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1. Introduction

Experimental assessment of macroscopic thermo-dynamical parameters under extreme
conditions is almost impossible and very expensive. Therefore, theoretical EOS for further
experiments or evaluation is inevitable. In spite of other efficient methods of calculation such
as integral equations and computer simulations, we have used perturbation theory because of
its extensive qualities. Moreover, other methods are more time consuming than perturbation
theories. When one wants to deal with realistic intermolecular interactions, the problem of
deriving the thermodynamic and structural properties of the system becomes rather formida‐
ble. Thus, perturbation theories of liquid have been devised since the mid-20th century.
Thermodynamic perturbation theory offers a molecular, as opposed to continuum approach
to the prediction of fluid thermodynamic properties. Although, perturbation predictions are
not expected to rival those of advanced integral-equations or large scale computer simulations
methods, they are far more numerically efficient than the latter approaches and often produced
comparably accurate results.

Dealing with light species such as He and H2 at low temperature and high densities makes it
necessary taking into account quantum mechanical effects. Quantum rules and shapes related
with the electronic orbital change completely the macroscopic properties.

Furthermore, for this fluid mixture, the quantum effect has been exerted in terms of first order
quantum mechanical correction term in the Wigner-Kirkwood expansion. This term by
generalizing the Wigner-Kirkwood correction for one component fluid to binary mixture
produce acceptable results in comparison with simulation and other experimental data. Since
utilizing Wigner-Kirkwood expansion in temperatures below 50 K bears diverges, we
preferred to restrict our investigations in ranges above those temperatures from 50 to 4000
degrees. In these regions our calculations provide more acceptable results in comparison with
other studies.

© 2013 Motevalli and Azimi; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



This term make a negligible contribution under high temperatures conditions. Taking into
account various contributions, we have utilized an improved version of the equation of state
to study the Helmholtz free energy F, to investigate the effects of P and T on thermodynamic
properties of helium and hydrogen isotopes mixtures over a wide range of densities. We also
have studied effects of concentrations of each component on macroscopic parameters. In
addition, comparisons among various perturbation and ideal parts have been presented in
logarithmic diagrams for different densities and concentrations for evaluation of perturbation
terms validity in respect to variables ranges.

The first section is dedicated to a brief description of Wigner expansion which leads to
derivation of first quantum correction term in free energy. With the intention of describing
effects of quantum correction term we have explained theoretical method of our calculations
in the frame work of statistical perturbation theory of free energy in section two. In section
three we have depicted diagrams resulted from our theoretical evaluations and gave a brief
explanation for them. In section four we have focused on the description of our calculations
and its usages in different areas. Finally, some applications of this study have been introduced
in the last section.

2. Quantum correction term

Considering quantum system of N  identical particles of mass m confined to the region of Λ
with the interacting potential ofU . This structure is considered in υ-dimension space (R υ). In
the absence of external fields the Hamiltonian of particles is given as

( ) ( )21
2

H i U r
m

= - Ñ +
r rh (1)

Where, ℏ is the Plank constant. The equilibrium statistical mechanics of the particle system is
studied in the canonical ensemble at the temperature T  (or, alternatively, the inverse temper‐
ature β =1 / kBT  with kB being Boltzmann’s constant). Quantum effects will be considered via

de Broglie wavelength λ =ℏ β /m. For a typical microscopic length of particles l , for suffi‐
ciently small dimensionless parameter λ / l  semi-classical regime is dominant. In such system
Boltzmann density in configuration space r→  can be expanded in powers of λ 2 within the well-
known Wigner-Kirkwood expansion [1, 2]. In the case of an inverse-power-law repulsive
potential V (r)=V0(a / r)n from the range 1<n <∞, the Wigner-Kirkwood expansion turns out

to be analytic in λ 2 [3]. In the hard-core limit n→∞, this expansion is not further correct and
one has the non-analyticity of type (λ 2)1/2, as was shown in numerous analytic studies [4-7].
In contrast to the bulk case, the resulting Boltzmann density involves also position dependent
terms which are non-analytic in λ. Under some condition about the classical density profile,
the analyticity in λ is restored by integrating the Boltzmann density over configuration space.
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2.1. Wigner-Kirkwood expansion

To have an analytical equation for quantum effects in fluid we must derive partition function
of it. In approximating partition function we need to evaluate Boltzmann density. Conse‐
quently having an expansion of quantum correction terms it is necessary to expand Boltzmann
density. Considering system of N  particles in the infinite space in standard Wigner-Kirkwood
expansion [1, 2] fermions or boson exchange effects between quantum particles have been
neglected. In the “bulk” regime, equilibrium quantities of this system in the nearly classical
regime can be expanded in powers of h 2. In this section, we review briefly the derivation of
this expansion for utilizing it in statistical perturbation framework. The Boltzmann density Bβ
in configuration space r→  can be formally written in the basis of plane waves as a υN -dimen‐
sional integral defined in an infinite domain R υ:

( )
( ) ( ). .

2
i p r i p rH H

N
dPB r e r e e eb b

b u
p

-- -= = ò
r r r rh h

ur
r r

h
(2)

Where p→ = (p1, p2, p3, ...) is the υN -dimensional momentum vector. Instead of considering we
take the Laplace transform of this operator with respect to the inverse temperature β,

0

1H zd e e
H Z

b b bb - - =
+ò (3)

Via integrating equation 2 in respect to β we have

( )
( ) ( ). .

0

1

2
i p r i p rH z

N
dPd r e r e e e

H Z
b b b

u
b

p

-- - =
+ò ò

r r r rh h
ur
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h
(4)

Let us introduce following definition

H z D Q+ = + (5)

That Q and D respectively represent

( )

( )

22

2

1 1
2 2

1
2

Q i P
m m

D P U r z
m

= - Ñ -

= + +

urr
h
ur r (6)
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One can expand

1 1 1 1 1 1 1 ...Q Q Q
H Z D D D D D D

= - + -
+

(7)

Q, operates in the following manner

( ) ( ) ( ) ( )
2 2. . .
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And then we can find that
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So we have expanded series in ℏ2n which enable us power series of ℏn. It remains to define
1 /D j

( ) ( )
( )2

2
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1 1 1
1 ! 1 !

p m U r
j jD z

j d e d e e
j jD
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and finally integrating on the momentum variables p→ , the Boltzmann density in configuration
space is obtained as the series

( ) ( )
0

,nH

n
r e r B rb

b

¥
-

=

=år r r
(11)

where
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We conclude that the quantum Boltzmann density in configuration space is g
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(12)

Integrating Boltzmann density ignoring exchange effects over configuration space will result
in partition function of fluids mixture.

1
!

H
qu V
Z dr r e r

N
b-= ò

r r r
(13)

Substituting the λ-expansion of the Boltzmann density (12A) into formula (13), the quantum
partition function takes the expansion form

( )
2 22 2 41 1 1 1

! 24 242

U U
qu NZ dr e U e O

N
b b

u
l b l l
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- -
L
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r ur ur

(14)

For expressing macroscopic physical quantities, one defines the quantum average of a function
f (r→ ) as follows

( )1
!

H
qu

qu
f dr r e r f r

Z N
b-

L
= ò

r r r r
(15)

At the one-particle level, one introduces the particle density
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( ) ( )
1

N

qu j
j qu

n r r rd
=

= -å (16)

At the two-particle level, the two-body density is given by

( ) ( ) ( ) ( )2

, 1
,

N

qu j j
j k
j k qu

n r r r r r rd d
=
¹

¢ ¢= - -å (17)

And the pair distribution function

( )
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( ) ( )

2 ,
, qu
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n r n r

¢
¢ =

¢
(18)

The classical partition function and the classical average of a function f (r→ ) are defined as
follows
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Consequently with the definition of equation 19 one can derive below equation for Zqu

22 41
24quZ Z U Obl lì ü

= - Ñ +í ý
î þ

ur
(21)

( )lnqu quF Zb = - (22)

( ) 22 4ln ln( ) ln(1 ...)
24quZ Z U Obl l= + - Ñ + +

ur
(23)
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Since we have ln(1− x)= − x − x 2 / 2− ... we can expand the second term in the right side. By
means of equation 18 in deriving ∇

→ 2U  we can have explicit formula for the second term of
which indicates the first term of Wigner-Kirkwood correction part that is consist of the second
derivative of potential function that leads to below equation for quantum correction term with
the number density of n we have

0

2
(1) 2

2 ( ) ( )
96

A
qu

h N n
F U r g r dr

m s

b

p

¥
= Ñò (24)

g(r) represents radial distribution function, which is a measure of the spatial structure of the
particles in reference system, is the expected number of particles at a distance r . NA is Avogadro

constant and σ 0 is the distance in which potential function effectively tend to zero.

2.2. Free energy

Generalizing to multi-component system we have [8]

0

2
(1) 2 2

2
,

( ) ( )4
96 ij

i jA
qu ij ij ij

i j ij

c ch N n
F u r g r r V dr

m s

b
p

p

¥
= Ñå ò (25)

m11 =m1, m22 =m2, m12 =c1m1 + c2m2

mi is the ith particle’s mass. V ij̄ is the average molecular volume. Distribution function defines
probability of finding particle at particular point r . In many literatures that have studied
distribution function found it more versatile to use Laplace transform of this function G(s).

( ) 0
( ) sr

ij ijG s rg r e dr
¥ -= ò (26)

In this chapter the two formula which use RDF, we will encounter below integral equation
that need expansion.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
0

13 3 2 2
0 01 0 0

I r r rg r dr x x xg x dx x x g x dx x x g x dx
s

f s f s f f
¥ ¥ ¥

= = = -ò ò ò ò (27)

On the right side of above equation from the right in the first equation we approximate
distribution function with its values at contact points. This choice has been resulted from the
behavior of molecules of which their repulsive interactions dominate their attractive potential.
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However, for the second term (I ′) we will use change in integrals to employ Laplace transform
of RDF instead of RDF directly.

( ) ( )1
2

i sx
i

xg x G s e ds
i

g

gp
- ¥ -
- ¥

= ò (28)

Substituting above equation in I ′ we have

( ) ( )0
I s G s dsj

¥
¢ = ò (29)

Where φ(s) represents

( ) ( )1
2

i sx
i

s x x e dx
i

g

g
j f

p
- ¥ -
- ¥

= ò (30)

That indicates inverse Laplace of xϕ(x). So it suffices to just define inverse Laplace of potential
function multiplied by x.

Therefore, Using Laplace transform of RDF G(s) [9] quantum correction term for DY potential
turn out to be

2
2 2

0 0 0
,24

ij ij
ij iji j ij ij ijQ A

ij ij
i j ij ij ij ij

c c A Vh N n
F e G e G

m

l u
l ueb

l u
p s s s

æ öæ ö æ ö
ç ÷ç ÷ ç ÷= -
ç ÷ç ÷ ç ÷

è ø è øè ø
å (31)

ci is the i particle’s concentration and n represents number density. Aij, λij and υij are controlling
parameters of double Yukawa(DY). εij is the attractive well depth of mutual interacting
potential.

3. Framework

The derivation of the thermodynamic and structural properties of a fluid system becomes a
rather difficult problem when one wants to deal with realistic intermolecular interactions. For
that reason, since the mid-20th century, simplifying attempts to (approximately) solve this
problem have been devised, among which the perturbation theories of liquids have played a
prominent role [10]. In this instance, the key idea is to express the actual potential in terms of
a reference potential (that in terms of Ross perturbation theory Helmholtz free energy is
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expressed as of the “unperturbed” system) plus a correction term. This in turn implies that the
thermodynamic and structural properties of the real system may be expressed in terms of those
of the reference system which, of course, should be known. In the case of two component fluids,
a natural choice for the reference system is the hard-sphere fluid, even for this simple system
the thermodynamic and structural properties are known only approximately. Let us now
consider a system defined by a pair interaction potential u(r). The usual perturbation expan‐
sion for the Helmholtz free energy, F , to first order in β =1 / kβT , with T  being the absolute
temperature and kB being the Boltzmann constant, leads to F . Common starting point of many
thermodynamic perturbation theories is an expansion of the Helmholtz free energy, the
resulting first-order prediction for a fluid composed of particles helium and hydrogen is given
via the following equation.

t Q HB idF F F F F= + + + (32)

The terms respectively are perturbation, Quantum, hard convex body and ideal terms.
Perturbation term due to long range attraction of potential is given by [10]

0
2

,
2 ( ) ( , , )4

ij

t HS
i j ij ij ij ij

i j
F n c c u r g r r V dr

s
p r s p

¥
= å ò (33)

Via Laplace transform of RDF (rg ij
HS ) in calculation of first order perturbation contribution due

to long-ranged attraction for DY potential we can employ below equation:

0
0 0

,

ij ij
ij ijt t

iji j ij ij ij
i j ij ij

F kT c c A V e G e G F
l u

l ue s d
s s

æ öæ ö æ ö
ç ÷ç ÷ ç ÷= - -
ç ÷ç ÷ ç ÷

è ø è øè ø
å (34)

V ij̄ the average molecular volume defined as:

( ) ( ) ( ) ( )
1

2 232 2 2 1 2
3

( 1) 3 1 31 sin
2 2 2

i i
ij ii ij i i ii jj i ij

ii jjii

n l
V l l ls s s s s

s ss
-

é ùé ù¢ - é ùê ú= + + - - + - ê úê úê ú+ë û ê úë ûê úë û

(35)

Where n ′
i define the number of element in a molecule, li is distance of centre to centre for each

molecule. δF t  corresponds to the interval of σij, σij
0  which long range attractive range is not

further applicable. Consequently, we prefer to use the contact value of hard sphere RDF at
r =σij. By this approach we can express this term as:
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2

,
( ) ( )4

2
ij

ij

t HS
i j ij ij ij ij

i j

nF c c u r g r V dr
kT

s

s
d s p» å ò (36)

gij
HS (σij) is the contact value of radial distribution function. σij stands for separation distance

at contact between the centers of two interacting fluid particles, with species i and j. Although
via minimization of Helmholtz free energy we can achieve value for hard sphere diameter, we
preferred to use its analytical form due to its practical approach [17]. Hard sphere diameter
will be calculated by means of Barker-Henderson equation as a function of interacting potential
and temperature. Using Gauss-Legendre qudrature integration method we are able to evaluate
its values numerically.

( )( )
0

0
1 exp ( )ij DY

ij iju r dr
s

s b= - -ò (37)

F HB,  Helmholtz free energy of hard convex body is given by following equation:

( )HB HS nd
mixF a F F= + (38)

Non-sphericity parameter amix for the scaling theory [11] is defined as

( ) ( )
, 3

,

1 ,
3 6

ef eff eff
i j ij ij ij

i j eff
mix ij ij ijeff

i j ij
i j

c c V V V
a V V

c c V
p s

p

¢ ²

= =
å

å
(39)

(V ijeff )′ and (V ijeff )″ are the first and second partial derivatives of V ij
eff  with respect to σii and

σ jj. From Boublik, Mansoori, Carnahan, Starling, Leland (BMCSL) [12, 8] with correction term

of Barrio [13] on EOS, the Helmholtz free energy, F HS  for hard sphere term becomes:

F HS

KT =
η3 ξ1 + (2−η3)ξ2

1−η3
+

η3ξ3

(1−η3)2 + (ξ3 + 2ξ2−1)ln(1−η3),

ξ1 =
3η1η2
η0η3

, ξ2 =
η1η2
η32 (η4z1 + η0z2), ξ3 =

η23

η0η33
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(40)

The correction term due to nonadditivity of the hard sphere diameter is the first order
perturbation correction [14]

( )( )1 2 11 22 11 22 12 12 122 ( )nd HSF kT nc c gp s s s s s s= - + + - (41)

In Eq. (41), g12
HS (σ12) refer to as hard sphere radial distribution function at r =σ12 contact point

by inclusion of Barrio and Solana correction on equation of state of BMCSL. Undoubtedly, the
availability of the analytical HS RDF obtained from the solution to the corresponding Percus–
Yevick (PY) equation represented a major step toward the successful application of the
perturbation theory of liquids to more realistic inter-particle potentials. However, the lack of
thermodynamic consistency between the virial and compressibility routes to the equation of
state present in the PY approximation (as well as in other integral equation theories) is a
drawback that may question the results derived from its use within a perturbation treatment.
Fortunately, for our purposes, another analytical approximation for the RDF of the HS fluid,
which avoids the thermodynamic consistency problem, has been more recently derived [15,
16]. We used improved RDF that yields exact asymptotic expression for the thermodynamic
properties. However, we have used improved version of RDF that yields exact asymptotic
expression for the thermodynamic properties. This have been derived by inclusion of Barrio
and Solana correction on EOS of BMCSL at r =σ12 [9]
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(42)

ηi =
π
6 n∑j

cjσ jj i

δij is the Kronecker delta function. For additive mixtures σij is arithmetic mean of hard-core
diameters of each species. Otherwise, the system is said to be non-additive.
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The ideal free energy with N  particle for the atomic and molecular components of fluid mixture
are given by,

1 2

2

1 2

3( , ) ln ln ln 1
2 2

id
i ic c

i

hF n T n c c
kTm mp

æ ö
ç ÷= + + -
ç ÷
è ø

å (43)

Compressibility factor of ideal term is one and Z HB would be estimated with the following
derivation of related Helmholtz free energy

HB
HB FZ n

n kT
¶

=
¶

(44)

For the perturbation term due to long rage attraction of potential tail employing (44) we will
have

Z t =
2πn
kT ∑i, j

cicjεijσij
0AijV̄ ij(e λij(G( λij

σij
0 )−n ∂∂n G( λij

σij
0 ))− e υij(G( υij

σij
0 )−n ∂∂n G( υij

σij
0 )))−δZ t

δZ t ≈
n

2kT ∑i, j
cicj(gijHS (σij) + n

∂
∂n gij

HS(σij))∫σijσij
0

uij
DY (r)4πr 2V ij̄dr

Numerical integration has been used for calculation of δZ t  in the range of σij, σij
0 . Expressions

for first order perturbation and quantum correction term of compressibility factor are achiev‐
able via applying (44) for the free energy part of the quantum correction term.
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Summation over compressibility factors gives the total pressure of mixture

( )1 HB t QP nkT Z Z Z= + + + (46)

Defining Gibbs free energy provides information at critical points of phase stability diagram.
Concavity and convexity of Gibbs diagram indicates if mixture is in one phase or not,
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NG F P
n

= + (47)

Furthermore, Gibbs excess free energy is an appropriate measure in the definition of phase
stability. Negative values for this energy describe stable state. This is expressed as

0 lnxs i i i i
i i

G G c G NkT c c= - -å å (48)

That Gi
0 represents the Gibbs free energy of pure fluid of species i. Concentration-concentration

structure factor is defined as

12

2
, ,

(0)cc
T P N

S NkT G
c

-
æ ö¶

= ç ÷ç ÷¶è ø
(49)

Compairing this equation with Scc
id  enable us to define degree of hetero-coordination. In a given

composition if Scc(0)< <Scc
id  then unlike atoms tend to pair as nearest neighbors (hetero-

coordination) and when Scc(0)> >Scc
id  then like atoms are preferred as a neighbor.

3.1. Potentials

It  is  convenient  to consider interacting potential  with short-range sharply repulsive and
longer-range attractive tail and treat them within a combined potential. The most practical
method for the repulsive term of potential  is  the hard-sphere model with the benefit  of
preventing particles overlap. Furthermore, attractive or repulsive tails may be included using
a perturbation theory. It is incontrovertible to generalize this potential to multi-component
mixtures.  This  behavior  is  conveyed  in  double  Yukawa  (DY)  potential  which  provides
accurate thermodynamic properties of fluid in low temperatures and high density [18, 19].
At first we define DY potential as its effects on pressure of He −H2 mixture has been studied
in this work, written as:

( ) ( )0 00
1 1

( ) ij ij ij ijr rijDY
ij ij iju r A e e

r
l s u ss

e
- -é ù

= -ê ú
ë û

(50)

Aij, λij, υij are controlling parameters. These parameters for He and H2 are listed in table 1 with
their reference [20].
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He−He He-H2 H2-H2

σ 0 2.634 2.970 2.978

A 2.548 2.801 3.179

ε / kB 10.57 15.50 36.40

υ 3.336 3.386 3.211

λ 12.204 10.954 9.083

Table 1. Potential parameters for He, H2 interactions for DY potential [20].

For the atomic and molecular fluids studies in this mixture, these particles interact via a
exponential six (exp-6) or Double Yukawa (DY) potential energy function [20]. The fluids
considered in this work are binary mixtures that their constituents are spherical particles of
two species, i and j, interacting via pair potential uij(r).

exp 6 ( ) min,6 66 exp( (1 )) ( ), 6 min,
ij

r

u r ij ijr ri j ij rij ij ij

s

a s
e a s

a a s
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(51)

So we consider two-component fluid interacting via Buckingham potential uij(r) between
molecules of types i and j. This potential is more realistic than square-well or Yukawa type
potential for hydrogen isotope’s mixture [21] at high temperatures. Because of same atomic
structure of hydrogen and its isotopes, the three constant of potential are same for hydrogen
isotopes. These constants obtained experimentally from molecular scattering [22].

σmin indicate the range of interaction and the parameter α regulates the stiffness of repulsion.
For hydrogen and helium type atoms these parameters have been organized in Table 2. It is
well known that the long range attractive part of exp-6 potential is similar to Lenard–Jones
potential.

In view of the energy equation (32), one can readily obtain equation for total pressure and
different contributions to pressure from standard derivation of respective Helmholtz free
energy. By the exp-6 potential, we have computed the Helmholtz free energy. The ten-point
Gausses quadrature has been used to calculate integrals in quantum correction and perturba‐
tion contribution. The calculated pressure for D2 + T2 fluid mixture with equal mole fraction

and at temperature of T =100o K  is showed logarithmically in figure 1. As it is clear from this
figure, the effect of hard sphere term of pressure in given rang of temperature is significant
and the range of pressure variation is wider than ideal part. As it is mentioned earlier the
difference between isotopes is simply related to the neutron number in each nucleus and
correction due to difference in mass which involves in non-additive correction term doesn’t
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affect sensibly. In addition, this figure shows the predicted equimolar surface of the deuterium
and tritium mixture for quantum correction term. This part is the most significant contribution
at low temperature and varying smoothly in higher temperature. At very high densities,
perturbation term contribution increases sharply with reducing density. Also, terms, P t , P Q,
P HS  and P id , tend to infinity as ρ→∞.

He−He He-H2 H2-H2

α 13.10 12.7 11.1

ε / kB 10.80 15.50 36.40

σmin 0.29673 0.337 0.343

Table 2. Potential parameters for He, H2 interactions for exp-6 potential [20]
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Figure 1. Different contributions of pressure as a function of reduced density for T = 100oK  for fluid mixture of deute‐
rium and tritium

4. Results

For helium-hydrogen mixtures different parts of pressure due to correction terms and ideal
parts have been showed in figure 2 at T =100o K . Ideal pressure at reduced density of approx‐
imately zero, to about 0.25 rises drastically. However, afterward it soars gently up to 100M
(pa). Pressure due to hard sphere is the most significant contribution except that it is less than
perturbation part at value of 1.5 for reduced density. Effects of perturbation and Quantum
correction are important in high densities. In low densities, these contributions are insignificant
and may possibly be ignored. Non-additive part has been caused by dissimilarity of particles
which surges steadily from the beginning.
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Figure 2. Different contribution of correction terms on pressure of helium-hydrogen mixture at T=100, che=0.5 vs. re‐
duce density

Gibbs excess free energy which is a measure for indicating phase stability of matters has been
depicted in figure 3. Stability is limited to the areas that Gibbs excess free energy tends to
negative values. This figure explains that stability rages for helium-hydrogen mixture at room
temperature is confide in the boundaries in which helium concentration is less than 0.1.
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Figure 3. Gibbs excess free energy for helium-hydrogen mixture

Table 3 presents a comparison between results of pressure from this work using DY potential
in place of exp-6, Monte–Carlo simulations and additionally study of reference [23] Obviously,
there are appreciable adaption among our investigation results and MC which proves validity
of our calculations. As Table 3, exhibits in low temperatures DY potential have more consistent
results in comparison with exp-6. However, values of pressure extracted using DY potential
cannot adjust with simulation resembling exp-6. Moreover, at higher temperatures after
T =1000o K , DY potential is not good choice for evaluating EOS of hydrogen and helium
mixture. We clarify our deduction presenting comparison between effects of these two
potentials over wide ranges of temperatures.
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T (K ) cHe ρ * η PMC P[19] P[23] PDY [19]

300 0.25 1.101 0.433 2.3090 2.7039 1.9664 2.8678

300 0.5 1.101 0.400 1.8560 1.7001 1.5729 1.8402

300 0.75 1.101 0.367 1.4240 1.2816 1.3160 1.3887

1000 0.5 1.223 0.335 4.5100 4.4205 4.1094 4.9406

1000 0.75 1.223 0.307 3.7150 3.5190 3.5904 3.9328

4000 0.5 1.376 0.247 12.4300 12.0832 12.1014 14.154

4000 0.5 1.572 0.282 16.3300 16.4485 16.4720 19.859

Table 3. Comparison of values of pressure results from our study [19], Monte-Carlo simulation [24] and Isam Ali’s
study [23].
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Figure 4. Comparision of efect of DY and EXP-6 potential on pressure of mixture in che=0.5, T=300 vs. Reduced density

Providing evidence of gradual divergence of DY and exp-6 potentials, a comparative figure
has been made in figure 4 for helium-hydrogen mixtures. This figure shows more steepening
effects of DY on total pressure of this mixture. Both potentials engender increase in pressure,
except that, Buckingham affects moderately on pressure increase. The exp-6’s more steady
behavior makes it adjustable with previous studies and MC simulation.

In figures 5, 6, 7, 8 we tried to give information about effects of quantum correction term on
total pressure of helium-hydrogen and deuterium-tritium mixtures at the high reduced density
of 1.3. This correction term has been plotted in 3-dimensional diagram in figure 5. This term
is approximately zero for temperatures higher than 200 (K). Figure 6 represents that for
hydrogen rich mixture at low temperature due to quantum effects pressure rise is significant.
For effectual discussion on the effects of this term we have described P Q / P  in figure 7 for
helium-hydrogen and in figure 8 for deuterium tritium mixture. For the third picture increase
in pressure is similar to what have been elaborated for figures 5 and 6. For figure 8 this manner
remains analogous to helium-hydrogen mixture and temperatures next to 100 (K). However,
for temperature lower than this it would behave inversely. For this range any increase in
tritium concentration bears decrease in pressure.
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Figure 5. Pressure of quantum correction term at ρs = 1.3 for helium-hydrogen mixture.
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Figure 6. Total pressure from 50 K at ρS=1.3 for helium-hydrogen mixture.
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Figure 7. Fraction of quantum perturbation term to total pressure for helium-hydrogen mixture.
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Figure 8. Fraction of quantum perturbation term to total pressure for Deuterium-Tritium mixture.

5. Conclusion

An Equation of state of hydrogen–helium mixture has been studied up to 90G (pa) pres‐
sure and temperature equal to 4000◦K. We have used perturbation theory as an adequate
theory for describing EOS of fluid mixtures. As well, by using this theory we can add extra
distributive  terms  as  perturb  part  which  makes  it  more  applicable  than  other  theories.
Considering this advantage, we can spread it out with additional terms for investigation on
other  states  of  matter  like  plasma in  the  direction of  compares  with  experimental  data.
Otherwise, using simulation methods, for evaluating our theoretical results. Such as ab initio
simulations with the code VASP,[25] which combines classical molecular dynamics simula‐
tion for the ions with electrons, behave in quantum mechanical system by means of finite
temperature  density  functional  theory  [26].  In  this  chapter,  two  potentials  have  been
presented, which we have used them for hydrogen isotopes and helium, and their mix‐
tures. By means of comparison with Monte Carlo simulation and results of refrence [14] in
Table 3 we could prove that exp-6 potential is more beneficial than DY in wider ranges of
variables, since its application in this theory shows more convergent results in comparison
with MC simulation [24]. Also exp-6 potential is a good choice of potential since it allows us
to elevate temperature and density [28]. But as hydrogen molecules dissociation occurs [28]
for pressures more than 100G (pa), this effect must be accounted. Therefore, we have restricted
ourselves to pressures below 100G (pa).

Furthermore, we have used Wertheim RDF which enables us to use this EOS for extended
values of temperature. As well, we have compared different contributions of pressure to
represent which one is more effective in different density and temperature regimes. By finding
the most effective parts of pressure contributions in each ranges of independent variables
(Temperature, reduced density, mole fraction), we can omit the less significant parts which
are considered ignorable in value, to decrease unnecessary efforts. Likewise, we can speculate
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from Fig. 1 that in low temperature and high densities, long range perturbation term has the
most significant effect in comparison with other parts. On the other hand, hard sphere part
can be assumed as the most noticeable part in high temperature ranges. Moreover, comparison
of DY and exp-6 potentials effects, on pressure of this mixture has been studied to express
benefits of using exp-6 potential for higher temperatures and densities. Additionally, as it is
obvious in high temperature and density difference between effects of two potentials are
considerable for this equimolar mixture. This discriminating property makes exp-6 potential
preferable.

Furthermore, this approach has been used to evaluate EOS of D2 + T2 mixture. Also, we have
used this method to compare different contribution parts of pressure. These comparisons
indicate that in low temperature quantum effects are more important, however in high
temperatures, hard sphere part is the most effective. The last two three dimensional diagrams
reveals the importance of quantum term in comparison with total pressure. However, for
temperatures below 100 (k) for deuterium-tritium mixture negative pressure express that in
low tritium concentration, deuterium rich fluid tend to consolidate.

6. Applications

One of the topics which can count on a great deal of interest from both theoretical and
experimental physics is research in fluid mixture properties. These interests, not only comprise
in the wide abundance of mixtures in our everyday life and in our universe but also the
surprising new phenomena which were detected in the laboratories responsible for this
increased attention. Mixtures, in general, have a much richer phase diagram than their pure
constituents and various effects can be observed only in multi-component systems.

These kinds of studies have allowed a more complete modeling of mixture and consequently
a better prediction and a more accurate calculation of thermodynamic quantities of mixture,
such as activity coefficient, partial molar volume, phase behavior, local composition in general
and have promoted a deeper understanding of the microscopic structure of mixtures.

Furthermore, for astronomical applications it is known that most of giant gas planets are like
Jupiter is consisting primarily of hydrogen and helium. Modeling the interior of such planets
requires an accurate equation of state for hydrogen-helium mixtures at high pressure and
temperature conditions similar to those in planetary interiors [29]. Thus, the characterization
of such system by statistical perturbation calculations will help us to answer questions
concerning the inner structure of planets, their origin and evolution [29, 30].

In addition, in perturbation consideration of plasma via chemical picture, perturbation
corrections will be included by means of additional free energy correction terms. Therefore,
in considering transition behavior of molecular fluid to fully ionized plasma these terms are
suitable in studying the neutral interaction parts. Consequently this will help us in studying
inertial confinement fusion [31] and considering plasma as a fluid mixture in tokomak [32].
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