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1. Introduction

Evaluating the capability for detection of an earthquake catalogue is the first step in statistical
seismicity analysis. In recent years, many studies have focused on ways to assess the
completeness magnitude (Mc), the lowest magnitude level at which all earthquakes are
recorded and there are no missing earthquakes, in a global earthquake catalogue [1, 2],
regional catalogues [3–6], and small-scale observations such as underground mines [7].
We cannot make full use of the available information in an earthquake catalogue if we
overestimate Mc, and underestimation of Mc yields incorrect or biased results.

[8] is a representative example showing that an accurate choice of Mc is vital in a seismicity
analysis. This study examined the global earthquake catalogue provided by the National
Oceanic and Atmospheric Administration (NOAA), United States Department of Commerce,
and reported that the number of earthquakes during nighttime was significantly higher than
that during daytime. Some studies [9, 10] stated that the daily variation in seismic activity
[8] had found was just a bias; [8] did not take into account the daily change in detection
capability, and earthquakes with small magnitudes — for which records were incomplete —
were used in the analysis.

Empirically, it is well known that the level of cultural noise has daytime/nighttime variations
and that this causes a daily variation in the detection capability. Nonetheless, in many
studies, the estimation of Mc or the evaluation of the detection capability is carried
out for a catalogue ranging over several days, weeks, months or years without taking
short-time variation into consideration; Mc is underestimated in daytime and overestimated
in nighttime, compared with the true value of Mc.

For an appropriate and precise evaluation of the detection capability, it is vital to quantify
this temporal change. In this chapter, we propose a statistical method for a quantitative
evaluation of the daily variation in the detection capability and also present an example of
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the method in real earthquake sequences. A short summary of this chapter has already been
presented in a non-peer reviewed article [11], and this chapter focuses on showing the details
of the approach and results that appeared in that article.

2. Data

The earthquake data used in this study were retrieved from the Japan Meteorological Agency
(JMA) catalogue from January 2006 to December of 2010, with focal depths shallower than 30
km. The magnitude scale used in the JMA catalogue has been termed the “JMA magnitude”,
which is determined on the basis of velocity and displacement seismograms [12, 13].

The detection capability of earthquakes has regional variations, and in particular there is
clear difference between inland and offshore regions. Because the main interest of this study
is the temporal variation in the detection capability, to mitigate the influence of the regional
differences, this study used the events occurring within the “Mainland” area defined by [14],
which covers the inland and coastal regions of Japan (Figure 1). The total number of the
events is 331,537.

Figure 1. “Mainland” defined by [14], which covers the inland and coastal regions of Japan (after [14]).

Because the main object of the present study is to investigate the daily variation in earthquake
detection capability, the data were divided into periods of one day, and the one-day sequences
were stacked. The technical limitations of computer memory space and computing time
make it difficult to handle hundreds of thousands events simultaneously in a Bayesian
analysis, as described in the next section. Thus, the stacked sequences were constructed
for each of the five years; five datasets were analyzed to examine the daily change in the
detection capability.
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3. Statistical method to evaluate the daily variation in detection
capability of earthquakes

3.1. Evaluation of the detection capability by using a statistical model to
represent an observed magnitude-frequency distribution

[15] proposed a probability density function f (M) for an observed magnitude-frequency
distribution of earthquakes over all magnitude range. The probability density function is
assumed to be the product of two probability distributions.

The first comes from the Gutenberg-Richter (GR) law [16], which is equivalent to an
exponential distribution:

w(M|β) = β exp(−βM), (1)

where the parameter β is related to the b-value of the GR-law and their relationship is
described by β = b ln 10.

The second is a detection rate function q(M) showing the proportion of detected earthquakes
to all earthquakes at magnitude M. Following the proposal by [17], the cumulative
distribution function of a normal distribution is used as the detection probability function:

q(M|µ, σ) =
∫ M

−∞

1√
2πσ

exp

[

− (x − µ)2

2σ2

]

dx (2)

We normalize the product of the two functions, and then we obtain the target probability
density function as follows (Figure 2):

f (M|µ, β, σ) =
w(M|β)q(M|µ, σ)

∫ ∞

−∞
w(M|β)q(M|µ, σ)dM

= exp(−βM)q(M|µ, σ) · β exp

[

βµ − β2σ2

2

]

. (3)

Of the three parameters (µ, β, and σ) in this statistical model, the parameter µ has the closest
connection with the detection capability; µ indicates the magnitude at which the detection
probability is 50 %. This means that the detection capability is better as the value of µ is
smaller.

The values of the three parameters are estimated by the maximum likelihood method. The
log-likelihood function (ln L) is given by

ln L(β, µ, σ) =
N

∑
i

ln f (Mi|β, µ, σ), (4)
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Figure 2. Schematic diagram showing the construction of the probability density function for an observedmagnitude-frequency

distribution of earthquakes over all magnitude range, as proposed by [15].

where N and Mi denote the number of the analyzed earthquakes and the magnitude of the
i-th earthquake, respectively. The set of the values of the three parameters maximizing the
log-likelihood function is the best estimate.

To observe the performance of this statistical model, we applied it to the
magnitude-frequency distribution of the earthquakes taken from the JMA catalogue
described in the previous section. As observed in Figure 3, the estimated curve of the
statistical model fits well with the data, suggesting that this model is appropriate to describe
the magnitude-frequency distribution on the JMA magnitude scale.
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Figure 3. Observed (open circles) and estimated (solid line) probability density functions of the magnitudes of all the shallow

(depth ≤ 30 km) earthquakes within the “Mainland” area [14], from January 2006 to December 2010. The best estimates of β
(or b-value), µ, and σ are shown in the top right corner.
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As a preliminary analysis to examine the daily variation, this model was applied to the
datasets of nighttime (0.0–0.2 days) and daytime (0.4–0.6 days) earthquakes; we found a clear
shift of the detection capability between the two datasets (Figure 4).
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Figure 4. Observed (open circles) and estimated (solid line) probability density functions of the magnitude of nighttime (0.0–0.2

days, red) and daytime (0.4–0.6 days, blue) earthquakes. The dotted black line indicates the estimated probability density

function for all the shallow earthquakes used in this study, as shown in Figure 3.

3.2. Evaluation of the daily variation of the detection capability in a Bayesian
framework

To quantify the daily variation of the detection capability, we estimated the temporal change
in the three parameters µ, β, and σ that appeared in the model. The procedure of the
estimation is similar to that used in [2, 18].

To represent the temporal variations in the parameters, we introduced a piecewise linear
function or linear spline [19]. The nodal point of the spline were taken at each of the
occurrence times of the earthquakes in a stacked sequence. For the sake of brevity, we

defined θ
(1)
i

, θ
(2)
i

, and θ
(3)
i

as the values of β, µ, and σ, respectively, at the occurrence time ti

of the i-th earthquake. Hence, the temporal variations of µ(t), β(t), and σ(t) were represented
by
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φ1(t) = β(t) =
θ
(1)
i+1 − θ

(1)
i

ti+1 − ti
(t − ti) + θ

(1)
i ,

φ2(t) = µ(t) =
θ
(2)
i+1 − θ

(2)
i

ti+1 − ti
(t − ti) + θ

(2)
i ,

φ3(t) = σ(t) =
θ
(3)
i+1 − θ

(3)
i

ti+1 − ti
(t − ti) + θ

(3)
i for ti ≤ t < ti+1. (5)

The goal of the estimation is the optimization of the following parameters:

θ = (θ(1); θ
(2); θ

(3))

= (θ
(1)
1 , . . . , θ

(1)
N ; θ

(2)
1 , . . . , θ

(2)
N ; θ

(3)
1 , . . . , θ

(3)
N ). (6)

The simultaneous optimization of such a large number (= 3N) of parameters is, however, an
unstable process; we incorporated a smoothness constraint or roughness penalty on φi(t)(i =
1, 2, 3) to enhance the stability of the optimization.

Following the equation (4), the log-likelihood function in this case is given by

ln L(θ) =
N

∑
i

ln f (Mi|θ
(1)
i , θ

(2)
i , θ

(3)
i ), (7)

and the smoothness constraint is quantified by the following equation:

Φ(θ|v1, v2, v3) =
3

∑
j=1

vj

∫ Te

Ts

[

∂

∂t
φj(t)

]2

dt, (8)

where vj is the parameter controlling the trade-off between the goodness-of-fit of the
statistical model to the data and the smoothness constraint, and [Ts, Te] denotes the domain
of the analyzed time period.

In the analysis of an ordinary earthquake sequence such as [2, 18], the start and end points
(Ts and Te) are different but in the present case they are the same, midnight because the
stacked one-day data are analyzed. Thus, the values of β, µ, and σ at Ts and Te should
connect smoothly. Considering this property and the equation (5) we rewrite the equation
(8) as follows:

Φ(θ|v1, v2, v3) =
3

∑
j=1

vj





N−1

∑
i=1

(θ
(j)
i+1 − µ

(j)
i )2

ti+1 − ti
+

(θ
(j)
1 − θ

(j)
N )2

(t1 − Ts) + (Te − tN)



 (9)
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Then, we introduced a penalized log-likelihood function [20, 21]

Q(θ|v1, v2, v3) = ln L(θ)− Φ(θ|v1, v2, v3), (10)

and the maximization of Q(θ|v1, v2, v3) provides the best estimate of θ, and it depends on
the values of vj(j = 1, 2, 3).

A Bayesian framework with the type II maximum likelihood approach [22] or the
maximization of marginal likelihood [23] enables us to determine the values of vj’s
objectively. We supposed that the prior distribution of θ corresponding to the smoothness
constraint is proportional to exp[−Φ(θ|v1, v2, v3)]; the equation (9) and the consideration of
the normalizing constant give us the prior distribution π(θ|v1, v2, v3) as follows:

π(θ|v1, v2, v3)

=
3

∏
j=1

N−1

∏
i=1

√

vj

π(ti+1 − ti)
exp



−
v(φ

(j)
i+1 − φ

(j)
i )2

ti+1 − ti





·

√

vj

π(t1 − Ts + Te − tN)
exp



−
v(φ

(j)
1 − φ

(j)
N )2

t1 − Ts + Te − tN



 . (11)

To find the marginal likelihood [24], we need to integrate the product of the prior distribution
π(θ|v1, v2, v3) and the likelihood function L(θ) shown in the equation (7) over θ, but this
integration is unachievable. This is because the integral of π(θ|v1, v2, v3) over θ is infinite
and is a so-called improper prior.

To deal with this computational problem we isolated θ
(j)
N (j = 1, 2, 3) from θ, because the

integral of π(θ|v1, v2, v3) over

θ−N = (θ
(1)
−N ; θ

(2)
−N ; θ

(3)
−N)

= (θ
(1)
1 , . . . , θ

(1)
N−1; θ

(2)
1 , . . . , θ

(2)
N−1; θ

(3)
1 , . . . , θ

(3)
N−1). (12)

is finite; we rewrote the original prior distribution π(θ|v1, v2, v3) as

π−N(θN |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ) which is a proper prior with respect to θ−N .

Then, to obtain the marginal likelihood L, we integrated out the product of the prior

distribution π−N(θ−N |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ) and the likelihood function L(θ) over θ−N :

L(v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ) =

∫

Θ
L(θ)π−N(θ−N |v1, v2, v3, θ

(1)
N , θ

(2)
N , θ

(3)
N )dθ−N , (13)

where Θ denotes the parameter space of θ−N .

We intended to find the set of the values of v1, v2, v3, θ
(1)
N , θ

(2)
N , and θ

(3)
N which maximizes the

marginal likelihood, because such a set is the best estimate of the six parameters [22, 23].
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In this hierarchical Bayesian scheme, the six parameters are often called as hyperparemeters
which govern the prior distribution.

The maximization of the marginal likelihood L(v1, v2, v3, θ
(1)
N

, θ
(2)
N

, θ
(3)
N

) was achieved
in the following way. In the first step, we intend to maximize the integrand

ln L(θ)π−N(θ−N |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ) in the equation (13) with respect to θ−N , which

is equivalent to the maximization of the penalized log-likelihood function Q(θ|v1, v2, v3)
appeared in the equation (10).

The logarithm of the integrand in the equation (13) is approximated by a quadratic form at
the initial value of θ−N = θ−N0 (and θ = θ0):

ln L(θ)π−N(θ−N |v1, v2, v3, θ
(1)
N

, θ
(2)
N

, θ
(3)
N

)

≈ ln L(θ0)π−N(θ−N0|v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N )

+g(θ−N0|v1, v2, v3, θ
(1)
N

, θ
(2)
N

, θ
(3)
N

) · (θ−N − θ−N0)

−
1

2
(θ−N − θ−N0)H(θ−N0|v1, v2, v3, θ

(1)
N

, θ
(2)
N

, θ
(3)
N

)(θ−N − θ−N0)
T, (14)

where g(θ−N0|v1, v2, v3, θ
(1)
N

, θ
(2)
N

, θ
(3)
N

) and H(θ−N0|v1, v2, v3, θ
(1)
N

, θ
(2)
N

, θ
(3)
N

) are the gradient
vector and the negative of the Hessian matrix (second partial derivatives) of the integrand at
θ−N = θ−N0, respectively. The symbol T denotes the transpose of a vector (or a matrix).

If the choice of the initial value θ−N0 is appropriate and is not far from θ−N =
θ̂−N which maximizes the integrand, the quadratic form is an upward convex and

H(θ−N0|v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ) is a positive definite. Hence, Cholesky decomposition [25]

enables us to factorize the matrix H(θ−N0|v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ) into the following form:

H(θ−N0|v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ) = AAT, (15)

where A is a lower triangular matrix.

The quadratic form is maximized at θ−N = θ
′
−N0 which satisfies

AT(θ−N − θ−N0) = A−1
g(θ−N0|v1, v2, v3, θ

(1)
N , θ

(2)
N , θ

(3)
N ) (16)

through the Newton method. We replace θ−N0 by θ
′
−N0 and iterate the procedure until θ−N

converges to find θ−N = θ̂−N .

At θ−N = θ̂−N where the integrand ln L(θ)π−N(θ−N |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ) is maximized,

the second term of the equation (14) vanishes because g(θ̂−N |v1, v2, v3, θ
(1)
N

, θ
(2)
N

, θ
(3)
N

) is a

zero vector. Hence, around θ−N = θ̂−N , the integrand is approximated by

Earthquake Research and Analysis - New Advances in Seismology174



ln L(θ)π−N(θ−N |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N )

≈ ln L(θ̂0)π−N(θ̂−N |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N )

−
1

2
(θ−N − θ̂−N)H(θ̂−N |v1, v2, v3, θ

(1)
N , θ

(2)
N , θ

(3)
N )(θ−N − θ̂−N)

T (17)

from the equation (14).

Then, in the second step, the integral in the equation (13) is computed by the Laplace

approximation [26]. Consequently, the log marginal likelihood lnL(v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N )

is given by

lnL(v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N )

≈ ln L(θ̂−N)π(θ̂−N |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N )

−
1

2
ln detH(θ̂−N |v1, v2, v3, θ

(1)
N , θ

(2)
N , θ

(3)
N ) +

n

2
ln 2π, (18)

where n is the number of parameters included in θ̂−N and n = 3(N − 1) in this case.

By repeating the two steps, we attempt to find the values of the six hyperparameters which

maximize the value of lnL(v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ). Eventually, we can find the optima of

the hyperparameters and θ−N .

With a sufficiently large n, the quadratic and Laplace approximations are good

[27] and ln L(θ)π−N(θ−N |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N ) is approximately a multidimensional

Gaussian distribution. In this case, the inverse of the negative of the Hessian matrix

H(θ̂−N |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N )−1 gives the estimation errors of the parameters [15]; the

[i + j(N − 1)]-th diagonal component of H(θ̂−N |v1, v2, v3, θ
(1)
N , θ

(2)
N , θ

(3)
N )−1 is the standard

error of θ
(j)
i .

3.3. Model comparison

So far, we assumed that each of the parameters β, µ, and σ has daily variations. For more
appropriate statistical modelling, however, it is necessary to examine the significance of the
temporal variations of the three parameters.

To apply the model where at least one of the three parameters β, µ, and σ is not assumed to
have the daily variation to data, we fix vj(’s) at 0 where j takes the value(s) corresponding
to the parameter(s) without the temporal variation. Then the procedure described in section

3.2 is conducted, but we exclude θ
(j) in the equation (6) and consider this exclusion in the

procedure following the equation.
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The possbile combination of the allowance or non-allowance of the temporal variation in β,
µ, and σ yields eight cases in total. We introduce Akaike’s Bayesian Information Criterion
ABIC [23] in the comparison of the goodness-of-fit of the eight cases to data:

ABIC = −2(maximum ln L(v1, v2, v3, θ
(1)
N

, θ
(2)
N

, θ
(3)
N

)

+2(number of non-fixed hyperparameters), (19)

where lnL(v1, v2, v3, θ
(1)
N

, θ
(2)
N

, θ
(3)
N

) is the marginal likelihood given by the equation (18). The
model with smaller ABIC value is considered to have a better fit to data.

4. Results of the analysis of the JMA catalogue

On the basis of the comparison of the ABIC values for the eight models, we found that not
only µ but also β and/or σ have the significant daily changes in the four stacked sequences
except in the sequence for 2009.

Figure 5 shows the estimated daily variation of β (or b-value) found in the sequence for 2007.
In this sequence the value of β drastically decreases at around 0.4 days (i.e., approximately
9:30 a.m.). On 27 March 2007 and 16 July 2007, there were two major earthquakes, the
Noto Hanto earthquake with Mw = 6.9 and the Chuuetsu-oki earthquake with Mw = 6.6.
Their occurrence times are coincidentally close to 10 a.m. (9:41 a.m. and 10:13 a.m. for the
Noto Hanto and Chuuetsu-oki earthquakes, respectively), and these two major earthquakes
are followed by active aftershock sequences (see Figure 5b). Thus, it is suspicious that the
drastic decrease of β is the daily variation of our interest in this study and the two aftershock
sequences would cause the decrease of β. To confirm this point the aftershock sequences
following the Noto Hanto and Chuuetsu-oki earthquakes were excluded, and then the same
analysis was applied; the model where only the daily variation of µ is allowed was chosen
as the best model.

Year Excluded sequence and area

2006 Earthquake swarm in Izu Peninsula
(139.00-139.45◦E, 34.65-35.15◦N)

2007 The Noto Hanto earthquake and its aftershock sequence
(136.60-137.00◦E, 37.00-37.50◦N)

The Chuuetsu-oki earthquake and its aftershock sequence
(138.30-138.80◦E, 37.30-37.65◦N)

2008 The Iwate-Miyagi Nairiku earthquake and its aftershock sequence
(140.50-141.10◦E, 38.70-39.30◦N)

2010 Earthquake sequence in Nakadoori, Fukushima Prefecture
(139.95-140.10◦E, 37.20-37.35◦N)

Table 1. Active sequences which may affect the examination of the daily variation in β, µ, and σ. The corresponding areas are
shown in parentheses.

In similar to this case, from the sequences for 2006, 2008, and 2010, the active sequences
listed in Table 1 were excluded and we re-analyzed them after the exclusion. Consequently,
the case with only the daily variation of µ was considered as the best case for these three
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Figure 5. (a) Estimated daily variation of β for the stacked sequence for 2007 (bold line), and its two standard error bands (thin
lines), as a function of the elapsed time since midnight. The two dotted lines indicate the occurrence times of the Noto Hanto

and Chuuetsu-oki earthquakes. (b) Magnitude-time plot of the stacked sequence for 2007.

years, the same as that for 2007 (Table 2). As previously mentioned, in the original sequence
for 2009, the case where only the daily variation of µ is allowed has been chosen as the best
one. This is probably because no significant seismic activity occurred in that year.

Figure 6 depicts the daily variations of µ estimated for the sequences obtained in each of
the five years with the exclusion of the significant activities listed in Table 1 (except 2009).
There exist minor differences in these five profiles of µ, but they follow the almost the same
pattern. First, during the time period between 0.0 and 0.2 days (i.e., between 0 a.m. and 5
a.m.) µ takes the smallest value and the detection capability is the best. Then the value of µ
gradually increases as the time elapses, and it has a local peak around 0.4 days. Following
the local peak µ shows a transient decrease corresponding to the recovery of the detection
capability during lunchtime. At around 0.6 days (between 2 p.m. and 3 p.m.) it has a local
peak again, and then it becomes smaller as the time gets closer to midnight. The differences
of the maximum and minimum values of µ are 0.21–0.24.
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Models ∆ABIC

temporal variation Year
β µ σ 2006 2007 2008 2009 2010

1160.9 1125.1 1092.6 1405.3 1448.9
√

266.7 320.3 236.5 495.7 383.5
√

0.0 0.0 0.0 0.0 0.0
√

389.8 352.2 336.1 450.91 546.6
√ √

2.0 1.8 2.0 2.0 2.0
√ √

127.4 139.4 103.8 183.93 208.6
√ √

2.0 2.0 2.0 1.1 1.1
√ √ √

3.9 4.0 4.0 1.4 1.5

Table 2. Model comparison through ABIC values. The differences in ABIC values, ∆ABIC, from cases where only the daily

variation in µ is allowed are shown. The mark
√

indicates the allowance of the daily variation in β, µ, and σ.

5. Discussions

To some extent, we can figure out the temporal pattern of the detection capability through the
magnitude-time plots in Figure 6. In these plots there are some absences of small earthquakes
with M = −0.5 or below during daytime. These plots also show a short recovery of the
detection capability around noon. [28] has found a similar pattern of the detection capability
in California through the hourly distribution of the number of reported earthquakes in
the Advanced National Seismic Systems (ANSS) catalogue. Note that, however, both
magnitude-time plots and hourly distributions provides us with only a qualitative pattern of
the detection capability. For an understanding of the precise characteristics of an earthquake
catalogue it is necessary to evaluate quantitatively the temporal change of the detection
capability, and the statistical approach shown in this chapter is effective for such a purpose.

Of the three parameters β (or b-value), µ, and σ in the statistical model to describe an
observed magnitude-frequency distribution, only µ shows the significant daily variation
whereas β and σ do not show any variation. The temporal changes of b-value have been
reported in some studies [15, 29, 30], and laboratory experiments [31–33], depth dependence
[34–36], and faulting-style dependence of the b-value [37, 38] suggest a relation between
stress state and b-value. We could consider air temperature and atmospheric pressure as
physical factors which may cause the diurnal cycle of the stress changes in the Earth’s crust.
However, a constant value of β implies that the diurnal stress changes following the daily
change of the temperature and/or pressure are insufficient to affect the magnitude-frequency
distribution of earthquakes.

It is difficult to arrive at a plausible interpretation for a constant value of σ, because the factors
controlling the value of σ still remain unknown. It has been suggested that σ is related to the
spatial distribution of seismograph stations [2]. Following this suggestion the result of the
unchanged σ is reasonable, because the spatial distribution of seismograph stations does not
have daily variation.

As briefly described in section 4, the differences between the maximum and minimum values
of µ are less than 0.25. In Figure 6, the values of µ in the case where we do not consider the
daily variation of µ are indicated by the dotted lines; the difference between the maximum
value of µ with the daily variation and that without the variation is approximately 0.15.
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Figure 6. (Top) Estimated daily variations of µ in the stacked sequences of each of the five years (bold line) with the exclusion

of the significant activities listed in Table 1, and their two standard error bands (thin lines), as a function of the elapsed time

since midnight. The horizontal dotted lines shows the best estimate of µ in the case where we do not consider the temporal

variation of µ. (Bottom) Magnitude-time plot of the stacked sequences for 2007. Note that only earthquakes with M ≤ 2.5 are

plotted to clarify the absences of small earthquakes during daytime but earthquakes with M > 2.5 are used in the analysis.
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This suggests that, if we determine Mc without taking into consideration the daily variation
of the detection capability, Mc − 0.2 would be appropriate as the completeness magnitude to
avoid any unexpected biases in our seismicity analysis.

In the present study, we use the smoothness constraint, as shown in the equation (9), which
reflects the cyclic property of data. Suppose that we use a different smoothness constraint

Φ(θ|v1, v2, v3) =
3

∑
j=1

vj





N−1

∑
i=1

(θ
(j)
i+1 − µ

(j)
i )2

ti+1 − ti



 , (20)

where we do not impose a smoothness constraint between the start and end points on the
values of β, µ, and σ. If we analyze a sufficiently large dataset such as the five sequences
used in this study, the introduction of the constraint without considering the cyclic property
is not problematic. This is because a sufficiently large sample size reasonably reduce random
fluctuations or estimation errors, and therefore the estimated values of the parameters at
the start and end points connects smoothly without the smoothness constraint. In actual,
the analyses with the constraints given by the equations (20) and (9) gives almost identical
temporal profiles of µ for the five sequences.
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Figure 7. (a) Map showing the 300 earthquakes (green circles) used in the demonstrative analysis. (b) (top) Estimated

daily variations of µ using the constraint following the equation (9) (red) and those following the equation (20). (bottom)
Magnitude-time plot of the one-day stacked sequence of the 300 earthquakes.
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For a small dataset, however, it is important to use the appropriate smoothness constraint.
As a demonstration of the importance, a dataset containing 300 earthquakes distributed
locally in a northern part of Japan (Figure 7a) was analyzed using the two constraints. The
estimated daily variation of µ is shown in Figure 7b; we can observe systematic deviation
between the two cases. The ABIC value with the smoothness constraint of the equation
(9) is smaller than that corresponding to the equation (20), and the difference between the
two ABIC values is 2.5, which is statistically significant. This demonstration implies that
an analysis with an unreasonable constraint or prior distribution, which does not involve
the essential characteristic of data and is statistically invalid, may leads us to an incorrect
assessment of detection capability.

6. Concluding remarks

This chapter provided a statistical technique to make a quantitative evaluation of the daily
variation of earthquake detection capability. As an example of its application to actual data,
the datasets taken from the recent JMA catalogue were analyzed, and a guideline for the
choice of completeness magnitude in the JMA catalogue was shown.

It should be noted that the results shown in this chapter were derived from an analysis
where the earthquake sequence over an wide area was analyzed simultaneously. The daily
variation of cultural noise, however, must have location dependency. Thus, in a manner
similar to the analysis shown in Figure 7, we should examine regional earthquake sequences
comprehensively to deal with an earthquake catalogue in a more sophisticated manner.

In this chapter we considered only the daily variation of detection capability, but human
activities also have a weekly periodicity [28]. Additionally, we often observe seasonal
(annual) variations in seismic noise level [39, 40], which are mainly caused by meteorological
factors. Thus, the development of an appropriate method to handle such multiple periodic
variations of earthquake detection capability is a necessary challenge to determine the
completeness magnitude more accurately.
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