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1. Introduction

Quantum mechanics (QM) stands out as the theory of the 20th century, shaping the most
diverse phenomena, from subatomic physics to cosmology. All quantum predictions have
been crowned with full success and utmost accuracy. Yet, the admiration we feel towards
QM is mixed with surprise and uneasiness. QM defies common sense and common logic.
Various paradoxes, including Schrodinger’s cat and EPR paradox, exemplify the lurking
conflict. The reality of the problem is confirmed by the Bell’s inequalities and the GHZ
equalities. We are thus led to revisit a number of old interlocked oppositions: operator –
operand, discrete – continuous, finite –infinite, hardware – software, local – global, particular
– universal, syntax – semantics, ontological – epistemological.

The logic of a physical theory reflects the structure of the propositions describing the
physical system under study. The propositional logic of classical mechanics is Boolean
logic, which is based on set theory. A set theory is deprived of any structure, being a
plurality of structure-less individuals, qualified only by membership (or non-membership).
Accordingly a set-theoretic enterprise is analytic, atomistic, arithmetic. It was noticed as
early as 1936 by Neumann and Birkhoff that the quantum real needs a non-Boolean logical
structure. On numerous cases the need for a novel system of logical syntax is evident.
Quantum measurement bypasses the old disjunctions subject-object, observer-observed. The
observer affects the system under observation and the borderline between ontological and
epistemological is blurred. Correlations are not anymore local and a quantum system
embodies multiple entanglements. The particular-universal dichotomy is also under revision.
While a single quantum event is particular, a plethora of quantum events leads to universal
patterns. Viewing the quantum system as a system encoding information, we understand
that the usual distinction between hardware and software is not relevant. Most importantly,
if we consider the opposing terms being-becoming, we realize that the emphasis is sifted to
the becoming, the movement, the process. The underlying dynamics is governed by relational
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principles and we have suggested [1] that the relational logic of C. S. Peirce may serve as
the conceptual foundation of QM.

Peirce, the founder of American pragmatism, made important contributions in science,
philosophy, semeiotics and notably in logic. Many scholars (Clifford, Schröder, Whitehead,
Lukasiewicz) rank Peirce with Leibniz and Aristotle in the history of thought. Logic, in its
most general sense, is the formal science of representation, coextensive with semeiotics.
Algebraic logic attempts to express the laws of thought in the form of mathematical
equations, and Peirce incorporated a theory of relations into algebraic logic [2, 3]. Relation is
the primary irreducible datum and everything is expressed in terms of relations. A relational
formulation is bound to be synthetic, holistic, geometric. Peirce invented also a notation for
quantifiers and developed quantification theory, thus he is regarded as one of the principal
founders of modern logic.

In the next section we present the structures of the relational logic and a representation of
relation which will lead us to the probability rule of QM. In the third section we analyze a
discrete system and demonstrate the non-commutation of conjugate operators. In the last
section we present the conclusions and indicate directions for future work.

2. The logic of relations and the quantum rules

The starting point is the binary relation SiRSj between the two ’individual terms’ (subjects)
Sj and Si. In a short hand notation we represent this relation by Rij . Relations may be
composed: whenever we have relations of the form Rij , Rjl, a third transitive relation Ril

emerges following the rule [2, 3]

RijRkl = ❞jkRil (1)

In ordinary logic the individual subject is the starting point and it is defined as a member
of a set. Peirce, in an original move, considered the individual as the aggregate of all its
relations

Si =

∑

j

Rij . (2)

It is easy to verify that the individual Si thus defined is an eigenstate of the Rii relation

RiiSi = Si. (3)

The relations Rii are idempotent

R
2

ii = Rii (4)

and they span the identity

∑

i

Rii = 1 (5)

The Peircean logical structure bears great resemblance to category theory, a remarkably
rich branch of mathematics developed by Eilenberg and Maclane in 1945 [4]. In categories
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the concept of transformation (transition, map, morphism or arrow) enjoys an autonomous,
primary and irreducible role. A category [5] consists of objects A, B, C,... and arrows
(morphisms) f, g, h,... . Each arrow f is assigned an object A as domain and an object B

as codomain, indicated by writing f : A → B. If g is an arrow g : B → C with domain
B, the codomain of f, then f and g can be “composed” to give an arrow gof : A → C.
The composition obeys the associative law ho(gof) = (hog)of . For each object A there
is an arrow 1A : A → A called the identity arrow of A. The analogy with the relational
logic of Peirce is evident, Rij stands as an arrow, the composition rule is manifested in eq.
(1) and the identity arrow for A ≡ Si is Rii. There is an important literature on possible
ways the category notions can be applied to physics; specifically to quantising space-time
[6], attaching a formal language to a physical system [7], studying topological quantum field
theories [8, 9], exploring quantum issues and quantum information theory [10].

A relation Rij may receive multiple interpretations: as the proof of the logical proposition
i starting from the logical premise j, as a transition from the j state to the i state, as a
measurement process that rejects all impinging systems except those in the state j and
permits only systems in the state i to emerge from the apparatus. We proceed to a
representation of Rij

Rij = |ri〉
〈

rj

∣

∣ (6)

where state 〈ri| is the dual of the state|ri〉 and they obey the orthonormal condition

〈ri| rj

〉

= δij (7)

It is immediately seen that our representation satisfies the composition rule eq. (1). The
completeness, eq.(5), takes the form

∑

i

|ri〉 〈ri| = 1 (8)

All relations remain satisfied if we replace the state |ri〉 by |̺i〉, where

|̺i〉 =
1√
N

∑

n

|ri〉 〈rn| (9)

with N the number of states. Thus we verify Peirce’s suggestion, eq. (2), and the state |ri〉
is derived as the sum of all its interactions with the other states. Rij acts as a projection,
transferring from one r state to another r state

Rij |rk〉 = δjk |ri〉 . (10)

We may think also of another property characterizing our states and define a corresponding
operator

Qij = |qi〉
〈

qj

∣

∣ (11)
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with

Qij |qk〉 = δjk |qi〉 (12)

and
∑

i

|qi〉 〈qi| = 1. (13)

Successive measurements of the q-ness and r-ness of the states is provided by the operator

RijQkl = |ri〉
〈

rj

∣

∣ qk〉 〈ql| =
〈

rj

∣

∣ qk〉 Sil (14)

with

Sil = |ri〉 〈ql| . (15)

Considering the matrix elements of an operator A as Anm = 〈rn |A| rm〉 we find for the
trace

T r (Sil) =
∑

n

〈rn |Sil| rn〉 = 〈ql| ri〉 . (16)

From the above relation we deduce

T r (Rij) = δij . (17)

Any operator can be expressed as a linear superposition of the Rij

A =
∑

i,j

AijRij (18)

with

Aij = T r (ARji) . (19)

The individual states can be redefined

|ri〉 → e
iϕi |ri〉 (20)

|qi〉 → e
iθi |qi〉 (21)

without affecting the corresponding composition laws. However the overlap number 〈ri| qj

〉

changes and therefore we need an invariant formulation for the transition |ri〉 →
∣

∣qj

〉

. This
is provided by the trace of the closed operation RiiQjjRii

T r (RiiQjjRii) ≡ p (qj , ri) =
∣

∣〈ri| qj

〉∣

∣

2
. (22)
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The completeness relation, eq. (13), guarantees that p (qj , ri) may assume the role of a
probability since

∑

j

p (qj , ri) = 1. (23)

We discover that starting from the relational logic of Peirce we obtain the essential law of
Quantum Mechanics. Our derivation underlines the outmost relational nature of Quantum
Mechanics and goes in parallel with the analysis of the quantum algebra of microscopic
measurement presented by Schwinger [11].

3. The emergence of Planck’s constant

Consider a chain of N discrete states |ak〉, with k = 1, 2, . . . , N . A relation R acts like a
shift operator

R |ak〉 = |ak+1〉 (24)

R |aN 〉 = |a1〉 (25)

N is the period of R

R
N = 1 (26)

The numbers which satisfy aN = 1 are given by

ak = exp
(

2πi
k

N

)

k = 1, 2, . . . , N (27)

Then we have

R
N − 1 =

(

R

ak

)N

− 1 =

[(

R

ak

)

− 1

] N−1
∑

j=0

(

R

ak

)j

= 0 (28)

R has a set of eigenfunctions

R |bi〉 = bi |bi〉 (29)

with bi the N -th root of unity (bi = ai). It is decomposed like

R =
∑

j

bj

∣

∣bj

〉 〈

bj

∣

∣ (30)

Notice that we may write

∣

∣bj

〉 〈

bj

∣

∣ =
1

N

N
∑

k=1

(

R

bj

)k

(31)
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The above projection operator acting upon |aN 〉 will give

∣

∣bj

〉 〈

bj

∣

∣ aN 〉 = 1

N

N
∑

k=1

(

1

bj

)k

|ak〉 (32)

Matching from the right with 〈aN | we obtain

〈aN | bj

〉 〈

bj

∣

∣ aN 〉 = 1

N
(33)

We adopt the positive root

〈

bj

∣

∣ aN 〉 = 1√
N

(34)

and equ. (32) becomes

∣

∣bj

〉

=
1√
N

N
∑

k=1

exp
[

−2πi
jk

N

]

|ak〉 (35)

Inversely we have the decomposition

|am〉 = 1√
N

N
∑

n=1

exp
[

2πi
mn

N

]

|an〉 . (36)

We introduce another relation Q acting like shift operator

〈bk| Q = 〈bk+1| (37)

〈bN | Q = 〈b1| (38)

The relation Q receives the decomposition

Q =
∑

j

aj

∣

∣aj

〉 〈

aj

∣

∣ (39)

Consider now

〈bk| QR = 〈bk+1| R = exp

[

2πi
(k + 1)

N

]

〈bk+1| (40)

〈bk| RQ = exp
[

2πi
k

N

]

〈bk| Q = exp
[

2πi
k

N

]

〈bk+1| (41)
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We conclude that the conjugate operators R and Q do not commute

QR = exp
[

2πi
1

N

]

RQ (42)

Similarly

Q
n

R
m = exp

[

2πi
nm

N

]

R
m

Q
n (43)

In our discrete model the non-commutativity is determined by N . As N → ∞ the
relation-operators Q and R commute. However it would be hasty to conclude that as N → ∞

we reach the continuum. The transition from the discrete to the continuum is a subtle affair
and many options are available. Let us define

L = Na p =
2π

L
(44)

Then

exp
[

2πi
1

N

]

= exp [ipa] . (45)

What counts is the size of the available phase space and we may use Planck’s constant h as a
unit measuring the number of phase space cells. Using rather exp

[

i

h̄
pa

]

, equ.(42) becomes

QR = exp
[

i

h̄
pa

]

RQ (46)

Approaching the continuum we may replace the discrete operators by exponential forms

R = exp
[

i

h̄
pX

]

(47)

Q = exp
[

i

h̄
aP

]

. (48)

With R and Q unitary operators, X and P are hermitian operators. From equs. (46), (47),
(48), we deduce

[X, P ] = i h̄. (49)

The foundational non-commutative law of Quantum Mechanics testifies that there is a limit
size h̄ ∼ pa in dividing the phase space. With p ∼ mv ≃ mc we understand that a represents
the Compton wavelength.
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4. Conclusions

We are used first to wonder about particles or states and then about their interactions. First
to ask about “what is it” and afterwards “how is it”. On the other hand, quantum mechanics
displays a highly relational nature. We are led to reorient our thinking and consider that
things have no meaning in themselves, and that only the correlations between them are “real”
[12]. We adopted the Peircean relational logic as a consistent framework to prime correlations
and gain new insights into these theories. The logic of relations leads us naturally to the
fundamental quantum rule, the probability as the square of an amplitude. The study of a
simple discrete model, once extended to the continuum, reveals that only finite degrees of
freedom can live in a given phase space. The “granularity” of phase space (how many cells
reside within a given phase space) is determined by Planck’s constant h.

Discerning the foundations of a theory is not simply a curiosity. It is a quest for the
internal architecture of the theory, offering a better comprehension of the entire theoretical
construction and favoring the study of more complex issues. We have indicated elsewhere
[13] that a relation may be represented by a spinor. The Cartan – Penrose argument [14, 15],
connecting spinor to geometry, allowed us to study geometries using spinors. Furthermore
we have shown that space-time may emerge as the outcome of quantum entanglement [16].

It isn’t inappropriate to connect category theory and relational logic, the conceptual
foundations of quantum mechanics, to broader philosophical interrogations. Relational and
categorical principles have been presented by Aristotle, Leibniz, Kant, Peirce, among others.
Relational ontology is one of the cornerstones of Christian theology, advocated consistently
by the Fathers (notably by Saint Gregory Palamas). We should view then science as a
“laboratory philosophy” and always link the meaning of concepts to their operational or
practical consequences.
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