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1. Introduction

Scale Relativity Theory (SRT) affirms that the laws of physics apply in all reference systems,
whatever its state of motion and its scale. In consequence, SRT imply [1-3] the followings:

i. Particle movement on continuous and non-differentiable curve (or almost nowhere
differentiable), that is explicitly scale dependent and its length tends to infinity, when
the scale interval tends to zero.

ii. Physical quantities will be expressed through fractal functions, namely through
functions that are dependent both on coordinate field and resolution scale. The
invariance of the physical quantities in relation with the resolution scale generates
special types of transformations, called resolution scale transformations. In what
follows we will explain the above statement.

Let F (x) be a fractal function in the interval x∈ a, b  and let the sequence of values for x be:

0 1 0 0 0, , ,a k n bx x x x x x k x x n xe e e= = + = + = + = (1)

We can now say that F (x, ε) is a –scale approximation.

Let us now consider  as a ε̄-scale approximation of the same function. Since F (x) is everywhere
almost self-similar, if ε and ε̄ are sufficiently small, both approximations F (x, ε) and  must
lead to same results. By comparing the two cases, one notices that scale expansion is related
to the increase dε of ε, according to an increase dε̄ of ε̄. But, in this case we have:

d d de e r
e e

= = (2)
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situation in which we can consider the infinitesimal scale transformation as being

' d de e e e e r= + = + (3)

Such transformation in the case of function F (x, ε), leads to:

( ) ( ), ' ,F x F x de e e r= + (4)

respectively, if we limit ourselves to a first order approximation:

( ) ( ) ( ) ( ) ( ) ( ), ,
, ' , ' ,

F x F x
F x F x F x d

e e
e e e e e e r

e e
¶ ¶

= + - = +
¶ ¶

(5)

Moreover, let us notice that for an arbitrary but fixed ε0, we obtain:

( ) ( )0 0ln ln ln 1e e e e
e e e

¶ ¶ -
= =

¶ ¶
(6)

situation in which (5) can be written as:

( ) ( ) ( )
( ) ( ) ( )

0 0

,
, ' , 1 ,

ln ln
F x

F x F x d d F x
e

e e r r e
e e e e

é ù¶ ¶
= + = +ê ú

¶ ¶ê úë û
(7)

Therefore, we can introduce the dilatation operator:

( )0ln
D

e e

Ù ¶
=
¶

(8)

At the same time, relation (8) shows that the intrinsic variable of resolution is not ε, but
ln(ε / ε0).

The fractal function is explicitly dependent on the resolution (ε / ε0), therefore we have to solve
the differential equation:

( ) ( )
0ln

dF P F
d e e

= (9)
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where P(F ) is now an unknown function. The simplest explicit suggested form for P(F ) is
linear dependence [2]

( ) , , .P F A BF A B const= + = (10)

in which case the differential equation (9) takes the form:

( )0ln
dF A BF

d e e
= + (11)

Hence by integration and substituting:

,B t= - (12)

0
A F
B

- = (13)

we obtain:

0
0

0
1F F

t
ee

e e

é ùæ ö æ öê ú= +ç ÷ ç ÷ç ÷ ê úè øè ø ë û
(14)

We can now generalize the previous result by considering that F is dependent on parameter‐
ization of the fractal curve. If p characterizes the position on the fractal curve then, following
the same algorithm as above, the solution will be as a sum of two terms i.e. both classical and
differentiable (depending only on position) and fractal, non-differentiable (depending on
position and, divergently, on ε / ε0)

( ) ( )
( )

0
0 0( , ) 1

p

F p F p p
t

e
e e x

e

é ùæ öê ú= + ç ÷ê úè øë û
(15)

where ξ(p) is a function depending on parameterization of the fractal curve.

The following particular cases are to be considered:

1. in asymptotic small scale regime ε ε0, τ is constant (with no scale dependence) and
power-law dependence on resolution is obtained:
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( )

( ) ( ) ( )

0
0

0

( , ) a

b

F p T p

T p F p Q p

t
e

e e
e

æ ö
= ç ÷

è ø
=

(16)

2. in the asymptotic big scale regime ε ε0, τ is constant (with no scale dependence) and, in
terms of resolution, one obtains an independent law:

( ) ( )0 0,F p F pe e ® (17)

Particularly, if F (p, ε / ε0) are the coordinates in given space, we can write

( ) ( ) 0
0( , ) 1X p x p p

t
e

e e x
e

é ùæ öê ú= + ç ÷ê úè øë û
(18)

In this situation, ξ(p) becomes a highly fluctuating function which can be described by
stochastic process while τ represents (according to previous description) the difference
between fractal and topological dimensions. The result is a sum of two terms, a classical,
differentiable one (dependent only on the position) and a fractal, non-differentiable one
(dependent both on the position and, divergently, on ε / ε0). This represents the importance of
the above analysis.

By differentiating these two parts we obtain:

dX dx dx= + (19)

where dx is the classical differential element and dξ is a differential fractal one.

iii. There is infinity of fractal curves (geodesics) relating to any couple of points (or
starting from any point) and applied for any scale. The phenomenon can be easily
understood at the level of fractal surfaces, which, in their turn, can be described in
terms of fractal distribution of conic points of positive and negative infinite curvature.
As a consequence, we have replaced velocity on a particular geodesic by fractal
velocity field of the whole infinite ensemble of geodesics. This representation is
similar to that of fluid mechanics [4] where the motion of the fluid is described in
terms of its velocity field v =(x(t), t), density ρ =(x(t), t) and, possibly, its pressure.
We shall, indeed, recover the fundamental equations of fluid mechanics (Euler and
continuity equations), but we shall write them in terms of a density of probability (as
defined by the set of geodesics) instead of a density of matter and adding an addi‐
tional term of quantum pressure (the expression of fractal geometry).
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iv. The local differential time invariance is broken, so the time-derivative of the fractal
field Q can be written two-fold:

( ) ( )

( ) ( )
0

0

lim a

lim b

t

t

Q t t Q td Q
dt t

Q t Q t td Q
dt t

+

-

+

D ®

-

D ®

+ D -
=

D
- - D

=
D

(20)

Both definitions are equivalent in the differentiable case dt → −dt . In the non-differentiable
situation, these definitions are no longer valid, since limits are not defined anymore. Fractal
theory defines physics in relationship with the function behavior during the “zoom” operation
on the time resolution δt, here identified with the differential element dt (substitution princi‐
ple), which is considered an independent variable. The standard field Q(t) is therefore replaced
by fractal field Q(t,dt), explicitly dependent on time resolution interval, whose derivative is
not defined at the unnoticeable limit dt →0. As a consequence, this leads to the two derivatives
of the fractal field Q as explicit functions of the two variables t and dt,

( ) ( )

( ) ( )
0

0

, ,
lim a

, ,
lim b

t

t

Q t t t Q t td Q
dt t

Q t t Q t t td Q
dt t

+

-

+

D ®

-

D ®

+ D D - D
=

D
D - - D D

=
D

(21)

Notation “+” corresponds to the forward process, while “-” to the backward one.

v. We denote the average of these vectors by d x±
i, i.e.

1,2,i idX dx i± ± == (22)

Since, according to (19), we can write:

i i idX dx dx± ± ±= + (23)

and it results:

0idx± = (24)

vi. The differential fractal part satisfies the fractal equation:
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( )1/ FDi id dtx l± ±= (25)

where λ±
i are some constant coefficients and DF is a constant fractal dimension. We note that

the use of any Kolmogorov or Hausdorff [1, 5, 6-8] definitions can be accepted for fractal
dimension, but once a certain definition is admitted, it should be used until the end of analyzed
dynamics.

vii. The local differential time reflection invariance is recovered by combining the two
derivatives, d+ / dt  and d− / dt , in the complex operator:

ˆ 1
2 2

d d d dd i
dt dt dt

+ - + -æ ö æ ö+ -
= -ç ÷ ç ÷

è ø è ø
(26)

Applying this operator to the “position vector”, a complex velocity yields

ˆ 1ˆ
2 2 2 2

d d d dd i i i
dt dt dt

+ - + - + - + -æ ö æ ö+ - + -
= = - = - = -ç ÷ ç ÷

è ø è ø

X X X X V V V VXV V U (27)

with:

a
2

b
2

+ -

+ -

+
=

-
=

V V
V

V V
U

(28)

The real part, V, of the complex velocity V̂ , represents the standard classical velocity, which
does not depend on resolution, while the imaginary part, U, is a new quantity coming from
resolution dependant fractal.

2. Covariant total derivative

Let us now assume that curves describing particle movement (continuous but non-differen‐
tiable) are immersed in a 3-dimensional space, and that X  of components X i(i =1, 3̄) is the
position vector of a point on the curve. Let us also consider a fractal field Q( X, t ) and expand
its total differential up to the third order:

2 31 1
2 6

j ji i k
j ji i k

Q Q Qd Q dt Q d d X d X d X d X d X
t X X X X X± ± ± ± ± ± ±

¶ ¶ ¶
= +Ñ × + + +
¶ ¶ ¶ ¶ ¶ ¶

X (29)
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where only the first three terms were used in Nottale’s theory (i.e. second order terms in the
motion equation). Relations (29) are valid in any point both for the spatial manifold and for
the points X on the fractal curve (selected in relations 29). Hence, the forward and backward
average values of these relations take the form:

2 31 1
2 6

j ji i k
j ji i k

Q Q Qd Q dt Q d d X d X d X d X d X
t X X X X X± ± ± ± ± ± ±

¶ ¶ ¶
= + Ñ × + +

¶ ¶ ¶ ¶ ¶ ¶
X (30)

The following aspects should be mentioned: the mean value of function f  and its derivatives
coincide with themselves and the differentials d±X i and dt  are independent; therefore, the
average of their products coincides with the product of averages. Consequently, the equations
(30) become:

2 31 1
2 6

j ji i k
j ji i k

Q Q Qd Q dt Q d d X d X d X d X d X
t X X X X X± ± ± ± ± ± ±

¶ ¶ ¶
= +Ñ + +
¶ ¶ ¶ ¶ ¶ ¶

X (31)

or more, using equations (23) with characteristics (24),

( )
( )

2

3

1
2

1
6

j ji i
ji

j ji k i k
ji k

Q Qd Q dt Q d d x d x d d
t X X
Q d x d x d x d d d

X X X

x x

x x x

± ± ± ± ± ±

± ± ± ± ± ±

¶ ¶
= +Ñ × + + +
¶ ¶ ¶

¶
+

¶ ¶ ¶

X
(32)

Even if the average value of the fractal coordinate d±ξ
i is null (see 24), for higher order of fractal

coordinate average, the situation can still be different. Firstly, let us focus on the averages
d+ξ

id+ξ
j  and d−ξ

id−ξ
j . If i ≠ j, these averages are zero due to the independence of d±ξ

i and

d±ξ
j. So, using (25), we can write:

( )( )2 1FDj ji id d dt dtx x l l
-

± ± ± ±= (33)

Then, let us consider the averages d±ξ
id±ξ

jd±ξ
k . If i ≠ j ≠k , these averages are zero due to

independence of d±ξ
i on d±ξ

j and d±ξ
k . Now, using equations (25), we can write:

( )( )3 1FDj ji k i kd d d dt dtx x x l l l
-

± ± ± ± + ±= (34)

Then, equations (32) may be written as follows:
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( )( )

( )( )

2 2 2 1

3 3 3 1

1 1
2 2

1 1
6 6

F

F

Dj ji i
j ji i

Dj ji k i k
j ji k i k

Q Q Qd Q dt d Q d x d x dt dt
t X X X X
Q Qd x d x d x dt dt

X X X X X X

l l

l l l

-
± ± ± ± ± ±

-
± ± ± ± ± ±

¶ ¶ ¶
= + ×Ñ + + +
¶ ¶ ¶ ¶ ¶

¶ ¶
+

¶ ¶ ¶ ¶ ¶ ¶

x
(35)

If we divide by dt  and neglect the terms containing differential factors (for details on the
method see [9, 10]), equations (38a) and (38b) are reduced to:

( )( ) ( )( )2 32 1 3 11 1
2 6

F FD Dj ji i k
j ji i k

d Q Q Q QQ dt dt
dt t X X X X X

l l l l l
- -±

± ± ± ± ± ±
¶ ¶ ¶

= + ×Ñ + +
¶ ¶ ¶ ¶ ¶ ¶

V (36)

These relations also allow us to define the operator:

( )( ) ( )( )2 32 1 3 11 1
2 6

F FD Dj ji i k
j ji i k

d
dt dt

dt t X X X X X
l l l l l

- -±
± ± ± ± ± ±

¶ ¶ ¶
= + ×Ñ + +
¶ ¶ ¶ ¶ ¶ ¶

V (37)

Under these circumstances, let us calculate (∂∧ Q / ∂ t). Taking into account equations (26), (27)
and (37), we shall obtain:

( )( ) ( )( )

( )( ) ( )( )

2 32 1 3 1

2 32 1 3 1

1
2

1 1 1 1
2 2 4 12
1 1 1 1
2 2 4 12

2

F F

F F

D Dj ji i k
j ji i k

D Dj ji i k
j ji i k

d Q d Q d Q d QQ i
t dt dt dt dt

Q Q QQ dt dt
t X X X X X

Q Q QQ dt dt
t X X X X X

i Q

l l l l l

l l l l l

Ù

+ - + -

- -
+ + + + + +

- -
- - - - - -

é ùæ ö¶
= + - - =ê úç ÷¶ ê úè øë û
¶ ¶ ¶

= + ×Ñ + + +
¶ ¶ ¶ ¶ ¶ ¶
¶ ¶ ¶

+ + ×Ñ + + + -
¶ ¶ ¶ ¶ ¶ ¶
¶

-
¶

V

V

( )( ) ( )( )

( )( ) ( )( )

( )( )
( )

2 32 1 3 1

2 32 1 3 1

2 1

2 2 12

2 2 2 12

2 2 4

F F

F F

F

D Dj ji i k
j ji i k

D Dj ji i k
j ji i k

D
j j ji i i

i i Q i QQ dt dt
t X X X X X

i Q i i Q i QQ dt dt
t X X X X X

dtQ i Q i
t

l l l l l

l l l l l

l l l l l l

- -
+ + + + + +

- -
- - - - - -

-

+ - + -
+ + - - + +

¶ ¶
- ×Ñ - - +

¶ ¶ ¶ ¶ ¶
¶ ¶ ¶

+ + ×Ñ + + =
¶ ¶ ¶ ¶ ¶ ¶

æ ö+ -¶
= + - ×Ñ + + - -ç ÷¶ è ø

V

V

V V V V ( )
( )( )

( ) ( )

( )( )
( ) ( )

( )( )
( )

2

3 1 3

2 1 2

3 1

12

4

12

F

F

F

ji
ji

D
j j j ji k i k i k i k

ji k

D
j j j ji i i i

ji

D
j j ji k i k i k i

Q
X X

dt Qi
X X X

dtQ QQ i
t X X

dt
i

l l

l l l l l l l l l l l l

l l l l l l l l

l l l l l l l l l l l

- -

-

+ + + - - - + + + - - -

-
Ù

+ + - - + + - -

-

+ + + - - - + + + - -

¶é ù +ê úë û ¶ ¶

¶é ù+ + - - =ê úë û ¶ ¶ ¶

¶ ¶é ù= + ×Ñ + + - - +ê úë û¶ ¶ ¶

+ - -

V

( )
3

j k
ji k

Q
X X X

l-
¶é ù

ê úë û ¶ ¶ ¶

(38)
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This relation also allows us to define the fractal operator:

( )( )
( ) ( )

( )( )
( ) ( )

2 1 2

3 1 3

ˆ ˆ
4

12

F

F

D
j j j ji i i i

ji

D
j j j ji k i k i k i k

ji k

dt
i

t t X X
dt

i
X X X

l l l l l l l l

l l l l l l l l l l l l

-

+ + - - + + - -

-

+ + + - - - + + + - - -

¶ ¶ ¶é ù= + ×Ñ + + - - +ê úë û¶ ¶ ¶ ¶

¶é ù+ + - -ê úë û ¶ ¶ ¶

V
(39)

Particularly, by choosing:

_ 2j ji il l l l d+ + -= - = ijD (40)

3 2
_ 2 2j ji k i kl l l l l l d+ + + - += - = ijkD (41)

the fractal operator (39) takes the usual form:

( )( ) ( )( )2 1 3 13 2 3ˆ 2ˆ
3

F FD Di dt dt
t t

- -¶ ¶
= + ×Ñ - D + Ñ

¶ ¶
V D D (42)

We now apply the principle of scale covariance and postulate that the passage from classical
(differentiable) to “fractal” mechanics can be implemented by replacing the standard time
derivative operator, d / dt , with the complex operator ∂

^
/ ∂ t  (this results in a generalization of

Nottale’s [1, 2] principle of scale covariance). Consequently, we are now able to write the
diffusion equation in its covariant form:

( )( ) ( )( )3 22 1 3 1 32 0
3

F FD DQ Q Q i Q dt Q
t t

Ù
Ù - -æ ö¶ ¶

= + ×Ñ - D + Ñ =ç ÷ç ÷¶ ¶ è ø
V D Ddt (43)

This means that at any point on a fractal path, the local temporal ∂t Q, the non-linear (convec‐

tive), (V∧ ⋅∇ )Q, the dissipative, ΔQ, and the dispersive, ∇3 Q, terms keep their balance.

3. Fractal space-time and the motion equation of free particles in the
dissipative approximation

Newton's fundamental equation of dynamics in the dissipative approximation is:
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m
t

Ù Ù
¶

= -ÑF
¶
V (44)

where m is the mass, V
∧

 the instantaneous velocity of the particle, Φthe scalar potential and

( )( )2 1FDi
t t

Ù
Ù -æ ö¶ ¶

= + ×Ñ - Dç ÷ç ÷¶ ¶ è ø
V D dt (45)

is the fractal operator in the dissipative approximation.

In what follows, we study what happens with equation (44), in the free particle case (Φ = 0), if
one considers the space-time where particles move changes from classical to nondifferentiable.

According to Nottale [11], the transition from classical (differentiable) mechanics to the scale
relativistic framework is implemented by passing to a fluid-like description (the fractality of
space), considering the velocity field a fractal function explicitly depending on a scale variable
(the fractal geometry of each geodesic). Separating the real and imaginary parts, (44) becomes:

D

0
t

¶
+ ×Ñ =

¶
×Ñ = - D

V V V

U V V
(46)

where V̂ =V − i U  is the complex velocity defined through (27) and D defines the amplitude of
the fractal fluctuations (D=D(dt)(2/DF )−1).

Let us analyze in what follows, the second equation (46) which, one can see, may contain some
interesting physics. If we compare it with Navier-Stokes equation, from fluid mechanics [12]

2D
Dt t

n¶
= + ×Ñ = Ñ
¶

v v v v v (47)

we can see the left side of (46) gives the rate at which V is transported through a 'fluid' by
means of the motion of 'fluid' particles with the velocity U; the right hand side gives the
diffusion of V, (D which is the amplitude of the fractal fluctuations, plays here the role of the
'cinematic viscosity' of the 'fluid'). One can notice, in those regions in which the right hand side

of (47) is negligible, Dv/Dt = 0. This means that in inviscid flows, for instance, V
∧

 is frozen into
the 'particles of the fluid'. Physically this is due to the fact that in an inviscid 'fluid' shear stresses

are zero, so that there is no mechanism by which V
∧

 can be transferred from one 'fluid' particle
to another. This may be the case for the transport of V by U in the second equation (II.3).

Advances in Quantum Mechanics732



If we consider the flow of V induced by a uniform translational motion of a plane spaced a
distance Y above a stationary parallel plane (Fig. 1), and if the 'fluid' velocity increases from
zero (at the stationary plane) to U (at the moving plane) like in the case of simple Couette flow,
or simple shear flow, then

rate of shear deformation d U
dy Y

= =
V

(48)

Figure 1. Uniform translational motion of a plane spaced a distance Y above a stationary parallel plane.

For many fluids it is found that the magnitude of the shearing stress is related to the rate of
shear proportionally:

dT
dy Y

h h= =
V U

(49)

Fluids which obey (49) in the above situation are known as Newtonian fluids, which have a very
small coefficient of viscosity. When such 'fluids' flow at reasonable velocities it is found that
viscous effects appear only in thin layers on the surface of objects or surfaces over which the
'fluid' flows. That is, if one continues the analogy, and questions how is V transported by the
motion of 'fluid' particles with the velocity U, in second equation (46), one can assume that the
mechanism of transfer of V from one particle of 'fluid' to another is achieved over small
distances (in thin layers, as stated above).

We study an important case, of the one-dimensional flow along the Ox axis :

( )  xz=V k (50)

To resume, the model considered here consists in analyzing the transport of V, along a small
elementary distance Λ, by the 'particles' of a Newtonian fluid moving with velocity U, where
the stress tensor obeys (49), i.e.
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( ) ( )d x x
dx
z z

=
L

(51)

like in the case of simple Couette flow, or simple shear flow.

Consequently, the second eq. (46) reduces to the scalar equation

( ) ( ) ( )2 0x K x xz z¢¢ + = (52)

which is the time independent Schrödinger equation, and

( ) ( )2 1K x U x=
LD

(53)

with Λ and D having the significance of a small elementary distance and of the 'cinematic
viscosity' (or amplitude of the fractal fluctuations), respectively, and U(x) is the velocity of the
'Newtonian fluid', which is nothing but the imaginary part of the complex velocity [13]. In
what follows, we solve this equation accurately by means of the WKBJ approximation method
with connection formulas.

3.1. Solving the Schrödinger type equation by means of the WKBJ approximation method

Let us re-write (53) in the form

( ) ( ) ( )( )
2

2
2

1 2m cK x U x xc g= = -
L hD

(54)

where we take D =ℏ / 2m and consider the small elementary distance the Compton length
Λ =ℏ / mc [14]. Therefore, the Schrödinger equation (52) splits into:

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2
2 20,    or 0,    d dx k x x x x x

dx dx
z z c g z r z c g+ = > - = < (55)

where

( ) ( )( ) ( ) ( )( ) 2
2 2

2 2
, with

x x
k x x m c

m c g m g c
r m

- -
= = =

h h
(56)

χ is a limit velocity and γ(x) a 'velocity potential'.
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Let us try a solution of the form ζ(x)=A exp ((i/ħ)S(x)). Substituting this solution into the time-
independent Schrödinger equation (52) we get:

2 22 2
2 2 2 2

2 20 or 0d S dS d S dSi k i
dx dxdx dx

ræ ö æ ö
- + = - - =ç ÷ ç ÷
è ø è ø

h h h h (57)

Assume that ħcan, in some sense, be regarded as a small quantity and that S(x) can be expanded
in powers of ħ, S(x) = S0(x)+ ħ S1(x) +....

Then,

2
2 20 01 1... ... 0 ,     ( ( ))

dS dSdS dSdi k x
dx dx dx dx dx

c g
é ù æ ö

+ + - + + + = >ç ÷ê ú
ë û è ø

h h h h (58)

We assume that | dS0
dx | > > |ℏ

dS1
dx |  and collect terms with equal powers of ħ.

( )
2

2 20
00        

x

dS
k S k x dx

dx
é ù

¢ ¢- + = Þ = ±ê ú
ë û

òh h (59)

( )
2

0 0 1
12

12 0        ln
2

d S dS dS
i S i k x

dx dxdx
- = Þ = (60)

We have used:

0 0 1 1
1

dk2  ,    i 2 ,    
dx 2

dS dS dS dSd i dki k dS
dx dx dx dx dx k

æ ö
= = =ç ÷

è ø
(61)

Therefore, for χ>γ(x)

( )
( )1

2 x
i k x dx

x Ak ez
¢ ¢±- ò

= (62)

In the classically allowed region S0 = ± ∫
x

ℏk (x ′)d x ′ counts the oscillations of the velocity wave

function. An increase of 2π ħ corresponds to an additional phase of 2π.
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Similarly, in regions where χ<γ(x) we have:

( )
( )1

2 x
x dx

x A e
r

z r
¢ ¢±- ò

= (63)

For our first order expansion to be accurate we need that the magnitude of higher order terms

decreases rapidly. We need | dS0
dx | > > |ℏ

dS1
dx |  or |k | > > | 1

2k
dk
dx | . The local deBroglie

wavelength is λ = 2π/k. Therefore, | λ
4π

dλ
dx | < <λ , i.e. the change in λ over a distance λ/4π is

small compared to λ. This holds when the velocity potential γ(x) varies slowly and the
momentum is nearly constant over several wavelengths.

Near the classical turning points the WKBJ solutions become invalid, because k goes to zero
here. We have to find a way to connect an oscillating solution to an exponential solution across
a turning point if we want to solve barrier penetration problems or find bound states.

3.2. Velocity potential γ (x) and the bound states

We want to find the velocity wave function in a given velocity potential well γ(x). Assuming
that the limit velocity of the particle isχ and that the classical turning points are x1 and x2,
x1<x2, i.e. we have a velocity potential well with two sloping sides (Fig. 2).

Figure 2. Bound state problem.

For x < x1 the velocity wave function is of the form:

( )
( )1

2
1 1

x
x dx

x A e
r

z r
¢ ¢- ò

= (64)

For x > x2 the velocity wave function is of the form:

( )
( )1

2
3 3

x
x dx

x A e
r

z r
¢ ¢-- ò

= (65)
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In the region between x1 and x2 it is of the form:

( )
( ) ( )1 1

2 2
2 2 2

x x
i k x dx i k x dx

x A k e A k ez
¢ ¢ ¢ ¢+ -- -ò ò

¢= + (66)

At x = x1 and x = x2 the velocity wave function ζ and its derivatives have to be continuous. Near
x1 and x2 we expand the velocity potential well γ(x) in a Taylor series expansion in x and neglect
all terms of order higher than 1. Near x1 we have γ(x)=χ −K1(x − x1), and near x2 we have
γ(x)=χ + K2(x − x2).

In the neighborhood of x1 the time-independent Schrödinger equation then becomes:

( )
2

1
12 2

2
0

Kd x x
dx

mz z+ - =
h

(67)

and in the neighborhood of x2 the time-independent Schrödinger equation becomes:

( )
2

2
22 2

2
0

Kd x x
dx

mz z- - =
h

(68)

Let us define z = − ( 2μK1

ℏ2 ) 1
3 (x − x1). Then we obtain 

d 2ζ
d z 2 − zζ =0 near x1. The solutions of this

equation which vanish asymptotically as z → ∞ or x → -∞ are the Airy functions. They are
defined through:

( )
3

0

1 cos
3
sAi z sz ds

p

¥ æ ö
= +ç ÷ç ÷

è ø
ò (69)

which for large |z| has the asymptotic form

( )
3
2

1
4

1 2~ exp  ,     ( 0)
3

2
Ai z z z

zp

æ ö
ç ÷- >
ç ÷
è ø

(70)

and

( )
( )

( )
3
2

1
4

1 2~ sin  ,     ( 0)
3 4

Ai z z z
z

p

p

æ ö
- + <ç ÷ç ÷

è ø-
(71)
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If the limit velocity χ is high enough, the linear approximation to the velocity potential well
remains valid over many wavelengths. The Airy functions can therefore be the connecting
velocity wave functions through the turning point at x1.

If we define z = ( 2μK2

ℏ2 ) 1
3 (x − x2) then we find 

d 2ζ
d z 2 − zζ =0 near x = x2 and the Airy functions can

also be the connecting velocity wave functions through the turning point at x2. Here z → ∞ or
x → ∞.

In the neighborhood of x1 we have

( )
1 1
3 32 2 1 1

12 2
2 2K K

k x x z
m m

r
æ ö æ ö

= - = - = -ç ÷ ç ÷
è ø è øh h

(72)

Therefore

1 1

1
331 2

2
0

2 2
3

x x x

x x

K
dx zdx z dz z

m
r

æ ö
¢ ¢ ¢ ¢= = - = -ç ÷

è ø
ò ò òh

(73)

Similarly

( )
1 1

1
331 2

2
0

2 2
3

x x x

x x

K
kdx zdx z dz z

mæ ö
¢ ¢ ¢ ¢= - = - - = -ç ÷

è ø
ò ò òh

(74)

By comparing this with the asymptotic forms of the Airy functions we note that

( )
( )

( )1

1
2

11 1

x

x
x dx

x xx A e
r

z r
¢ ¢+

- ò
<=

(75)

must continue on the right side as

( ) ( )
1

2 1 1

1
22 sin

4

x

x
x A k kd x xx pz

- æ ö
ç ÷¢= +
ç ÷

ø
>

è
ò (76)

In the neighborhood of x2we similarly find that
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( )
( )

( )2

1
2

23 3

x

x
x dx

x xx A e
r

z r
¢ ¢-

- ò
>=

(77)

must continue in region 2 as

( ) ( )
21

2
2 232 sin

4

x

x
x A k kd x xx pz

- æ ö
ç ÷¢= +
ç ÷

ø
<

è
ò (78)

Both expressions for ζ2(x) are approximations to the same eigenfunction. We therefore need

2

1

1 1
2 2

1 32 sin 2 sin
4 4

xx

x x
A k kdx A k kdxp p- -æ ö æ ö

ç ÷ ç ÷¢ ¢+ = +
ç ÷ ç ÷

è øè ø
ò ò (79)

For (79) to be satisfied, the amplitudes of each side must have the same magnitude, and the
phases must be the same modulo π :

2

1

1 3

4 4

xx

x x

A A

kdx kdx np p p

=

¢ ¢+ = - - +ò ò
(80)

Knowing that ∫
x1

x2

= ∫
x1

x

+ ∫
x

x2

, we have

2

1

1 ,        1,2,3,...
2

x

x
kdx n npæ ö¢ = - =ç ÷

è ø
ò (81)

This can be re-written as

2

1

1 1or
2 2 2

x

x

hdx n dx n hæ ö æ ö
P = - P = -ç ÷ ç ÷

è ø è ø
ò òÑ (82)

with
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( )( ) ( ) ( ) 1 2
1 2 1 2

2 2 2
U x

x U x mc
c

m c g m
é ù

é ù é ùP = - = = ê úë ûë û ê úë û
(83)

Here ∮ denote an integral over one complete cycle of the classical motion. The WKBJ method

for γ(x) velocity potential well with soft walls, therefore, leads to a Wilson-Sommerfeld type
quantization rule except that n is replaced by n-1/2. It leads to a quantization of the complex
velocity U(x).

The factor of π/2 arises here due to the two phase changes of π/4 at x1 and x2. In case where
only one of the walls is soft and the other is infinitely steep the factor of 1/2 is replaced by 1/4
in (81). If both walls are infinitely steep, the factor of 1/2 in (81) is replaced by 0.

WKBJ approximation is a semi classical approximation, since it is expected to be most useful
in the nearly classical limit of large quantum numbers. The method will not be good for, say,
lowest limit velocity states χ, so in order to overcome this shortcomings there is a need for a
modified semi classical quantization condition. For oscillations between the two classical
turning points x1 and x2, we obtain the semi classical quantization condition by requiring that
the total phase during one period of oscillation to be an integral multiple of 2π; [15] such that

2

1

1 22 2
x

x
kdx nf f p¢ + + =ò (84)

where ϕ1 is the phase loss due to reflection at the classical turning point x1 and ϕ2 is the phase
loss due to reflection at x2. Taking ϕ1 and ϕ2 to be equal to π/2leads to the modified semiclassical
quantization rule, i.e.

2

1
4

x

x

mkdx n pæ ö¢ = -ç ÷
è ø

ò (85)

where mis the Maslov index [15], which denotes the total phase loss during one period in units
of π/2. It contains contributions from the phase losses ϕ1and ϕ2 due to reflections at points x1

and x2, respectively. It is pertinent to note that taking ϕ1 = ϕ2 = π/2 and an integer Maslov index
m = 2 in (85), we have the familiar semi classical quantization rule, i.e. (81).

Let us apply the constraint equation (81) to an harmonic oscillator. The condition then is
(passing without loss of generality to the limits -a to +a)
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( ) 1 2 12  
2

a

a
x dx nm c w p

+

-

æ öé ù- = -ç ÷ë û è ø
ò h (86)

where the energy Wc of the oscillator U(x) with the pulsation ωwrites

( )2 2 21 1
2 2cW m x m xw g= = (87)

and we get the expression for the x dependence of the velocity term, γ(x)=ωx.

Theleft side term of (86) is an elementary integral and we find:

( ) ( )
( )

1 2

3 2 3 2 3 1
22 2

n
a

pc u c u u
m

æ ö
+ - - = -ç ÷

è ø
h (88)

where υ =ω a is the liniar velocity (see the graphic in Fig. 3).

Figure 3. Dependence of the limit velocity χ on the linear velocity υ.
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We try to estimate a value for the limit velocity χ. Let us expand the left side term of (88) in
series and keep the first term. If we replace μ from (56) and take a = Λ (the Compton length),
we get:

( )
22 2 2 2 2 22

2
1 2 1 ,   9 ,   25 ,  . . . 
2 32 32 32 328

n n c c c c
a

p p p p pc
m

ì üæ ö ï ï» - = - = í ýç ÷
è ø ï ïî þ

h
(89)

It is interesting to note that only the first velocity in (89) is less than the velocity of light, c.

Let us analyze now, one more bound state, the velocity wave function in a given velocity
double well potential γ(x).

We begin by deriving a quantization condition for region 2 analogous to (81). Again, applying
the boundary condition for region 1 leaves only the exponentially growing solution. Applying
the connection formula at x1 then gives an expression for the velocity wave function in region
2 :

( )
1

1 2
1 2 sin '

4

x

x
x Ak kdx pz -

é ù
ê ú= +
ê úë û
ò (90)

However, the solution in region 3 must have both growing and decaying solutions present.
Considering the region 3 solutions in terms of x2 and letting BL and CL be the amplitudes of
the decaying and growing solutions respectively, the connection formulas give another
expression for the velocity wave function in region 2:

( ) 1 2 1 2
2 2 cos sinL Lx B k C kz q q- -= + (91)

with

2

'
4

x

x
kdx pq = -ò (92)

We equate the two expressions (90), (91) for the velocity function in region 2 and cancel
common factors giving

1

2 sin ' 2 cos sin
4

x

L L
x

A kdx B Cp q q
é ù
ê ú+ = +
ê úë û
ò (93)
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Using trigonometric identities to simplify the right hand side, gives

( )
1

1 22 22 sin ' 4 sin
4 2

x

L L L
x

A kdx B Cp pq f
é ù æ öê ú+ = + + -ç ÷ê ú è øë û
ò (94)

where

( )
1

1 22 2

2
cos

4
L

L

L L

B

B C
f -

é ù
ê ú

= ê ú
ê ú+
ë û

(95)

The magnitude of the sin function must be equal, and the magnitude of the phases must be
equal modulo π :

2 2 24 4 L LA B C= + (96)

2

1

' '
4 4

xx

L
x x

kdx kdx np p f p+ = - - + +ò ò (97)

Simplifying and combining the integrals gives the quantization condition for region 2:

2

1

12
1
2

x

L
x

kdx nq p fæ ö
º = - +ç ÷

è ø
ò (98)

with n = 1, 2,....

A similar treatment for the turning point x3 yields the condition for region 4:

4

3

34
1
2

x

R
x

kdx mq p fæ ö
º = - +ç ÷

è ø
ò (99)

with m = 1, 2,... and ϕR given by:

( )
1

1 22 2

2
cos

4
R

R

R R

C

C B
f -

é ù
ê ú

= ê ú
ê ú+
ë û

(100)
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where BR and CR are the amplitudes of the decaying and growing region 3 solutions in terms
of x3.

We now have the quantization conditions (98, 99) for regions 2 and 4, but they contain the free
parameters ϕL and ϕR. To eliminate these free parameters, we consider the WKBJ solution in
region 3. The coefficients BL, CL, BR, CR define two expressions for solution, which must be
equal:

2 2

1 2 1 2
3 exp ' exp '

x x

L L
x x

B dx C dxz r r r r- -
é ù é ù
ê ú ê ú= - +
ê ú ê úë û ë û
ò ò (101)

3 3
1 2 1 2

3 exp ' exp '
x x

R R
x x

B dx C dxz r r r r- -
é ù é ù
ê ú ê ú= + -
ê ú ê úë û ë û
ò ò (102)

Equations (101) and (102) each contain a term that grows exponentially with x and a term that
decays exponentially with x. Equating the growing terms from each equation and the decaying
term from each equation gives two constraints:

3

2

exp ' exp '
xx

L R
x x

B dx B dxr r
é ù é ù
ê ú ê ú- =
ê ú ê úë ûë û
ò ò (103)

3

2

exp ' exp '
xx

L R
x x

C dx C dxr r
é ù é ù
ê ú ê ú= -
ê ú ê úë ûë û
ò ò (104)

Combining the integrals in these constraints gives

( )23expL R

R L

B C
B C

q= = (105)

with

3

2

23 '
x

x
dxq rº ò (106)
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The constraints (98, 99, 105) may be combined to give a single quantization condition for the
allowed WKBJ velocity limits χ for a double-well velocity potential γ(x). Applying trigono‐
metric identities to (95) and (100), and plugging into (105) gives

( )23
1tan tan exp 2

2 2 4
L R

L R
L R

C B
B C

f f q
æ öæ ö

= = -ç ÷ç ÷ç ÷ç ÷
è øè ø

(107)

Equation (107) may be combined with (98) and (99) to give the WKBJ quantization condition
for a double-well potential in terms of the phase integrals θ12 and θ34 :

( )12 34 23
1 exp 2
4

ctg ctgq q q= - (108)

confirming the results given in [16].

Equation (108) is a nonlinear constraint approximately determining the allowed velocity levels
χ of a double-well velocity potential γ(x) (see Fig. 4) and can be written (taking ϕR = ϕL = π/4
in (98) and (99), i.e. the velocity quarter-wave shift in the connection formulas, which is known
to optimize the tunneling effect between two oscillating waves [17] ) as :

( )
3

2

1 2
1 21 1 12 ( ) ln 4 ln 2     m,n 1, 2, 3, ...

2 2

x

L R
x

x dx ctg n ctg mm g c p f p f
-

ì üé ù é ùæ ö æ öï ïé ù- = × - + × - + = - =í ýê ú ê úç ÷ ç ÷ë û è ø è øï ïë û ë ûî þ
òh (109)

Figure 4. Tunneling potential barrier.

In terms of the momentum Π we have :
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3

2

ln 2 or 2 ln 2
x

x
dx dxP = - P = -ò òh hÑ (110)

where ∮ denotes an integral over one complete cycle of the classical motion, this time

( )( ) ( ) ( ) 1 2
1 2 1 2

2 2 2
U x

x U x mc
c

m g c m
é ù

é ù é ùP = - = = ê úë ûë û ê úë û
(111)

since γ(x)>χfor the integration limits, i.e. region 3 (see Fig. 5). We get again a quantization of
the complex velocityU(x), where the levels are equally spaced at a value of ħ ln2.

Figure 5. Schematic diagram of a double-well potential with three forbidden regions (1, 3, 5) and two allowed re‐
gions (2, 4).

In 1961, Landauer [18] discussed the limitation of the efficiency of a computer imposed by
physical laws. In particular he argued that, according to the second law of thermodynamics,
the erasure of one bit of information requires a minimal heat generation kBT ln2, where kBis
Boltzmann’s constant and T is the temperature at which one erases. Its argument runs as
follows. Since erasure is a logical function that does not have a single-valued inverse it must
be associated with physical irreversibility and therefore requires heat dissipation. A bit has
one degree of freedom and so the heat dissipation should be of order kBT. Now, since before
erasure a bit can be in any of the two possible states and after erasure it can only be in one
state, this implies a change in information entropy of an amount −kBln2.

The one-to-one dynamics of Hamiltonian systems [19] implies that when a bit is erased the
information which it contains has to go somewhere. If the information goes into observable
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degrees of freedom of the computer, such as another bit, then it has not been erased but merely
moved; but if it goes into unobservable degrees of freedom such as the microscopic motion of
molecules it results in an increase of entropy of at least kBln2.

Inspired by such studies, a considerable amount of work has been made on the thermody‐
namics of information processing, which include Maxwell’s demon problem [20], reversible
computation [21], the proposal of the algorithmic entropy [22] and so on.

Here, considering a double-well velocity potential γ(x) and the velocity quarter-wave shift in
the connection formulas, a quanta of ħ ln2 for the complex velocityU(x) of the moving
Newtonian 'fluid' occurs. It can be argued that it can be put into a one-to-one correspondence
to the quanta of information Landauer and other authors discussed about [23, 24].

Furthermore, one gets an interesting result when taking ϕR = ϕL = π/2, i.e. the velocity half-
wave shift in the connection formulas, when singularities occur in (II.66). We try to solve this
case by making use of the vortices theory. Benard in 1908 was the first to investigate the
appearance of vortices behind a body moving in a fluid [12]. The body he used was a cylinder.
He observed that at a high enough fluid velocity (or Reynolds number based on the cylinder
diameter), which depends on the viscosity and width of the body, vortices start to shed behind
the cylinder, alternatively from the top and the bottom of the cylinder.

Consequently, we write (109) in the form

( ) ( )1 2
02 ( ) ln 2 ln

x
x dx tg x x

l
pm g c

ì üé ùï ïé ù- = - - -í ýê úë û ï ïë ûî þ
ò h h (112)

where we use ctg(α + π/2) = - tg(α), take m = n, make the notations x =nl , x0 = l / 2 and consider
again the one-dimensional case, motion along the Ox axis.

Solving (112) one gets

( ) ( )2
0

21U x c ctg x xpæ öé ù
= + -ç ÷ê úLë ûè ø

(113)

where we assume l = Λ (the Compton length), U(x) = [γ(x) - χ]/2π2 and replace μ =m 2c, where c
is the velocity of light. When plotting (113) (see Fig. 6) we see that indeed, singularities are ob‐
tained for x - x0 = Λ/2 and for x - x0 = Λ/4we get for U(x) minima of value the velocity of light, c.

Usually, at some distance behind a body placed in a fluid, vortices are arranged at a definite
distance l apart and with a definite separation h between the two rows. The senses of the
rotation in the two rows are opposite (see Fig. 7).
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Figure 7. Von Karman vortex streets.

In 1912 von Karman expounded a theory of such vortex streets and the drag which a cylinder
would experience due to their formation [12]. Since we considered here the one-dimensional
case, we get the solution of a single row of rectilinear vortices, which has already been referred
to as characterizing a surface of discontinuity (see Fig. 8).

A typical bound state in a double-well velocity potential has two classically allowed regions,
where the velocity potential γ(x)is less than the limit velocity χ. These regions are separated
by a classically forbidden region, or barrier, where the velocity potential is larger than the limit
velocity. As we can see, quantum mechanics predicts that a velocity wave ζ(x) travelling in
such a potential is most likely to be found in the allowed regions. However, unlike classical
mechanics, quantum mechanics predicts that this velocity wave can also be found in the

-2 -1 1 2

2

4

6

8

10

Figure 6. The complex velocity U(x) singularities' distribution along the Ox axis.
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forbidden region. This uniquely quantum mechanical behavior allows a velocity wave, initially
localized in one potential well, to penetrate through the barrier, into the other well (as we will
see in what follows).

3.3. Velocity potential γ (x) and the quantum barrier

We already know at the points where χ −γ(x)=0, special treatment is required because k is
singular. The way of handling the solution near the turning point is a little bit more technical,
but the basic idea is that we have a solution to the left and to the right of the turning point, and
one needs a formula that interpolates between them. In other words, in the vicinity of the

turning point one approximates 2μ(χ −γ(x)) / ℏ2 by a straight line over a small interval and
solves TISE (time independent Schrodinger equation) exactly. This leads to the following
connection formulas:

Barrier to the right ( x = b turning point )

( )
( )2 1cos

4

x

b

b x dx

x
k x dx e

k

rp
r

-é ù ò
- Ûê ú

ê úë û
ò (114)

( )
( )1 1sin

4

x

b

b x dx

x
k x dx e

k

rp
r

é ù ò
- Û -ê ú

ê úë û
ò (115)

Barrier to the left ( x = a turning point )

Figure 8. Single row of rectilinear vortices.
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( )
( )2 1cos

4

a

x

x x dx

a
k x dx e

k

rp
r

-é ù ò
- Ûê ú

ê úë û
ò (116)

( )
( )1 1sin

4

a

x

x x dx

a
k x dx e

k

rp
r

é ù ò
- Û -ê ú

ê úë û
ò (117)

The connection formulas enable us to obtain relationships between the solutions in a region
at some distance to the right of the turning point with those in a region at some distance to the
left [25-27].

One of the most important problems to which connection formulas apply is that of the
penetration of a potential barrier. The barrier is shown in Fig. 4 and the limit velocity χ is such
that the turning points are at x = a and x = b.

Suppose that the motion is incident from the left. Some waves will be reflected and some
transmitted, so that in region III we will have:

( ) 4
3

1 1 cos sin
4 4

x

b
i kdx i x x

b b

ix e kdx kdx
k k k

p
p pz

-ò é ù é ù
= = - + -ò òê ú ê ú

ë û ë û
(118)

The phase factor is included for convenience of applying the connection formulas.

In region II (using (114) and (115) on (118)) we have:

( )2
1 1 1
2

b b

x x
dx dx

x e i e
r r

z
r r

-ò ò
= - (119)

Now using

b a b x

x x a a
dx dx dx dxr r r r a= + = - +ò ò ò ò (120)

we can write

( )2
1 1 1
2

x x

a a
dx dx

x e e i e e
r r

a az
r r

-
-ò ò

= - (121)
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Again, using the connection formulas for the case barrier to the right (using (116) and (117) on
(121)), we get for region I:

( )

( ) ( )

1
1 1 2sin cos
2 4 4

1 1 2         sin cos
2

1 1                  
4 4

a a

x x

iu iu

x e kdx i e kdx
k k

e u i e u
k k

i e e e e e e
k

a a

a a

a a a a

p pz -

-

- - -

é ù é ù
= - - - =ê ú ê ú

ê ú ê úë û ë û

= - =

é ùæ ö æ ö
= - + + -ê úç ÷ ç ÷

è ø è øë û

ò ò

(122)

Hence

( )

( )

4
1

4
1

1
4

1
4

a

x

a

x

i kdx i
inc

i kdx i
ref
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Having obtained the expression for ζ1
inc(x) and ζ1

ref(x) we are now in position to calculate the
transmission coefficient using:
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To summarize, for a barrier with large attenuation e-2α→0, the tunneling probability equals
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The reflection coefficient is:
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and also in the same large attenuation limit, we have:

( )( ) 1 22 2 21 1 exp 1 exp 2
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One can see from (125) and (127) thatthe velocity wave ζ(x) on small distances, with the same
order of magnitude as Λ, may be influenced by U(x),i.e. it can be transmitted, attenuated or
reflected at this scale length. In other words, we get from the calculus, that the velocity field V
is indeed transported by the motion of the 'Newtonian fluid' particles with the velocity U(x)
(the imaginary part of the complex velocity [13]).

4. Casimir type effect in scale relativity theory

In recent years, new and exciting advances in experimental techniques [28] prompted a great
revival of interest in the Casimir effect, over fifty years after its theoretical discovery (for a
recent review on both theoretical and experimental aspects of the Casimir effect, see Refs.
[29-31]). As is well known, this phenomenon is a manifestation of the zero-point fluctuations
of the electromagnetic field: it is a purely quantum effect and it constitutes one of the rare
instances of quantum phenomena on a macroscopic scale.

In his famous paper, Casimir evaluated the force between two parallel, electrically neutral,
perfectly reflecting plane mirrors, placed a distance L apart, and found it to be attractive and
of a magnitude equal to:

2

4240C
c AF

L
p

=
h (128)

Here, A is the area of the mirrors, which is supposed to be much larger than L2, so that edge
effects become negligible. The associated energy EC

2

3720C
c AE

L
p

= -
h (129)

can be interpreted as representing the shift in the zero-point energy of the electromagnetic
field, between the mirrors, when they are adiabatically moved towards each other starting
from an infinite distance. The Casimir force is indeed the dominant interaction between neutral
bodies at the micrometer or submicrometer scales, and by modern experimental techniques it
has now been measured with an accuracy of a few percent (see [28] and references therein).
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Since this effect arises from long-range correlations between the dipole moments of the atoms
forming the walls of the cavity, that are induced by coupling with the fluctuating electromag‐
netic field, the Casimir energy depends in general on the geometric features of the cavity. For
example, we see from (129) that, in the simple case of two parallel slabs, the Casimir energy
ECis negative and is not proportional to the volume of the cavity, as would be the case for an
extensive quantity, but actually depends separately on the area and distance of the slabs.
Indeed, the dependence of ECon the geometry of the cavity can reach the point where it turns
from negative to positive, leading to repulsive forces on the walls. For example [29], in the case
of a cavity with the shape of a parallelepiped, the sign of ECdepends on the ratios among the
sides, while in the case of a sphere it has long been thought to be positive. It is difficult to give
a simple intuitive explanation of these shape effects, as they hinge on a delicate process of
renormalization, in which the finite final value of the Casimir energy is typically expressed as
a difference among infinite positive quantities. In fact, there exists a debate, in the current
literature, whether some of these results are true or false, being artifacts resulting from an
oversimplification in the treatment of the walls [33].

There are three well-known technical types of derivation of the Casimir force for different
geometries including the simplest geometry of two parallel, uncharged, perfectly conducting
plates firstly explored by Casimir. One modern method is the quantum field theoretical
approach based on the appropriate Green's function of the geometry of problem [34]. The other
technical type is the dimensional regularization method that involves the mathematical
complications of the Riemann zeta function and the analytical continuation [34]. The last (the
most elementary/the simplest) method is based on modes summation by using the Euler-
Maclurian integral formula [35-37].

The problem of finding the Casimir force, not only for the simplest geometry of two plates or
rectangular prism, that we want to study here, but also for other more complicated geometries,
indispensably/automatically involves some infinities/irregularities; thus, one should regula‐
rize the calculation for arriving at the desired finite physical result(s). In the Green' function
method, one uses the subtraction of two terms (two Green's functions) to do the required
regularization. In the dimensional regularization method, although there isn't an explicit
subtraction for the regularization of the problem, as is clear from its name, the calculation is
regularized dimensionally by going to a complex plane with a mathematically complicated/
ambiguous approach. In the simplest method in which the Euler-Maclurian formula is used,
the regularization is performed by the subtraction of the zero-point energy of the free space
(no plates) from the energy expression under consideration/calculation (e.g. summation of the
interior and exterior zero-point energies of the two parallel plates).

Navier-Stokes equations in scale relativity theory predict that the (vector) velocity field V and/
or the (scalar) density field ρ, on small distances (the same magnitude as the Compton length)
behave like a wave function and are transported by the motion of the Newtonian fluid with
velocity U.

Furthermore, when considering vacuum from the Casimir cavity, a non-differentiable,
Newtonian, 2D non-coherent quantum fluid whose entities (cvasi-particles) assimilated to
vortex-type objects, initially non-coherent, become coherent (the coherence of the quantum
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fluid reduces to its ordering in vortex streets) due to the constraints induced by the presence
of slabs. Casimir type forces are derived which are in good agreement with other theoretical
results and experimental data, for both cases: two metallic slabs, parallel to each other, placed
at a distance d apart, that constitute the plates of the cavity and a rectangle of sides d1, d.

In other words, non-differentiability and coherence of the quantum fluid due to constraints
generate pressure along the Ox and Oy axis.

For viscous compressible fluids, Navier-Stokes equations

( )2

3
D p
Dt

mr r m= -Ñ + Ñ + Ñ Ñ ×
v X v v (130)

together with the equation of continuity

0,D
Dt
r r+ Ñ × =v (131)

where ρ is the density, ν the velocity of the fluid, X the body force, p the pressure, μ the shear
viscosity and D / Dt ≡d / dt +ν ⋅∇  the Eulerian derivative, apply to Newtonian (or near) fluids,
that is, to fluids in which the stress is linearly related to the rate of strain (as will be assumed
further in this section) [12].

Let us see first, what happens with the set of equations (130) and (131), if one considers that
the space-time, where particles move, changes from classical to non-differentiable.

We already know, according to Nottale [11], that a transition from classical (differentiable)
mechanics to the scale relativistic framework is implemented by passing to a fluid-like
description (the fractality of space), considering the velocity field a fractal function explicitly
depending on a scale variable (the fractal geometry of each geodesic) and defining two fractal
velocity fields which are fractal functions of the scale variable dt (the non-differentiability of
space).

Consequently, replacing d/dt with the fractal operator (42) and solving for both real and
imaginary parts, (130) and (131) become, in a stationary isotropic case, taking the body force
X = 0 (constant gravitational field) and ∇U = 0 (assuming a constant density of states for the
“fluid particles” moving with the velocity U – see further in this section):
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(132)

and
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V V

U D 
(133)

where V represents the standard classical velocity, which does not depend on resolution,
while the imaginary part, U, is a new quantity coming from resolution dependant fractal, υ =
μ/ρ the kinematic viscosity and D =ħ/2m defines the amplitude of the fractal fluctuations.

The causes of the Casimir effect are described by quantum field theory, which states that all
of the various fundamental fields, such as the electromagnetic field, must be quantized at
each and every point in space. In a simplified view, a "field" in physics may be envisioned as
if space were filled with interconnected vibrating balls and springs, and the strength of the
field can be visualized as the displacement of a ball from its rest position. Vibrations in this
field propagate and are governed by the appropriate wave equation for the particular field
in question. The second quantization of quantum field theory requires that each such ball-
spring combination to be quantized, that is, that the strength of the field to be quantized at
each point in space. Canonically, the field at each point in space is a simple harmonic oscilla‐
tor, and its quantization places a quantum harmonic oscillator at each point. Excitations of
the field correspond to the elementary particles of particle physics. However, even the vac‐
uum has a vastly complex structure, so all calculations of quantum field theory must be
made in relation to this model of vacuum. The vacuum has, implicitly, all of the properties
that a particle may have: spin, or polarization in the case of light, energy, and so on. On
average, all of these properties cancel out: the vacuum is, after all, "empty" in this sense. One
important exception is the vacuum energy or the vacuum expectation value of the energy.

Let us consider here, vacuum, as a non-differentiable, Newtonian, 2D non-coherent quan‐
tum fluid whose entities (cvasi-particles) assimilate to vortex-type objects [38] (see Fig.9)
and are described by the wave function Ψ [39, 40]
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and K, K’ complete elliptic integrals of the first kind of modulus k [41], form a vortex lattice of
constants a, b.

Figure 9. The vacuum from a Casimir cavity whose entities (cvasi-particles) are assimilated to vortex-type objects.

Applying in the complex plane [42], the formalism developed in [13] by means of the relation
Ψ = e F (z)/Γ =cn(u

¯
;k ) one introduces the complex potential

( ) ( ) ( ) ( ), , ln ;F z G x y iH x y cn u ké ù= + = G ë û (136)

with Γ the vortex constant. In the general case Γ = cΛ = ħ/m [38-40], the interaction scale being
specified through Γ ’s value (Λ being considered as the Compton length).

Based on the complex potential (136), one defines the complex velocity field of the non-
coherent quantum fluid, through the relation:

( ) ( ) ( )
( )

; ;
;x y

dF z sn u k dn u kKv iv
dz a cn u k

G
- = = - (137)

or explicitly, using the notations [41, 42]:
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Having in view that cn(u
¯

+ Ω
¯

)=cn(u
¯
), where Ω

¯
=2(2m + 1)K + 2niK ′and m,n = ±1, ±2..., for k→

0 and k’→ 1 limits, respectively, the quantum fluid, initially non-coherent (the amplitudes and
phases of quantum fluid entities are independent) becomes coherent (the amplitudes and
phases of quantum fluid entities are correlated [43]). In this context, from Fig. 10a,b of the
equipotential curves G(xr,yr) = const., for k2 = 0,1, it results that the coherence of the quantum
fluid reduces to its ordering in vortex streets - see Fig. III.2a for vortex streets aligned with the
Ox axis and Fig. 10b for vortex streets aligned with the Oy axis. This process of ordering is
achieved by generation of quasi-particles. Indeed, in the usual quantum mechanics the
imaginary term ( iΘ ) from the energy, i.e. E= E0 + iΘ, induces elementary excitations named
resonances (for details see the collision theory [44]). Similarly, by extending the collision theory
to the fractal space-time [1, 45], will imply that the presence of the imaginary term H(xr,yr) in
the potentialF (z

¯
)will generate quasi-particles, as well.

Now, writing the Navier-Stokes equation (132a) and the equation of continuity (133a) in scale
relativity theory for constant density (incompressible fluids) in two dimensions, one gets
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where the shear viscosity υ is replaced by D since we are dealing here with a non-differentiable
quantum fluid.

Then, after some rather long yet elementary calculus one gets from (140a,b) through the
degenerations :
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Figure 10. The equipotential curves G(xr,yr) = const., a) for vortex streets aligned with the Ox axis and b) for vortex
streets aligned with the Oy axis.
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Here, ρis the quantum fluid’s density, M the mass of the quantum fluid entities, d and d1 are
the elementary space intervals considered along the Oy and Ox axis, respectively.

In other words, non-differentiability and coherence of the quantum fluid due to constraints,
generate pressure along the Ox and Oy axis.

Moreover, one can show that the equation of continuity (141) is identically satisfied for both
cases of degeneration.

Let us consider a Casimir cavity consisting of the vacuum with the vortex lattice depicted above
and two metallic slabs, that constitute the plates of the cavity, placed at a distance d apart,
parallel to each other and to the xOz plane (see Fig. III.1). According to the analysis from the
previous section, one can see that if the quantum fluid is placed in a potential well with infinite
walls (the case of the Casimir cavity analyzed here, where the two plates are the constraints
of the quantum fluid), along a direction perpendicular to the walls (the Oy axis here) a coherent
structure, a vortex street forms (see Fig. III.2b). Consequently, by integrating (144a,b) with
(145a-c) over αr and βr, and using the result in the quantization rule:
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where d1 ~ m π a,d ~ n π b, with m, n = 1,2,...., one gets
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Graphically this is presented in Fig. III.3a,b for different values of the parameters m, n = 1, 2,....
and r.
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If the plates were in the yOz plane the constraints being along the Ox axis, vortex streets would
form along this axis and the result in (142a,b) with (143a-c) would have been applied, i.e. the
cases i) or ii) are identical, yet they depend on the geometry chosen.

Firstly, one can notice that the pressure py on the plates, given by (147a), stabilizes for great r
values, is always negative and an attractive force results (see Fig. 11 a), as is the case of the
Casimir force (128).

Secondly, the theory predicts, that besides the pressure py acting on the plates, there must be
yet another pressure, px (see Fig. 11 b), acting along the Ox axis and given by (147b). One can
see that this pressure annuls for great r values, and has a minimum for some values of the
parameters m, n. This result is new and should be checked by experiments.

Moreover, if one tries to compute the order of magnitude of this force, and replaces in (144a) :
ħ = 1.054 10-34 J.s, m = 9.1 10-31 kg, ρ~ 1021 cm-3, b = 1Ǻ (values specific to a bosonic gas, i.e. found
in high-Tc superconductors [46]) and d ~ 5 b (the distance between the plates), gets a value for
py ≅6.18 1010 N m-2 the same order of magnitude as the value calculated using (128), FC≅ 2.08
1010 N m-2.

As a final test, let us study the case of a Casimir cavity, as a rectangle of sides d1, d. Now, the
plates induce constraints along both Ox and Oy axis, thus correlations (vortex streets) form
along these directions and one should use the degenerations i) and ii), simultaneously.
Consequently, from (142a,b) with (143a-c) and (144a,b) with (145a-c) one gets
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Figure 11. a) Plot of the pressure py on the plates, versus the parameter r for different values of parameters m, n; b)
Plot of the pressure px versus the parameter r for different values of parameters m, n.
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At every point (x, y) there is a pressure formed of the two constraints. Consequently, adding
the pressures in (149) and (151) and using again the result in (146) (i.e. d1 ~ m π a,d ~ n π b,
where m, n = 1,2,....) one gets:
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where
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h (154)

Furthermore, we integrate (153) over xr and yr, respectively, in order to find a value of the
pressure acting on the sides of the rectangular enclosure. After some long, yet elementary
calculus, one finds:
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Plots of (155) for various values of parameters m, n = 1, 2,.... and r are depicted in Fig. III.4a,b.
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Figure 12. a) Plots of prect versus the parameter r for various values of parameters m, n = 1,2,...; b) the same plot, yet we
present here a magnification of the domain of r for highly asymmetric values of m, n (1,5 and 5,1).
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One can notice that if the two parameters m and n have close values, the force acting on the
Casimir rectangle is always negative and decreases exponentially for increasing r. For pa‐
rameters m and n (1,5 and 5,1, i.e. very asymmetric) the force has negative and positive do‐
mains (see Fig. 12 b) and increases exponentially for increasing r. Moreover, if one tries to
find the positive and negative domains, and solve (155) for m = 5, n = 5 finds prect< 0 for
0.45753 ≤r≤ 2.18565 and prect> 0 for r> 2.18565 and r< 0.45753. This result is in agreement with
the calculus of regularization using the Abel-Plana formula where E< 0 for 0.36537 ≤L/l≤
2.73686 and E> 0 for L/l> 2.73686 and L/l< 0.36537 [47].

5. Fractal approximation of motion in mass transfer: release of drug from
polimeric matrices

Polymer matrices can be produced in one of the following forms: micro/nano-particles, micro/
nano capsules, hydro gels, films, patches.Our new approach considers the entire system (drug
loaded polymer matrix in the release environment) as a type of “fluid” totally lacking inter‐
action or neglecting physical interactions among particles. At the same time, the induced
complexity is replaced by fractality. This will lead to particles moving on certain trajectories
called geodesics within fractal space. This assumption represents the basis of the fractal
approximation of motion in Scale Relativity Theory (SRT) [1, 2], leading to a generalized fractal
“diffusion” equation that can be analyzed in terms of two approximations (dissipative and
dispersive).

5.1. The dissipative approximation

In the dissipative approximation the fractal operator (42) takes the form [48, 49]:

( )( )2 1FDi
t t

Ù
Ù -¶ ¶

= + ×Ñ - D
¶ ¶

DV dt (156)

As a consequence, we are now able to write the fractal “diffusion” type equation in its covariant
form:

( ) ( )( )2 1ˆ 0FDQ Q Q i dt Q
dt t

Ù
-¶ ¶

= + ×Ñ - D =
¶

V D (157)

Separating the real and imaginary parts in (157), i.e.

∂Q
∂ t + V ⋅∇Q =0
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( )( )2 1FDQ Q-
- ×Ñ = DDU dt (158)

we can add these two equations and obtain a generalized “diffusion” type law in the form:

( ) ( )( )2 1FDQ Q Q
t

-¶
+ - ×Ñ = D

¶
DV U dt (159)

5.1.1.Standard “diffusion” type equation. Fick type law

The standard “diffusion” law, i.e.:

D Q Q
t

¶
= D

¶
(160)

results from (159) on the following assertions:

i. the diffusion path are the fractal curves of Peano’s type. This means that the fractal
dimension of the fractal curves is DF = 2.

ii. the movements at differentiable and non-differentiable scales are synchronous, i.e.
V =U ;

iii. the structure coefficient D, proper to the fractal-nonfractal transition, is identified
with the diffusion coefficient, i.e.

D ≡D.

5.1.2. Anomalous “diffusion” type equation. Weibull relation

The anomalous diffusion law results from (IV.4) on the following assumptions:

i. the diffusion path are fractal curves with fractal dimension DF ≠2;

ii. the time resolution, δt, is identified with the differential element dt, i.e. the substitu‐
tion principle can be applied also, in this case;

iii. the movements at differentiable and non-differentiable scales are synchronous, i.e.
V =U .

Then, the equation (IV.4) can be written:

( )( )2 1FDQ Q
t

-¶
= D

¶
D dt (161)

In one-dimensional case, applying the variable separation method [50]
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( ) ( ) ( ),Q t T t X= ×x x (162)

with the standard initial and boundary conditions:

( ) ( ) ( ) ( ),0 0, , 0, 0, ,0Q t Q t L Q x F x x L= = = £ £ (163)

implies:

( )( ) ( )
( )
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( ) 22
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22 1

1 , 21 1,  1
FD

dT t d X x nm
dt LT t X x dx
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æ ö
= = - = -ç ÷

è ø
=

D dt
(164)

where L is a system characteristic length, m a separation constant, dependent on diffusion order
n.

Accepting the viability of the substitution principle, from (164), through integration, results:

( )
22ln FDT m= - òD dt (165)

Taking into consideration some results of the fractional integro-differential calculus [51, 52],
(165) becomes:
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Moreover, (166a,b) can be written under the form:

( )
2

22
exp

1

FDmT t t

é ù
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The relative variation of concentrations, time dependent, is defined as:
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( ) tQ Q
T t

Q
¥

¥

-
= (168)

where Qt  and Q∞ are cumulative amounts of drug released at time t and infinite time.

From (167) and (168) results:
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equation similar to Weibull relation 
Qt
Q∞

=1−exp(−at b), a and b representing constants specific

for each system that are defined by:

22
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D D (170)

We observe that both constants, a and b, are functions of the fractal dimension of the curves
on which drug release mechanism take place, dimension that is a measure of the complexity
and nonlinear dynamics of the system. Moreover, constant a depends, also, on the “diffusion”
order n.

5.1.3. The correspondence between theoretical model and experimental results

The experimental and Weibull curves for HS (starch based hydrogels loaded with levofloxacin)
and GA (GEL-PVA microparticles loaded with chloramphenicol) samples are plotted in Fig. 13.

The experimental data allowed to determine the values of Weibull parameters (a and b), and
implicitly, the value of the fractal dimension from the curve on which release takes place [55].

These values confirmed that the complexity of the phenomena determines, also, naturally, a
complex trajectory for the drug particles. Most values are between 1 and 3, in agreement with
the values usually accepted for fractal process; higher values denotes the fact that, either fractal
dimension must be redefined as function of structure “classes”, or the drug release process is
complex, involving many freedom degrees in the phase space [56]. Another observation that
can be made based on this results is that the samples with DF 2 manifests a “sub-diffusion”
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and, in the other, with DF 2, the release process is of super-diffusion, classification in con‐
cordance with the experimental observation that this samples exhibit a ”faster” diffusion, with
a higher diffusion rate, in respect with the other samples [55].

5.2. The dispersive approximation

Let us now consider that, in comparison with dissipative processes, convective and dispersive
processes are dominant ones. In these conditions, the fractal operator (42) takes the form:

( ) ( )( )3 1 32ˆ
3

FDD

dt t

Ù
-¶ ¶

= + ×Ñ + Ñ
¶

V D3 2 dt (171)

Consequently, we are now able to write the diffusion equation in its covariant form, as a
Korteweg de Vries type equation:

( ) ( )( )3 1 32ˆ 0
3

FDDQ Q Q Q
dt t

Ù
-¶ ¶

= + ×Ñ + Ñ =
¶

V D3 2 dt (172)

If we separate the real and imaginary parts from Eq. (172), we shall obtain:

( )( )3 1 32 0 a
3

0 b

FDQ Q dt Q
t

Q

-¶
+ ×Ñ + Ñ =

¶
- ×Ñ =

DV

U

3 2
(173)

By adding them, the fractal diffusion equation is:
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Figure 13. Experimental and Weibull curves for HS (left plot) and GA samples (right plot).
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( ) ( )( )3 1 32 0
3

FDQ Q dt Q
t

-¶
+ - ×Ñ + Ñ =

¶
DV U 3 2 (174)

From Eq. (173b) we see that, at fractal scale, there will be no Q field gradient.

Assuming that |V −U | =σ ⋅Q with σ =constant (in systems with self structuring processes,
the speed fluctuations induced by fractal - non fractal are proportional with the concentration
field [55]), in the particular one-dimensional case, equation (174) with normalized parameters:

0

, a
, b

c

t
kx
Q
Q

t w

x

=

=

F =
(175)

and normalizing conditions:

( )( )3 12 3
0 2 1

6 3

FDdt kQ ks
w w

-

= =
D3 (176)

take the form:

6 0t x xxxf f f f¶ + ¶ + ¶ = (177)

In relations (175a,b,c) and (176) ω corresponds to a characteristic pulsation, k  to the inverse of
a characteristic length and Q0 to balanced concentration.

Through substitutions:

( ) ( ), , a

b

w

u

q f t x

q x t

=

= -
(178)

eq.(177), by double integration, becomes:

( )2 3 21
2 2

uw F w w w gw hæ ö¢ = = - - - -ç ÷
è ø

(179)
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with g, h two integration constants and u the normalized phase velocity. If F (w) has real roots,
equation (177) has the stationary solution:

( ) ( )
( )

2
0, , 2 1 2 ;

2
E s a us a a cn s

sK s
f x t x t x

é ùæ ö æ ö
= - + × - +ç ÷ ê úç ÷ç ÷ç ÷ ê úè øè ø ë û

(180)

where cn is Jacobi’s elliptic function of s modulus [41], a is the amplitude, ξ0̄ is a constant of

integration and

( ) ( )
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0
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f f
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-
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(181)

are the complete elliptic integrals [41].

 

Φ

2
tx u

-

s

Figure 14. One-dimensional cnoidal oscillation modes of the field Φ
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Parameter s represents measure characterizing the degree of nonlinearity in the system.
Therefore, the solution (180) contains (as subsequences for s =0) one-dimensional harmonic
waves, while for s →0 one-dimensional wave packet. These two subsequences define the non-
quasi-autonomous regime of the drug release process [48, 49, 55], i.e. the system should receive
external energy in order to develop. For s =1, the solution (180) becomes one-dimensional
soliton, while for s →1, one-dimensional soliton packet will be generated. The last two imply
a quasi-autonomous regime (self evolving and independent [48]) for drug particle release
process [48, 49, 55].

The three dimensional plot of solution (180) shows one-dimensional cnoidal oscillation
modes of the concentration field, generated by similar trajectories of the drug particles (see
Fig. 14). We mention that cnoidal oscillations are nonlinear ones, being described by the el‐
liptic function cn, hence the name (cnoidal).

It is known that in nonlinear dynamics, cnoidal oscillation modes are associated with non‐
linear lattice of oscillators (the Toda lattice [56]). Consequently, large time scale drug particle
ensembles can be compared to a lattice of nonlinear oscillators which facilitates drug release
process.

5.2.1. The correspondence between theoretical model and experimental results

In what follows we identify the field Φ from relation (180) with normalized concentration
field of the released drug from micro particles.

For best correlation between experimental data and the theoretical model (for each sample)
we used a planar intersection of the graph in Fig. 14 [57], in order to obtain two-dimensional
plots.

The highest value of the correlation coefficient (for two data sets: one obtained from the pla‐
nar intersection, the other from experimental data) will represent the best approximation of
experimental data with the theoretical model.

Our goal was to find the right correlation coefficient which should be higher than 0.6−0.7,
in order to demonstrate the relevance of the model we had in view. Figs. 15 show experi‐
mental  and theoretical  curves that  were obtained through this  method,  where R2  repre‐
sents  the  correlation  coefficient  and  η  a  normalized  variable  which  is  simultaneously
dependent on normalized time and on nonlinear degree of the system (s parameter). Geo‐
metrically, η  represents the congruent angle formed by the time axis and the vertical in‐
tersection plane.
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Figure 15. The best correlations among experimental and theoretical curves (blue line – experimental curve, red line –
theoretical curve).
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6. Conclusions

i. Scale relativistic framework is implemented by passing to a fluid-like description (the
fractality of space), considering the velocity field a fractal function explicitly depend‐
ing on a scale variable (the fractal geometry of each geodesic) and defining two fractal
velocity fields which are fractal functions of the scale variable dt (the non-differenti‐
ability of space).

An application of these principles to the motion equation of free particles leads to the
occurence of a supplementary TISE (time independent, Schrödinger-type equation)
and the following interesting results :

• ζ(x) behaves like a wave function on small distances (the same magnitude as the
Compton length);

• for γ(x) a velocity potential well, U(x) is quantified;

• for the harmonic oscillator case, the limit velocity χ has discrete values, and only
the first value is less than the velocity of light, c;

• in the double-well velocity potential, the complex velocity U(x) is again quantized,
this time the levels are equally spaced at a value of ħ ln2;

• if one takes ϕR = ϕL = π/2, singularities are obtained for x - x0 = Λ/2 and for x - x0 =
Λ/4 one gets minima for U(x)= c in a double-well velocity potential;

• since we considered here the one-dimensional case we get the solution of a single
row of rectilinear vortices, which has already been referred to as characterizing a
surface of discontinuity;

• a typical bound state in a double-well has two classically allowed regions, where
the velocity potential is less than the limit velocity; these regions are separated by
a classically forbidden region, or barrier, where the velocity potential is larger than
the limit velocity;

• for tunneling case, there is a nonzero transmission, reflection coefficient, which leads
to the proof of the transport of the V field by the motion of the Newtonian fluid with
velocity U(x), on small distances (of the order of magnitude of Compton length).

ii. We analyzed vacuum from the  Casimir  cavity,  considered a  non-differentiable,
Newtonian, 2D non-coherent quantum fluid, by writing the Navier-Stokes equations
in scale relativity theory’s framework. As a result the following results may be extracted:

• the (vector) velocity field V and/or the (scalar) density field ρ behave like a wave
function on small distances (the same magnitude as the Compton length);

• the (vector) velocity field V and/or the (scalar) density field ρ are transported by
the motion of the Newtonian fluid with velocity U, on small distances (the same
magnitude as the Compton length);

Also, the entities assimilated to vortex-type objects from the Casimir cavity, initially
non-coherent, become coherent due to constraints induced by the presence of walls
and generate pressure along the Ox and Oy axis, thus one can stress out :
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• the pressure py on the plates, is negative and an attractive force results, as is the
case of the Casimir force;

• besides the pressure py acting on the plates, there must be yet another pressure, px,
acting along the Ox axis;

• the order of magnitude of this force, py ≅ 6.18 1010 N m-2 is the same with the value
of the classical Casimir force calculation, FC ≅ 2.08 1010 N m-2;

• in the case of the Casimir cavity from inside a rectangular enclosure of sides d1, d,
the plates induce constraints along both Ox and Oy axis, and one can notice that if
the two parameters m and n have close values, the force acting on the Casimir
rectangle is always negative and for parameters m and n very asymmetric the force
has negative and positive domains, in agreement with the calculus of regulariza‐
tion using the Abel-Plana formula.

iii. Using fractional calculus, the fractal “diffusion” equation give rise to Weibull relation,
a statistical distribution function of wide applicability, inclusively in drug release
studies. In this approach, we consider all the simultaneous phenomena involved,
equivalent with complexity and fractality, offering, in this way, a physical base to this
equation and for its parameters. They are functions of fractal dimension of the curves
on which drug release mechanism takes place, dimension that is a measure of the
complexity and nonlinear dynamics of the system, dependent on the diffusion order.

This theory offers new alternatives for the theoretical study of drug release process (on large
time scale) in the presence of all phenomena and considering a highly complex and implicitly,
non linear system. Consequently, the concentration field has cnoidal oscillation modes,
generated by similar trajectories of drug particles. This means that the drug particle ensemble
(at time large scale) works in a network of non linear oscillators, with oscillations around
release boundary. Moreover, the normalized concentration field simultaneously depends on
normalized time non linear system (through s parameter).
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