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1. Introduction

Theoretical and experimental investigations of size effects have made a substantial contribu‐
tion to the development of nanophysics and nanochemistry. However, a great deal needs to
be done in this field. Experimental results are not necessarily consistent with the traditional
concepts. In particular, the melting temperature of small nanoparticles unexpectedly turned
out to be higher than the melting temperature of a macroscopic sample of the same chemical
composition [1].

It is this chemical composition of a macroscopic system that determines its melting temperature
Tm, the specific heat of melting Qm, and the entropy of melting Sm. These quantities do not
depend on the number M of atoms (in the limit, M→∞). This statement ceases to be valid for
relatively small systems. In the given case, it is necessary to take into account the dependences
of the quantities Tm, Qm, and Sm on the number M of atoms. Moreover, as the size of the system
decreases, the interpretation of the physical quantities Tm, Qm, and Sm should be refined. Indeed,
one molecule, for example, the hydrogen molecule, cannot melt, because its dissociation occurs
with an increase in the temperature. In this respect, it is advisable to analyze the structural
transformations in nanosystems within a unified approach of the first principles of quantum
mechanics and statistical physics.

2. Quasiclosed ensembles

In the framework of classical physics each structural modification is set by the vector

( )1 2 , ,  ... , ... ,i M=R r r r r (1)
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where ri are the radius vectors of all atomic nuclei of the polyatomic system. But the atomic
nucleus is not a mathematical point whose position is unambiguously determined by the vector
ri. The motion of microparticles is not characterized by the trajectory ri(t). One can speak solely
about the sites of their localization. In the case of condensed systems the size of the sites of atomic
nucleus localization is much smaller than the interatomic distances and is a tenth-hundredth
of an angstrom. Therefore, one of the ways to make a brief quantum-mechanical description of
the structure R consists in setting the coordinates ri (1) of the centers of these sites.

As a rule, numerous quantum states forming a quasiclosed ensemble correspond to each
memorized macrostate (to each structural modification of Rk). This raises the question about
the number G(0) of different quasiclosed ensembles.

The magnitude of G(0) cannot be evaluated without application of quantum-mechanical
methods. The point is that the components ri of the vector R (1) can vary continuously, i.e.
there exists a continuum of various structures (different vectors Rk), which cannot even be
numbered with the help of the index k, if it has solely integer values. This hampers the
determination of the number G(0) of different structural modifications. In a quantum-mechan‐
ical description of a structure the superfluous detailing is useless altogether since according
to quantum mechanics, a system is usually localized not at one point Rk but in a certain volume
(cell Ωk). The set of all cells Ωk is countable. It is this circumstance that allows one to speak
about the number G(0) of different structural modifications of the condensed system with a
fixed chemical composition.

In order to find the numerical value of G(0) it is necessary to consider primarily the problem of
distribution of quantum states over different quasiclosed ensembles. Some of these are formed
by the microstates corresponding to one of the free energy minima. The latter holds only for
stable and metastable systems. In the overwhelming majority of cases we are dealing however
the with nonequilibrium systems, the thermodynamic potentials of which are far from being
extreme.

Thus structural modifications of the vitreous state are not characterized by the Gibbs energy
minimum. Each of them is described by its intrinsic quasiclosed ensemble. Their macroscopic
properties are invariable because a quite definite structural modification corresponds to each
ensemble. It is for this reason that glasses are kinetically frozen nonequilibrium systems, the
properties of which virtually do not change over the long time interval tmax. The same may also
be said about the overwhelming majority of noncrystalline substances, many of which are
already widely used for recording information.

The class of various quasiclosed ensembles (different macrostates memorized by the system
with a fixed chemical composition) is extraordinarily broad. Their number is substantially
larger than the number of Gibbs energy minima.

All atomic configurations Rk (1) of an ideal monatomic gas are equiprobable. Condensed
systems are characterized by the totally opposite situation. Therefore, it is not surprising that
some of their structural modifications may be frozen (memorized) for a long time interval tmax.
Let us illustrate what has been said above in the framework of the adiabatic approximation.
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3. Adiabatic approximation

The adiabatic approximation [2] is based on the considerable differences in the masses of electrons
and nuclei, which makes it possible to describe their motions separately well. Being light particles,
the electrons `succeed' in adapting themselves to the instantaneous configuration R (1) of the
atomic nuclei, the latter in turn `notice' only the averaged disposition of electrons.

In the zero approximation the atomic nuclei are regarded to be at rest [R = const (1)]. In this
case, the wave function Φj(R, X) of the j-th stationary quantum state of the electron subsystem
satisfies the equation [3]

µ ( ) ( ) ( )( ),  , ,j
j M jH UF = FR X R R X (2)

where Ĥ  is the Hamiltonian of electrons at fixed nuclei, which represents the sum of the total
Coulomb energy of the interaction of atomic nuclei and electrons, the operator of the spin-
orbital interaction of electrons and the operator of the kinetic energy of electrons; X is the sum
of spatial and spin variables of all electrons of the system under consideration; U

M
( j) (R) is the

adiabatic electron term (Fig. 1), which in the case of a polyatomic system (M>3) usually has a
great number of different physically non-equivalent minima Rk [4]. The Hamiltonian Ĥ  does
not contain any operator of the kinetic energy of atomic nuclei and, consequently, is the
operator of the energy of the system under consideration for the fixed atomic configuration R.

When the motion of atomic nuclei does not induce any transitions between different electronic
states, the function U

M
( j) (R) (2) may be interpreted as the potential energy of the nuclei

corresponding to the j-th electronic state. In this case their motion takes place in the potential
field of U

M
( j) (R).

Therefore, the nuclear wave function χj(R, E) satisfies the Schrödinger equation [3]

µ ( ) ( ) ( )( )  ,( )    ,  ,j
j

M j ET EU Ec c=+ R R R (3)

in which in contrast to (2), there is no variable X corresponding to the electron subsystem. Here,
T̂ is the operator of the kinetic energy of atomic nuclei; E is the energy of the stationary quantum
state. The chemical composition n determines unequivocally the explicit form of equations
(2) and (3). The components of the vector n are the relative concentrations of atoms of each
species which form the system under consideration.

Their different solutions describe various modifications of a substance with a fixed composi‐
tion. This can serve as the basis for classification of these solutions. Thus in the case of selenium
some solutions may be attributed to the fluid state, others - to definite crystalline modifications,
to amorphous modifications, to the vitreous state, to films, etc. However, it is most advisable
to base the discussed classification of solutions of equations (2) and (3) on the structure R (1)
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because the information about individual peculiarities of a polyatomic system is eventually
stored in the mutual disposition of its atomic nuclei. Any structural modification (e.g., the k-
th modification) which is preserved at least over the time interval tmax is described by the
wave functions Φj(R, X) (2) and χj(R, E) (3) localized near the point Rk. (Fig. 1). The diversity
of the latter actually determines all the states belonging to the k-th quasiclosed ensemble.

Usually one or a series of potential Rk minima correspond to the points U
M
( j) (R), near which

the motion of one or other structural modification takes place. In order to estimate the number
of such points (the number G(0) of different quasiclosed ensembles), it is, as a rule, sufficient to
consider only the minima of the adiabatic electron term U

M
(0) (R) corresponding to the ground

(j = 0) state of the electron subsystem1. 

The point is that the lifetimes τe of most excited states of the electron subsystem are relatively
short (τe << tmax). Therefore, these states alone cannot form a quasiclosed ensemble, in the
framework of which the k-th structural modification can be described over a long time interval
tmax. Its preservation is favored by the potential barriers surrounding the minimum Rk of the
adiabatic electron term U

M
(0) (R) (Fig. 1). If they are sufficiently high, then even the low-energy

quasi-steady [5] states localized in the potential well Rk under consideration have larger
[compared to tmax ] lifetimes τl which satisfy the inequalities

 

 

 

)(
MU

0 (R) 

R1 Ri Rk 

Figure 1. Adiabatic electron term U
M
(0) (R). This figure is rather conditional because for polyatomic systems (M > 3) the

function U
M
(0) (R) is set, in conformity with (1), in the multidimensional space.

   r max lt tt << << (4)

where τr is the relaxation time of the phonon subsystem, which is usually appreciably shorter
than the time tmax required for the preservation of structural modifications.

1 Each minimum of the function U
M
(0) (R) sets one of the equilibrium configurations Rk. Crystalline nanoparticles

correspond to the deepest minima (potential wells). Most minima correspond to different noncrystalline structures.
Transition from one potential well to another (Ri → Rk) means in the general case the rearrangement of all of the M atomic
nuclei of the system. The adiabatic electron term U

M
(0) (R) does not depend either on temperature or on the thermal

prehistory, etc. According to (2), it is unequivocally determined only by the chemical composition. Various scenarios of
the system behavior consist in the sequence of passage over potential wells [the minima of the function U

M
(0) (R)].
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Consequently, quasiclosed ensembles may be formed by the stationary and quasi-steady [5]
states with large lifetimes τl (4). Usually these are low-energy states, which describe vibrational
motion of atomic nuclei near one of the minima of the adiabatic electron term U

M
(0) (R).

Transitions between these states are not accompanied by any substantial changes in the Rk

structure [6]. The k-th structural modification is preserved when only such transitions take
place.

Thus, in order to preserve a polyatomic system, an exact copy and also the recorded informa‐
tion, it is sufficient that all changes occurring in the system do not extend outside the limits of
one and the same quasiclosed ensemble. It is this ensemble that characterizes the properties
of the system displayed during informational interaction [7].

The magnitude of G(0). can be estimated proceeding from the number J(n, M ) of different
minima of the potential U

M
(0) (R). This approach allows a relatively simple derivation of

numerical estimates as the function J(n, M ) depends on only two arguments and, in addition,
its determination is actually based on equation (2) when j= 0. This unambiguous mathematical
definition is useful not only for the problem of information copying and recording but also for
considering a wide range of other issues [4].

4. Estimation of the number G(0) of different quasiclosed ensembles

For the number J(n, M ) of different physically non-equivalent local minima of the adiabatic
electron term U

M
(0) (R), which corresponds to the ground electronic state of the electroneutral

system consisting of M atoms, the following asymptotic formula [4] is valid as M→∞

( ), ~ ,1   lnJ M
M

ann (5)

where αn is the positive parameter dependent solely on the chemical composition n. The
components n

i
 of the vector n are the relative concentrations of atoms of each type.

It follows from (5) that

J (n, M ) =  exp(αnM  +  о(M ) ) ,  (6)

the function о(M) satisfying the condition lim
M →∞

о(M)/M = 0. In other words, the number J(n, M )

of different physically nonequivalent minima of the U
M
(0) (R) potential exhibits a rapid expo‐

nential growth with the increasing number M of atoms forming the system with a fixed (n =
const) chemical composition. The numerical values of αn in relationship (6) usually differ from
ln2 ≈ 0.69 by smaller than one order of magnitude.
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This fact is not surprising because the magnitude J(n, M ) (6) takes into account all potentially
possible structural modifications Rk (1) of a polyatomic system. These are structures of
nanoparticles, liquid, glass, perfect crystal, crystals with different concentrations of particular
defects, polycrystals, amorphous substances, amorphous and vitreous films, glass-ceramics
and many others, including the structures of microheterogeneous materials storing the
recorded information. These structures differ from each other not only in the location of
particular defects, holes, etc. There exist other differences. For example, there are six equili‐
brium positions for each oxygen atom in the structure of β cristobalite (Fig. 2, positions 1–6) [6].

6

1

45

Si O, 

r1

r2 

rk 

2

3

1

Figure 2. Structural fragment of β cristobalite (ri are the radius vectors of equilibrium atomic positions).

The transitions between them are not accompanied by the formation (disappearance) of
defects, holes, dangling chemical bonds, etc. Each structure thus formed is not an exact copy
of other structures [7]. These configurations are also taken into account by relationship (6).

The diversity of elementary configurational excitations particularly involves small structural
transformations. As a result of these transformations, the transition from one minimum of the
adiabatic electronic term U

M
(0) (R) to another minimum occurs through a correlated rearrange‐

ment of many atoms involved in a particular nanofragment. In this case, the distances between
any pair of neighboring atoms change insignificantly as compared to the interatomic distances
(Fig. 3) and, as a consequence, the short-range order is retained.

Specifically, small structural transformations occur in the glass transition range [4] (upon
softening of a glass and melting of a crystal) when the coordination numbers remain virtually
unchanged. Uncorrelated small structural transformations that proceed in different nanofrag‐
ments of the melt upon its rapid cooling lead to generation of internal stresses in the resulting
glass.
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The diversity of minima of the function U
M
(0) (R) makes it possible to explain the possibility to

vary properties of a material of the same chemical composition through preparation of its
various modifications described by different quasiclosed ensembles.

Number G(0) of different quasiclosed ensembles satisfies the following relations :

lnG (0)(tmax, n, M )≤ lnJ (n, M ) =  (αnM + о(M ) )≤ (В ×M + о(M ) ),   (7)

where constant B is determined by the identity

sup
n

B aº n (8)

It would not be particularly difficult to find the exact value of constant B (8) if the solutions of
equation (2) at j=0 were known for the systems of various chemical compositions. Since this is
not the case, one has to use model approaches. In their frameworks it is possible to calculate
numerical values of the parameter αn (5), (8) for specific systems. The results of such compu‐
tations [4] support the following estimate:

3B » (9)

It is difficult to investigate thoroughly all configurations of the polyatomic system, because
their number is exponentially large [see relationship (6)]. In this respect, it is necessary to use
model approaches. A model based on the Gaussian distribution is convenient for constructing
the statistical thermodynamics of melting and softening of nanoparticles.

 

 
 
 
 
 
 
 

Figure 3. Schematic diagram illustrating a small structural transformation: ○initial and ●final positions of sites of
atomic nuclei in a nanofragment.
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5. Model spectrum for the description of configurational excitations

In order to describe any equilibrium process, including the melting, in the framework of
statistical thermodynamics [8], it is sufficient to know the time dependence of the statistical
sum Z, which is uniquely determined by the temperature T, the energies Ej of stationary
quantum states, and the multiplicity gj of their degeneracy; that is

( )/  .j
j

jZ exp E Tg k= -å (10)

Here, k is the Boltzmann constant and E j < Ej +1.. This holds true for any system with a fixed
number of particles from one elementary particle to inhomogeneous (specifically, multiphase)
media.

The energy spectrum {Ej, gj} depends on the number M of atoms. Since the energy spectrum
of a macroscopic system ( M ≥ 1020 ) differs from that of a nanoparticle (108 ≥ M ≥ 10), the
processes accompanying the melting of a macroscopic sample and a nanoparticle of the same
chemical composition cannot not be completely identical. However, the specific features of
these processes have much in common: in both cases, upon melting, the structure undergoes
transformations, the system becomes microscopically labile, and the entropy and the internal
energy increase abruptly.

In expression (10), the summation is performed over all possible configurations corresponding
to relationship (6) and different vibrational states. By using the known analytical expression
for the statistical sum of an oscillator [8], the sum of all terms associated with the i-th config‐
uration Ri can be represented in the form g̃ iexp(E

i
/kT).

This enables us to change over to the model partition function with due regard only for the
configurations in which each configuration is included g̃ i/g̃1 times, where g̃1 corresponds to
the configuration with a minimum energy2. The ratios g̃ i/g̃1actually take into account the role
of the phonon subsystem in the melting.

The energies Ei=U
M
(0) (Ri) of the equilibrium configurations (2) of the polyatomic system are

conveniently calculated per atom; that is,

/   i iE Me = (11)

The spectrum of numerical values of the energies εi (fig.4) depends on the number of atoms
M. The level with the minimum energy E1 = 0 is assumed to be nondegenerate: g1 = 1. The
distribution of levels located in the energy range between Mεg and Mεc is approximated by the
Gaussian distribution

2 In this case, the number of configurations can be determined from formula (6), in which the numerical value of the
parameter αn changes insignificantly.
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N (Е)  ~
σ(E −E0)

γ 2πM
exp{M αn –  0.5(

E −M h
γ M

)
2}     (12)

Here, E0 is the minimum energy necessary for transforming the system from the ground state
into the excited state, σ(E – E0) is the step function,

1/2 0.5 – )2(  ) / (c g ng e e a= (13)

( 0.5 .)g ch e e= + (14)

From the distribution density N(E) (12), we derive the following analytical expression for the
statistical sum (10) (statistical integral)

Z =1 + {expM (αn –
h

kT +
0.5γ 2

(kT )2 )}Ф(
M h−E0

γ M
−

γ M
kT ) / Ф(

M h−E0

γ M
), (15)

where Φ(x) = 
1
2π ∫

−∞

x

exp(−0.5x 2)dx is the normal distribution function. The analytical expres‐

sion (15) permits us to analyze not only the dependence of the statistical sum on the number
M of atoms. The corresponding dependences can be obtained for all quantities that are
uniquely defined by the statistical sum Z. In particular, these are the melting temperature, the
heat of melting, and the entropy of melting.

In the limit M→ ∞, the melting temperature Tm is given by the expression [4]

2) 4  ( /g cmT kae e= + n (16)

In the same limit, the stepwise increments of the energy Δε (fig.4) and the entropy Δs upon
melting per atom are represented by the formulas

1/2 ,( )g ce e eD = (17)

1/2 2( ) ( 4 .)gn cg cs k e e ke ea a-+D = £ n (18)

It should be noted that, at the melting temperature Tm, the following inequalities are satisfied:
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1/2
 /    / ,   / 4  ( ) }.{  c n m g c n ck T max k ke a e e a e a³ ³ n (19)

Before melting, the energy is minimum. Without loss of generality, this energy can be taken
equal to zero. In the course of melting, there occurs a stepwise transition within the energy
band [εg, εc], which involves energies of the majority of the equilibrium configurations (fig.4).
The width (εc - εg) of this band is proportional to the root-mean-square deviation of the
numerical values of the energies ε of different configurations.

Upon melting, the structure undergoes transformations. Furthermore, the nanoparticle
becomes labile. In particular, the nanoparticle changes in shape, because, after melting, there
occur spontaneous transitions between the structural modifications with close energies in the
energy band [εg, εc] (fig.4).

The notion of the “melting of nanoclusters” has already been used [1]. It is obvious that the
processes accompanying the melting of a macroscopic sample and a nanoparticle cannot not
be completely identical. However, the specific features of these processes have much in
common. In both cases, upon melting, the structure undergoes transformations, the system
becomes labile, and the entropy and the internal energy increase abruptly.

According to relationships (16-18), the melting temperature Tm can be described by one more
expression

/ ,mT se= D D (20)

which coincides with the known expression that relates the heat Δε, the entropy Δs, and the
temperature Tm of the transition [9]. Note that, in the case of the macroscopic system, the heat
of melting Δε and the entropy of melting Δs per atom in relationship (20) are independent of
the number M of atoms forming the macroscopic system, whereas the opposite situation is
observed for the nanoparticle. The spectrum of energies ε of equilibrium configurations can
even radically change (fig.4).

For example, the two-atom system (M = 2) has only one equilibrium configuration J(n, 2 )=1
and the energy band [εg, εc] is absent. Since the structure should change upon melting (there
should occur a transition from one equilibrium configuration to another equilibrium config‐
uration), the melting of two-atom systems, in principle, is impossible.

However, the above concept is inapplicable to relatively small nanoclusters consisting of 13
atoms with J(n, 13 )= 1478 different configurations (different energy levels) [10]. In this case,
the energy spectrum can be described by the Gaussian distribution but with parameters
different from those used for the macroscopic system.

Relationships (16)–(20) are also valid in the mesoregion where the number of atoms M is larger
than two but is not sufficient for the applicability of the asymptotic relationship (5), which
allows one to estimate the number of equilibrium configurations of the macroscopic system.
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For nanoclusters, relationships (16) and (18) should contain the parameter α̃ = {lnJ(n, М)-1} /
M instead of the parameter αn involved in relationship (5). In the case of a two-atom system,
we have the parameter α̃ = {ln(J(n, 2) – 1)}/2 = – ∞. For a nanocluster consisting of 13 atoms, we
should use the parameter α̃ = {ln(J(n, 13) – 1)}/13 ≈ 0,56. The change in sign of the parameter α̃
indicates that, for a relatively small number of atoms M, which satisfies the inequality M > 2,
the parameter α̃ can turn out to be close to zero.

Therefore, the numerical value of the parameter in the mesoregion can appear to be consid‐
erably smaller than the parameter αn involved in relationship (5) and used for calculating the
melting temperature of the macroscopic sample according to relationship (16). This circum‐
stance is responsible for the observed increase in the melting temperature of sufficiently small
nanoparticles as compared to the macroscopic sample.

Since the parameter αn(α̃) is equal to the natural logarithm of the number of energy levels
(equilibrium configurations) in the energy band [εg, εc] (fig.4), the product kαn in relationship
(18) gives an estimate from above for the jump Δs in the configurational entropy upon melting.
In the case where αn(α̃) → 0, we have Δs → 0. In other words, the decrease in the parameter
αn(α̃), according to relationship (18), leads to a decrease in the entropy of melting Δs and,
consequently, to an increase in the melting temperature Tm in accordance with relationship (20).

Therefore, generally speaking, the melting temperature of macroscopic samples can be lower
than the melting temperature of nanoclusters of the same chemical composition. Moreover,
there are other specific features of melting of nanoparticles. Particularly, this refers to the
melting temperature range ΔTm, which, unlike the corresponding range for macroscopic
systems, is not a small quantity.

6. On the temperature ranges of melting and softening

A decrease in the number of atoms M results in an increase in the temperature range ΔTm of
the phase transition [10]; that is,

( ) °( )2 10  /  .m mT T nln MaD » (21)

Here, n is a natural number which, at the boundaries of this range, determines a low probability
p = 10−n that the system is in the liquid state before melting and in the solid state after melting,
respectively.

At n = 3 and α̃= ln2, expression (21) can be represented in the form

20.m

m
M

T
T

»
D

(22)
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As follows from formula (22), the quantities ΔTm and Tm for nanoparticles containing of the
order of ten atoms are comparable in magnitude. By contrast, the temperature range ΔTm for
macroscopic systems (M ~ 1023) is nearly equal to zero.

According to relationship (22), the temperature range ΔTm is relatively small

210 .m

m

T
T

-<<
D

(23)

only for systems involving a considerable number of atoms

 2000.M >> (24)

Otherwise, the quantity ΔTm should not be ignored. Therefore, specific analogy can be drawn
between the melting of nanoparticles and the softening of glasses.

Actually, the microscopic mechanism of glass softening is associated with the independent
structural excitations in medium-range order nanofragments. Their initial structures, as a rule,
are not exact copies of each other [7]. As a consequence, since the glass softening is a thermo‐
dynamically nonequilibrium irreversible process, it occurs in a specific temperature range ΔTg

rather than at a fixed temperature Tg.

Therefore, the glass softening and the transition of the nanoparticle to the microscopically
labile state proceed in a particular temperature range rather than at a fixed temperature. Both
these phenomena are responsible for the inelastic compliance of the system. This manifests
itself as a viscous flow for macroscopic systems and a possibility of changing the shape due to
the spontaneous transitions between different structural modifications with close energies
within the band [Mεg, Mεc] (Fig. 4) for nanoparticles.

The transition of the nanoparticle to the microscopically decrease in the temperature, the
nanoparticle structure does not always revert to the initial state and, as in the case of the glass
transition, one of the intermediate structures can turn out to be frozen. The question arises of
whether the transition of the nanoparticle to the microscopically labile state in similar situa‐
tions can be always interpreted as softening.

7. Admissible states

The freezing is a thermodynamically nonequilibrium process. The concept of “admissible
states” [8] is useful when constructing the statistical thermodynamics of these processes. Not
all states can occur for the observation time of a specific system. The states in which SiO2 has
a crystalline form are inadmissible at low temperatures if the object was initially in the vitreous
form: this compound in experiments at low temperatures does not transform into quartz
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during our life. We assume that all quantum states are admissible if they are not excluded
according to the definition of the system or the chosen time scale [8].

Generally speaking, the spectrum of admissible states changes depending on the prehistory
of the formation of the polyatomic system. The same holds true for numerical values of the
parameters γ, h, αn, εc, and εg (12)–(14) used for approximating the spectrum of admissible
states. Let us assume that the initial state of the nanoparticle is in the band [Mεg, Mεc] (Fig. 4)
and the state with the minimum energy ε = 0 is inadmissible3. Then, the spectrum of admissible
states is approximated only by distribution (12). In this case, we have εg = 0 and the heat of
melting Δε according to relationship (17) is equal to zero. As a consequence, we cannot speak
about the melting, even though the thermodynamically nonequilibrium transition to the
microscopically labile state is possible upon heating. This transition occurs in the temperature
range ΔTg at the softening temperature Tg, which can be estimated as follows [4]:

1/2~ / 2( ( ) )g nT kg a (25)

The softening temperature Tg and the boundaries of the softening range ΔTg are kinetic
parameters and depend on the prehistory of the compound. By contrast, the melting is a
thermodynamically equilibrium process, which proceeds at a fixed temperature. As a result
of melting, the structure of the macroscopic system is radically changed from crystalline to
disordered. Upon softening, the short-range order in the atomic arrangement is retained.
Consequently, the structure undergoes an insignificant transformation. Correspondingly, a
change in the internal energy is also small and, therefore, the notion of “the heat of softening”
does not exist.

3 The lower level corresponds to the crystal. This level is excluded when constructing the statistical thermodynamics of
glasses and glass-forming melts. This level is not used for describing the softening and glass transition.
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Figure 4. Spectrum of energies ε per atom for equilibrium configurations of the polyatomic system.
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In the case of macroscopic systems, the above criteria allow us to distinguish rather simply the
melting from softening. By contrast, not all transitions of the nanoparticle from the solid state
to the microscopically labile state can be uniquely interpreted as melting or softening, because
there are intermediate situations.

Specifically, these situations involve a thermodynamically equilibrium transition that results
in an insignificant change in the structure (the short-range order is retained). In this case, the
jump Δε (17) in the internal energy

–2 10 eVeD << (26)

is small as compared to the heat of melting of the macroscopic system of the same chemical
composition per atom. It is unlikely that this transition should be treated as melting. However,
since the transition under consideration is thermodynamically equilibrium, it is not advisable
to identify this transition with the softening.

Eventually, it is important to know the spectrum of admissible states and the parameters γ,
h, αn, εc, and εg (12)–(14). This makes it possible to reveal the energy characteristics of elemen‐
tary structural excitations of the nanoparticle. In particular, the transitions between the
equilibrium configurations closest in energy in the band [Mεg, Mεc] (Fig. 4) are accompanied
by the absorption (emission) of longwavelength photons [4]. Their frequencies can be esti‐
mated from the relationship

( ) ( )14 ~  2 .10 –  – .c gHz M exp Mn e e aé ùë û n (27)

According to relationship (27), at M = 100, αn = 0.1, and (εc – εg) = 0.1 eV, we obtain a frequency
~1011 Hz, which corresponds to the microwave range of electromagnetic radiation.

It follows from relationship (27) that the elementary structural excitations of nanoparticles can
be attended by emission (absorption) of photons with frequencies in the microwave, radio-
frequency, and low-frequency ranges. It was experimentally demonstrated that the microwave
radiation can accelerate chemical reactions by a factor of several tens and even several
hundreds [11]. The microscopic mechanism of this phenomenon is not clearly understood.
However, it is unquestionable that this mechanism is not reduced only to heating.

8. Conclusions

A detailed (on the microscopic level) analysis of the processes that occur upon transition of
nanoparticles to the microscopically labile state stimulates consideration of a number of
fundamental problems. Their solution provides a deeper insight into the specific features of
the nanoworld. Indeed, the melting and softening cannot proceed in the absence of an
exponentially large number of various structural modifications (6). However, up to now, most
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attention has been focused on relatively stable structures. The number of these structures for
a nanocluster composed of 13 atoms is considerably smaller than 1478 [10].

The other structural modifications have not been adequately investigated, even though their
role is important not only for the transition of the nanoparticle to the microscopically labile
state. Many chemical transformations represent a sequence of transitions between unstable
modifications. They should be taken into account when developing methods for synthesizing
nanostructured functional materials with controlled properties.

The majority of nanoparticles of the same chemical composition exhibit similar additive
properties. It is sufficient to investigate one of these nanoparticles in order to judge the
properties of the other nanoparticles. However, there are “special” nanoparticles. Their
properties differ noticeably from the statistical-mean properties and can be unique as com‐
pared to those of macromolecules and compact materials. Owing to this uniqueness, it is these
nanoparticles that are of most interest for the nanotechnology.

Certainly, special nanoparticles are small in number. Among an exponentially large number
(6) of various nanoparticles of the same chemical composition, the choice of a special nano‐
particle with required properties is not a simple problem. Moreover, it is not a priori known
whether there exists this nanoparticle in principle.

Furthermore, the potential possibility of occurring a large number of similar structural
modifications different from the required modification complicates the reproduction of an
exact copy [7] of the nanoparticle under consideration. That is why the reproducibility is one
of the key problems of the nanotechnology.

In actual practice, the special nanoparticle cannot be synthesized in an accidental way. The
traditional methods are not necessarily effective because the vast majority of the currently used
chemical reactions belong to “disorganized” reactions in which particles (molecules, ions,
atoms, radicals) react as a result of random collisions.

In order to solve many problems of nanotechnologies, it is required to control chemical
processes on the microscopic level. It is necessary to design nontraditional methods based on
nonequilibrium processes [12].

In particular, it seems likely that the use of electromagnetic radiation holds considerable
promise. The methods of microwave chemistry have already been used to produce nanopow‐
ders [11].

The problem associated with the synthesis of special nanoparticles would be completely solved
if the technique for preparing any controlled equilibrium configuration Ri of atomic nuclei
(Fig. 1) would be developed. In general, for this purpose, it is necessary to know how to operate
not with one atom but with many atoms according to a special program [13], which represents
algorithmic information. It should be noted that the information aspect of microscopic
processes [14] has come under the scrutiny of science only in recent years.
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