female preponderance in a textbook 

description [37]. There was a marked female preponderance among individuals with 

vestibular vertigo (one year prevalence ratio female to male of 2.7:1.0) [38]. Neuhauser et al. 

also reported that prevalence and incidence rates of vestibular vertigo were consistently 

higher in females than in males, for example, the lifetime prevalence ratio of female to male 

was 10.3:4.3, and the population incidence ratio (one year) female to male was 1.9:0.8 [39]. 

This female preponderance tended to increase with age [40]. Yin et al. reported that adults 

(18-65y) had a ratio of affected females to males of 59.1:40.9, but elderly adults (>65y) had a 

ratio of 60.6:39.4 [40]. With regard to Menière’s disease, a female preponderance can be 

assumed based on the data from Rochester (61% women) [41] and is confirmed by the latest 

data from Finland [42]. The results here showed that NM was 2,980 (mean value) higher in 

the male vestibular nerve than the female vestibular nerve. My data also indicated a 

significant sex difference (P = 0.04; Table 1), but there was no statistically significant 

difference in the ATA and ACR of myelinated axons between the female and male 

vestibular nerve specimens (P < 0.05; Table 1). The lower NM of myelinated axons in the 

female vestibular nerve may be one of the reasons why vestibular disorders have a female 

preponderance, but the findings here on ATA and ACR of myelinated axons did not appear 

to explain the sex difference in the incidence of these diseases. 

4.7. Cochlear nerve 

There are some reports regarding the incidence of cochlear dysfunction with sex difference. 

The incidence of tinnitus has a female preponderance in a textbook description [43]. 

Meanwhile, Graham [44] and the National Study of Hearing [45] reported that the incidence 

rate of tinnitus was higher for females than for males until the mid-fifties, but after the mid-

fifties, that of tinnitus was higher for males than for females. Møller et al. reported that of 

the 72 patients who underwent microvascular decompression of the intracranial portion of 

the auditory nerve, 54.8% experienced total relief from tinnitus or marked improvement 

[46]. This report indicated that vascular compression of the auditory nerve was a factor in 

tinnitus. Therefore, vascular abnormalities in tinnitus patients may be one reason why 

tinnitus shows a sex difference, but morphology in the characteristic nerve does not appear 
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to explain the sex difference in the incidence of tinnitus. Next, with regard to the incidence 

of hearing acuity, Kacker reported that there was no significant sex difference [47]. 

Meanwhile, Hinchcliffe and Jones reported that the hearing acuity in males was better than 

that in females [48]. Researchers also reported that the differences in hearing levels between 

females and males depended on the frequencies or race [49, 50]. Moreover, Star et al. 

reported that there were four females and six males among 10 patients with auditory nerve 

disease [51]. The main lesion in auditory nerve disease is thought to be demyelination or 

degeneration of cochlear nerve fibers. Finally, Nakashima examined the nationwide 

epidemiological study of sudden deafness in 1993, and reported that there was no 

significant sex difference [52]. In this study, there was no statistically significant difference 

in the NM, ATA, or ACR of myelinated axons between the female and male cochlear nerve 

specimens (P < 0.05; Table 1). The findings here may partly explain why there is no 

significant sex difference in the incidence of cochlear dysfunction. 

4.8. Vagus nerve 

Araújo et al. assessed vagal activity using heart rate response to a short (4s) bicycle exercise 

test during maximal inspiratory apnea. This study aimed to evaluate the role of sex and 

physical activity patterns on vagal activity. As a result, no sex effect could be identified [53]. 

With regard to vagoglossopharyngeal neuralgia, researchers reported that there was no 

preponderance regarding sex [54, 55]. I gave a supplementary explanation for the term 

“vagoglossopharyngeal neuralgia”. As researchers took the central or peripheral overlap 

between the glossopharyngeal nerve and vagus nerve into consideration, they grouped 

glossopharyngeal and vagal neuralgia together, and used the more useful 

vagoglossopharyngeal neuralgia in clinical practice [56, 57]. Meanwhile, Khasar et al. 

reported that under normal conditions, responses to noxious stimuli were modulated by 

vagus nerve activity in males, but not in females [58]. My results showed that ACR was 0.04 

(mean value) higher in the male vagus nerve than the female vagus nerve. My data also 

indicated a significant sex difference (P = 0.03; Table 1). However, there was no statistically 

significant difference in the NM and ATA of myelinated axons between the female and male 

vagus nerve specimens (P < 0.05; Table 1). The higher ACR of myelinated axons in the male 

vagus nerve may be one reason why vagus nerve activity to modulate pain has a male 

preponderance. My findings regarding the NM and ATA of myelinated axons may partly 

explain why there is no significant sex difference in the incidence of vagoglossopharyngeal 

neuralgia. 

4.9. Recurrent laryngeal nerve 

With respect to sex, males with recurrent laryngeal nerve paralysis were more frequent than 

females in some reports [59-65] whereas in some other reports [66-68], there were more 

females than males with that condition. However, overall the above data indicated that 

there were 1,526 females with recurrent laryngeal nerve paralysis (48.5%) and 1,618 males 

(51.5%) [64]. Therefore, there was no significant difference in the number of patients 
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between the two sexes. In this study, there was no statistically significant difference in the 

NM, ATA, or ACR of myelinated axons between the female and male recurrent laryngeal 

nerve specimens (P < 0.05; Table 1). These findings may partly explain why there is no 

significant sex difference in the incidence of recurrent laryngeal nerve paralysis.  

4.10. Femoral and tibial nerve 

Shinoda analyzed data on adult motor neuropathy in past reports, and mentioned that the 

vulnerability of male motor neurons was higher than that of female motor neurons [69]. 

With regard to amyotrophic lateral sclerosis (ALS), a progressive disorder of motor neurons, 

the incidence of ALS was slightly higher for males than for females (male/female rate was 

2.0% or less) in reports including 100 cases or more. For example, Collins [70], Bonduelle et 

al. [71], Boman and Meurman [72], Erbslöh et al. [73], Kondo [74], and Haberlandt [75] 

reported that the male/female rate ratio was 1.1, 1.2, 1.3, 1.5, 1.5, 2.0, respectively. According 

to my data, there was no statistically significant difference in the NM, ATA, or ACR of 

myelinated axons between the female and male femoral and tibial nerve specimens (P < 0.05; 

Table 1). These findings may partly explain why there is little significant sex difference in 

the incidence of motor neuropathy. Therefore, sex difference in the incidence of motor 

neuropathy is considered to be caused not only due to the morphology of the motor 

neurons, but also because of sex hormones and other factors.  

4.11. Greater splanchnic and lesser splanchnic nerve 

Shinoda analyzed data on adult autonomic neuropathy in past reports and mentioned that 

the vulnerability of male autonomic neurons was higher than that of females [69]. Hogarth 

and coworkers’ study demonstrated that females have a lower central sympathetic nerve 

activity to the periphery, the mechanism of which involves a greater baroreceptor reflex 

inhibitory effect on this activity in females than in males [76]. These findings could have 

implications regarding the lower number of cardiovascular events observed in females than 

in males. Muneta et al. reported that the activation of the sex center regulating gonadotropin 

secretion may be a causative factor in the baroreflex impairment in females [77]. They also 

mentioned that changes in blood pressure in females are more sensitive to mental stress, but 

less so to isometric stress than those of males. These findings suggest that ovarian 

dysfunction is another important factor influencing the baroreflex function in addition to 

aging and blood pressure, and that the baroreflex impairment in females characterizes the 

sex difference in the pathophysiology of essential hypertension. Hinojosa-Laborde et al. 

reported that clear evidence exists for differences in the regulation of the sympatho-adrenal 

nervous system between males and females [78]. At each level of neural control examined in 

their review, females were able to limit the activation or enhance the inhibition of the 

sympathetic nervous system (SNS) more effectively than males during at least part of the 

oestral/menstrual cycle. These observations suggest that the ability of females to more 

tightly control the SNS and, subsequently, arterial pressure may serve as a mechanism 

whereby sex hormones protect females against hypertension. Here, there was no statistically 

significant difference in the NM, ATA, or ACR of myelinated axons between the female and 
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male specimens of the greater splanchnic and lesser splanchnic nerve (P < 0.05; Table 1). 

These findings do not explain why there is a significant sex difference in the incidence of 

autonomic dysfunction. Therefore, the morphology of autonomic neurons may not be the 

cause of sex differences in the incidence of autonomic dysfunction and other factors such as 

sex hormones may be the cause. 
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