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1. Introduction

Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis, which is transmitted
through inhalation of aerosolized droplets. TB mainly attacks the lungs, but can also affect
other parts of the body. TB is highly contagious during the active stage of the disease and can
infect an individual through inhalation of as few as 10 Mycobacterium tuberculosis (MTB)
bacteria. After inhalation, these bacteria are mainly captured by the alveolar macrophages, but
they can evade the host immune system and remain in the dormant stage for a long period of
time, at which point they can reactivate to a virulent form under immune-compromised
conditions of the host. This is possible because M. tuberculosis can persist in slow growing as
well as in fast growing stages which makes treatment challenging. Almost all of the antibiotics
that can be used to treat TB work when the bacteria are actively dividing. In the intensive phase
of TB treatment, the antibiotics mainly kill rapidly growing bacteria, which causes rapid
sputum conversion, and the eradication of clinical symptoms. However, in order to kill the
persistent or slow growing strains of MTB, the continuation phase of the treatment is essential.
TB can be treated effectively by using first line drugs (FLD) isoniazid (INH), rifampin (RIF),
pyrazinamide (PZA), ethambutol (EMB) and streptomycin (SM). However, this first line
therapy often fails to cure TB for several reasons. Relapse and the spread of the disease
contribute to the emergence of drug resistant bacteria. The emergence of multidrug resistant
TB (MDR-TB), i.e. which is resistant to at least isoniazid (INH) and rifampicin (RIF), is of great
concern, because it requires the use of second-line drugs that are difficult to procure and are
much more toxic and expensive than FLDs [1]. Therefore, the detection and treatment of drug
susceptible or single drug resistant TB is an important strategy for preventing the emergence
of MDR-TB [2]. M. tuberculosis strains with extensively drug resistant-TB (XDR-TB), that is
resistant to either isoniazid or rifampicin (like MDR tuberculosis), any fluoroquinolone, and
at least one of three second-line antituberculosis injectable drugs—i.e., capreomycin, kanamy‐
cin, and amikacin have also been reported [3].
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First- and second-line drugs, minimum inhibitory concentrations (MICs) and mechanisms of
drug resistance are presented in Table 1 [4]. Antituberculosis drugs are mainly divided into
two parts.

1. First-line antituberculosis drugs- Isoniazid (INH), rifampicin (RIF), ethambutol (EMB),
pyrazinamide (PZA) and streptomycin (SM).

2. Second-line antituberculosis drugs- Sub divided into two

i. Fluoroquinolones- Ofloxacin (OFX), levofloxacin (LEV), moxifloxacin (MOX)
and ciprofloxacin (CIP).

ii. Injectable antituberculosis drugs- Kanamycin (KAN), amikacin (AMK) and
capreomycin (CAP).

iii. Less-effective second-line antituberculosis drugs- Ethionamide (ETH)/Prothio‐
namide (PTH), Cycloserine (CS)/Terizidone, P-aminosalicylic acid (PAS).

Drug MIC (mg/L) Gene Role of gene product

Isoniazid 0.02–0.2 (7H9/7H10) katG catalase/peroxidase

inhA enoyl reductase

ahpC alkyl hydroperoxide reductase

Rifampicin 0.05–0.1 (7H9/7H10) rpoB β-subunit of RNA polymerase

Pyrazinimide 16–50 (LJ) pncA PZase

Streptomycin 2–8 (7H9/7H10) rpsL S12 ribosomal protein

rrs 16S rRNA

gidB 7-methylguanosine methyltransferase

Ethambutol 1–5 (7H9/7H10) embB arabinosyl transferase

Fluoroquinolones 0.5–2.0 (7H9/7H10) gyrA/gyrB DNA gyrase

Kanamycin 2–4 (7H9/7H10) rrs 16S rRNA

eis aminoglycoside acetyltransferase

Amikacin 2–4 (7H9/7H10) rrs 16S rRNA

Capreomycin 2-4 (7H9/7H10) rrs 16S rRNA

tylA rRNA methyltransferase

Ethionamide 2.5–10 (7H11) inhA enoyl reductase

p-aminosalicylic acid 0.5 (LJ) thyA thymidylate synthase A

Table 1. First- and second-line drugs, MICs and mechanisms of drug resistance

Tuberculosis - Current Issues in Diagnosis and Management164



2. First-line antituberculosis drugs

2.1. Isoniazid

Isoniazid (INH) is one of the most effective and specific antituberculosis drugs, which has been
a key to treatment since its introduction in 1952 [5]. M. tuberculosis is highly susceptible to INH
(MIC 0.02–0.2 μg/ml). INH is only active against growing tubercle bacilli, and is not active
against non-replicating bacilli or under anaerobic conditions. INH enters the mycobacterial
cell by passive diffusion [6]. The most significant adverse reactions associated with isoniazid
administration are hepatotoxicity and neurotoxicity.

Resistance to isoniazid is a complex process. Mutations in several genes, including katG,
ahpC, and inhA, have all been associated with isoniazid resistance. INH is a prodrug that is
activated by the mycobacterial enzyme KatG [7]. INH-resistant clinical isolates of M. tubercu‐
losis often lose catalase and peroxidase enzyme encoded by katG [8], especially in high-level
resistant strains (MIC > 5 μg/ml) [9]. Low-level resistant strains (MIC < 1 μg/ml) often still
possess catalase activity [9]. Although mutations in katG have been shown to be responsible
for INH resistance [10], it is not clear whether the regulation of katG expression plays a role in
INH resistance. The katG gene encodes a bifunctional catalase-peroxidase that converts INH
to its active form [7]. Activated INH inhibits the synthesis of essential mycolic acids by
inactivating the NADH-dependent enoyl-acyl carrier protein reductase encoded by inhA [11].

A study by Hazbo´n et al. [12] analysed 240 alleles and found that mutations in katG, inhA and
ahpC were most strongly associated with isoniazid resistance. A decrease in or total loss of
catalase/peroxidase activity as a result of katG mutations are the most common genetic
alterations associated with isoniazid resistance [7]. Ser315Thr is the most widespread katG
mutation in clinical isolates, but there are many mutations that result in inactivation of catalase-
peroxidase, with MICs ranging from 0.2 to 256 mg/L.

Mutations in inhA or its promoter region are usually associated with low-level resistance (MICs
= 0.2 −1 μg/ml) and are less frequent than katG mutations [10, 12]. INH-resistant M. tuberculo‐
sis harboring inhA mutations could have additional mutations in katG, conferring higher levels
of INH resistance [13]. The most common inhA mutation occurs in its promoter region (-15C
→ T) and it has been found more frequently associated with mono-resistant strains [14].

In M. tuberculosis, ahpC codes for an alkyl hydroperoxidase reductase that is implicated in
resistance to reactive oxygen and reactive nitrogen intermediates. It was initially proposed
that mutations in the promoter of ahpC could be used as surrogate markers for the detection
of isoniazid resistance [15]. However, several other studies have found that an increase in the
expression of ahpC seems to be more a compensatory mutation for the loss of catalase/
peroxidase activity rather than the basis for isoniazid resistance [4, 16].

2.2. Rifampicin

Rifampicin (RIF) was introduced in 1972 as an antituberculosis drug and has excellent steriliz‐
ing activity. Rifampicin acts by binding to the β-subunit of RNA polymerase (rpoB) [17], the en‐
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zyme  responsible  for  transcription  and  expression  of  mycobacterial  genes,  resulting  in
inhibition of the bacterial transcription activity and thereby killing the organism. An important
characteristic of rifampicin is that it is active against actively growing and slowly metabolizing
(non-growing) bacilli [18]. RIF produces relatively few adverse reactions. It may cause gastro‐
intestinal upset. Hepatotoxicity occurs less frequently than with isoniazid administration.

Rifampicin MICs ranging from 0.05 to 1 μg/ml on solid or liquid media, but the MIC is higher
in egg media (MIC = 2.5–10 μg/ml). Strains with MICs < 1 μg/ml in liquid or agar medium or
MICs < 40 μg/ml in Lowenstein-Jensen (LJ) medium are considered RIF-susceptible. The great
majority of M. tuberculosis clinical isolates resistant to rifampicin show mutations in the gene
rpoB that encodes the β-subunit of RNA polymerase. This results in conformational changes
that determine a low affinity for the drug and consequently the development of resistance [19].
Mutations in a ‘hot-spot’ region of 81 bp of rpoB have been found in about 96% of rifampicin-
resistant M. tuberculosis isolates. This region, spanning codons 507–533 (numbering according
to the Escherichia coli rpoB sequence), is also known as the rifampicin resistance-determining
region (RRDR) [17]. Mutations in codons 531, 526 and 516 (Ser531Leu, His526Tyr, and
Asp516Val) are the most frequently reported mutations in most of the studies [20, 21]. Some
studies have also reported mutations outside of the hot-spot region of rpoB in rifampicin-
resistant M. tuberculosis isolates [22].

2.3. Pyrazinamide

Pyrazinamide (PZA) is an important first-line antituberculosis (anti-TB) drug that is used in
short-course chemotherapy and is one of the cornerstone drugs in the treatment of MDR-TB
[23]. One key characteristic of pyrazinamide is its ability to inhibit semidormant bacilli residing
in acidic environments [23]. Pyrazinamide is a structural analogue of nicotinamide and is a
pro-drug that needs to be converted into its active form, pyrazinoic acid, by the enzyme
pyrazinamidase/nicotinamidase (PZase) [24]. PZA is only active against M. tuberculosis at acid
pH (e.g., 5.5) [25]. Even at acid pH (5.5), PZA activity is quite poor, with MICs in the range of
6.25–50 μg/ml [26]. Hypersensitivity reactions and gastrointestinal upset may occur with PZA
administration.

PZase is encoded in M. tuberculosis by the gene pncA [27]. Mutations in the pncA gene may
cause a reduction in PZase activity which may be the major mechanism of PZA resistance in
MTB [28, 29]. The mutations of the pncA gene in PZA-resistant MTB isolates has been well
characterized, however the correlation varies between different geographical areas including
missense mutations, one or more base insertions or deletions, and complete deletion [28-32].
Despite the highly diverse and scattered distribution of pncA mutations, there is some degree
of clustering of mutations within different regions of the pncA gene such as at amino acid
residues 3–17, 61–85 and 132–142 has been reported [33, 34]. The highly diverse mutation
profile in the pncA gene observed in PZA-resistant strains is unique among drug-resistance
genes in M. tuberculosis [28]. While the reason behind this diversity is still unclear, it is thought
that this could be due to adaptive mutagenesis or due to deficiency in DNA mismatch repair
mechanisms [23]. Most PZA-resistant M. tuberculosis strains (72–97%) have mutations in pncA;
[28, 29, 34, 35] however; some resistant strains do not have pncA mutations.
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2.4. Ethambutol

Ethambutol (EMB) [dextro-2,2’-(ethylenediimino)di-1-butanol], which is an essential first-line
drug in tuberculosis treatment, plays an important role in the chemotherapy of drug-resistant
TB [36]. EMB is also an important antimycobacterial drug as it enhances the effect of other
companion drugs including aminoglycosides, rifamycins and quinolones. The most common
side effects observed with ethambutol are dizziness, blurred vision, color blindness, nausea,
vomiting, stomach pain, loss of appetite, headache, rash, itching, breathlessness, swelling of
the face, lips or eyes, numbness or tingling in the fingers or toes. Patients taking ethambutol
should have their visual acuity and color vision checked at least monthly.

The MICs of EMB for M. tuberculosis are in the range of 0.5–2 μg/ml. EMB is a bacteriostatic
agent that is active for growing bacilli and has no effect on non-replicating bacilli. EMB
interferes with the biosynthesis of cell wall arabinogalactan [37]. It inhibits the polymerization
of cell-wall arabinan of arabinogalactan and of lipoarabinomannan, and induces the accumu‐
lation of D-arabinofuranosyl-P-decaprenol, an intermediate in arabinan biosynthesis [38, 39].

Arabinosyl transferase, encoded by embB, an enzyme involved in the synthesis of arabinoga‐
lactan, has been proposed as the target of EMB in M. tuberculosis [40] and M. avium [41]. In M.
tuberculosis, embB is organized into an operon with embC and embA in the order embCAB. embC,
embB and embA share over 65% amino acid identity with each other and are predicted to encode
transmembrane proteins [40]. Mutations in the embCAB operon, in particular embB, and
occasionally embC, are responsible for resistance to EMB [40]. Point mutations of the em‐
bABC gene commonly occurred in embB codon 306 [40, 42, 43], and mutations in the embB306
codon have been proposed as a marker for EMB resistance in diagnostic tests [44]. However,
point mutations in the embB306 locus occur in only 50 to 60% of all EMB-resistant clinical
isolates [42, 45-47], and embB306 mutations can also occur in EMB-susceptible clinical isolates
[46, 47]. Five different mutations were uncovered in this codon (ATG→ GTG/CTG/ATA, ATC
and ATT), resulting in three different amino acid shifts (Met→ Val, Leu, or Ile) [43]. Although
the association between embB306 mutation and ethambutol resistance or broad drug resistance
has been observed in several groups’ studies with either clinical or laboratorial isolates [48,
49], the exact role of embB306 mutations play in the development of ethambutol resistance and
multidrug resistance in M. tuberculosis is not fully understood. About 35% of EMB-resistant
strains (MIC <10 μg/ml) do not have embB mutations [39, 45], suggesting that there may be
other mechanisms of EMB resistance. Further studies are necessary to identify the potential
new mechanisms of EMB resistance.

2.5. Streptomycin

Streptomycin (SM), an aminocyclitol glycoside antibiotic, was the first drug to be used in the
treatment of TB, in 1948 [50]. SM kills actively growing tubercle bacilli with MICs of 2–4
μg/ml, but it is inactive against non-growing or intracellular bacilli [23]. The drug binds to the
16S rRNA, interferes with translation proofreading, and thereby inhibits protein synthesis [51,
52]. Ototoxicity and nephotoxicity are associated with SM administration. Vestibular dysfunc‐
tion is more common than auditory damage. Renal toxicity occurs less frequently than with
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kanamycin or capreomycin. Hearing and renal function should be monitored in patients
getting SM.

Mutations associated with streptomycin resistance have been identified in the genes encoding
16S rRNA (rrs) [53] and ribosomal protein S12 (rpsL) [54-57]. Ribosomal protein S12 stabilizes
the highly conserved pseudoknot structure formed by 16S rRNA [58]. Amino acid substitu‐
tions in RpsL affect the higher-order structure of 16S rRNA [51] and confer streptomycin
resistance. Alterations in the 16S rRNA structure disrupt interactions between 16S rRNA and
streptomycin, a process that results in resistance [59]. Mutations in rpsL and rrs are the major
mechanism of SM resistance [54, 56, 57], accounting for respectively about 50% and 20% of
SM-resistant strains [54, 56, 57]. The most common mutation in rpsL is a substitution in codon
43 from lysine to arginine [54, 56, 57], causing high-level resistance to SM. Mutation in codon
88 is also common [54, 56, 57]. Mutations of the rrs gene occur in the loops of the 16S rRNA
and are clustered in two regions around nucleotides 530 and 915 [39, 54, 56, 57]. However,
about 20–30% of SM-resistant strains with a low level of resistance (MIC < 32 μg/ml) do not
have mutations in rpsL or rrs [60], which indicates other mechanism(s) of resistance. A
mutation in gidB, encoding a conserved 7-methylguanosine (m(7)G) methyltransferase specific
for 16S rRNA, has been found to cause low-level SM resistance in 33% of resistant M. tubercu‐
losis isolates [61]. A subsequent study showed that while Leu16Arg change is a polymorphism
not involved in SM resistance, other mutations in gidB appear to be involved in low-level SM
resistance [62]. In addition, some low-level SM resistance seems to be caused by increased
efflux as efflux pump inhibitors caused increased sensitivity to SM, although the exact
mechanism remains to be identified [62].

3. Second-line antituberculosis drugs

3.1. Fluoroquinolones

The fluoroquinolones (FQs) have broad-spectrum antimicrobial activity and so are widely
used for the treatment of bacterial infections of the respiratory, gastrointestinal and urinary
tracts, as well as sexually transmitted diseases and chronic osteomyelitis [63]. In contrast to
many other antibiotics used to treat bacterial infections, the FQs have excellent in vitro and in
vivo activity against M. tuberculosis [64, 65]. FQs include ciprofloxacin, ofloxacin, levofloxacin,
and moxifloxacin. So, FQs are currently in use as second-line drugs in the treatment of TB.
Adverse effects are relatively infrequent (0.5–10% of patients) and include gastrointestinal
intolerance, rashes, dizziness, and headache. Most studies of fluoroquinolone side effects have
been based on relatively short-term administration for bacterial infections, but trials have now
shown the relative safety and tolerability of fluoroquinolones administered for months during
TB treatment in adults.

The cellular target of FQs in M. tuberculosis is DNA gyrase, a type II topoisomerase consist‐
ing of two A and two B subunits encoded by gyrA and gyrB genes, respectively [66]. Muta‐
tions in a small region of gyrA, called quinolone resistance-determining region (QRDR) and,
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less frequently, in gyrB are the primary mechanism of FQ resistance in M. tuberculosis [66,
67]. Analysis of QRDR alone by genotypic tests has been suggested as sufficient for rapid
identification of vast majority of FQ-resistant M. tuberculosis strains as additional targeting
of gyrB did not enhance the sensitivity significantly [67, 68].

Mutations within the QRDR of gyrA have been identified in clinical and laboratory-selected
isolates of M. tuberculosis, largely clustered at codons 90, 91 and 94 [69-73], with Asp94 being
relatively frequent [71, 74]. Codon 95 (Ser95Thr) contains a naturally occurring polymor‐
phism that is not related to fluoroquinolone resistance, as it occurs in both fluoroquinolone-
susceptible and fluoroquinolone-resistant strains [75]. A less common involvement is codon
88 [76]. For clinical isolates, gyrB mutations appear to be of much rarer occurrence [72, 73].
Generally, two mutations in gyrA or concomitant mutations in gyrA plus gyrB are required
for the development of higher levels of resistance [69, 77].

3.2. Aminoglycosides (kanamycin, amikacin and capreomycin)

The aminoglycosides amikacin (AMK)/kanamycin (KAN) and the cyclic polypeptide cap‐
reomycin (CAP) are important injectable drugs in the treatment of multidrug-resistant tu‐
berculosis. Although belonging to two different antibiotic families, all exert their activity at
the level of protein translation. Renal toxicity occurs from these drugs. Regular monitoring
of hearing and renal function is recommended.

AMK and KAN are aminoglycosides that have a high level of cross-resistance between them
[78-80]. The cyclic polypeptide CAP is structurally unrelated to the aminoglycosides and
thus is a potential candidate to replace AMK or KAN if resistance to either of them is sus‐
pected [81, 82]. It has been demonstrated that the risk of treatment failure and mortality in‐
crease when CAP resistance emerges among MDR-TB cases [83]. However, cross-resistance
in M. tuberculosis between AMK/KAN and CAP has been observed in both clinical isolates
and laboratory-generated mutants [79, 80, 84, 85].

AMK/KAN and CAP primarily affect protein synthesis in M. tuberculosis and resistance to
these drugs is associated with changes in the 16S rRNA (rrs) [78, 80, 81, 85, 86]. The rrs muta‐
tion A1401G causes high-level AMK/KAN and low-level CAP resistance. C1402T is associat‐
ed with CAP resistance and low-level KAN resistance. G1484T is linked to high-level
AMK/KAN and CAP resistance [79, 80, 84, 86]. Low-level resistance to kanamycin has been
correlated to mutations in the promoter region of the eis gene encoding aminoglycoside ace‐
tyltransferase, the enhanced intracellular survival protein, Eis [87].

Resistance to the cyclic peptide capreomycin has also been associated with mutations in
tlyA  [86].  The gene tlyA  encodes a putative 2’-O-methyltransferase (TlyA) that  has been
suggested to methylate nucleotide C1402 in helix 44 of 16S rRNA and nucleotide C2158 in
helix 69 of 23S rRNA in M. tuberculosis  [81, 88]. Capreomycin binds to the 70S ribosome
and inhibits mRNA–tRNA translocation [89]. It is believed that TlyA methylation enhan‐
ces the antimicrobial activity of capreomycin [81] and that disruption of tlyA leads to cap‐
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reomycin resistance because the unmethylated ribosome is insensitive to the drug [81, 86,
88]. The identified mechanism of capreomycin resistance on the basis of in vitro selected
mutants has found that tlyA mutations were common [80, 86] whereas infrequent in clini‐
cal isolates of M. tuberculosis [79, 80].

3.3. Ethionamide/prothionamide

Ethionamide (ETH, 2-ethylisonicotinamide) is a derivative of isonicotinic acid and has been
used as an antituberculosis agent since 1956. The MICs of ETH for M. tuberculosis are 0.5–2 μg/
ml in liquid medium, 2.5–10 μg/ml in 7H11 agar, and 5–20 μg/ml in LJ medium. Ethionamide
and the similar drug prothionamide (PTH, 2-ethyl-4-pyridinecarbothioamide) act as pro-
drugs, like isoniazid. Which is activated by EtaA/EthA (a mono-oxygenase) [90, 91] and inhibits
the same target as INH, the InhA of the mycolic acid synthesis pathway [92]. Once delivered
into the bacterial cell, ethionamide undergoes several changes. Its sulfo group is oxidized by
flavin monooxygenase, and the drug is then converted to 2-ethyl-4-aminopyridine. The
intermediate products formed before 2-ethyl-4-aminopyridine seem to be toxic to mycobac‐
teria, but their structures are unknown (may be highly unstable compounds). Mutants resistant
to ethionamide are cross-resistant to prothionamide. ETH frequently causes gastrointestinal
side effects, such as abdominal pain, nausea, vomiting and anorexia. It can cause hypothyr‐
oidism, particularly if it is used with para-aminosalicyclic acid.

3.4. p-Amino salicylic acid

p-Amino salicylic acid (PAS) was one of the first antibiotics to show anti-TB activity and was
used to treat TB in combination with isoniazid and streptomycin [93]. Later, with the discovery
of other more potent drugs including rifampicin, its use in first line regimens was discontinued.
PAS is still useful as part of a treatment regimen for XDR TB although its benefit is limited and
it is extremely toxic. Thymidylate synthase A, encoded by thyA, an enzyme involved in the
biosynthesis of thymine, has been proposed recently as the target of PAS in M. bovis BCG [94].
Most common mutation in thyA was Thr202Ala, though few susceptible isolates also showed
the same mutation [95]. However, its mechanism of action was never clearly elucidated. The
most common adverse reactions associated with PAS are gastrointestinal disturbances.

3.5. Cycloserine

Cycloserine (CS) is an antibiotic that is used to treat TB. The exact mechanism of action of
cycloserine is unknown, but it is thought to prevent the tuberculosis bacteria from making
substances called peptidoglycans, which are needed to form the bacterial cell wall. This results
in the weakening of bacteria’s cell wall, which then kills the bacteria. Cycloserine possesses
high gastric tolerance (compared with the other drugs) and lacks cross-resistance to other
compounds. But it causes adverse psychiatric effects; [96, 97] which is its main drawback. So,
psychiatric interrogation is necessary before prescribing cycloserine drug. Cycloserine is one
of the cornerstones of treatment for MDR and XDR tuberculosis [96, 97, 98]. Terizidone (a
combination of two molecules of cycloserine) might be less toxic [96, 97], although studies of
this drug are scarce.
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4. Conclusions

Despite all the advances made in the treatment and management, TB still remains as one of
the main public health problems that have plagued mankind for millennia. The challenges
posed by M. tuberculosis infection, through its interaction with the immune system and its
mechanisms for evasion, require many more breakthroughs to make a significant impact on
the worldwide tuberculosis problem. The introduction of MDR and XDR strains of M.
tuberculosis poses several problems in mycobacterial genetics and phthisiotherapy. Among the
response priorities, rapid detection of anti-tuberculosis drug resistance, use of appropriate
regimens for treatment, and new drug development are of paramount importance. However,
regarding the dynamics of TB transmission, and also in view of rational development of new
anti-TB drugs, it is extremely important to extend our knowledge on the molecular basis of
drug resistance and all its complexity. It is necessary to clarify the association between specific
mutations and the development of MDR-TB or the association between drug resistance and
fitness. This would allow better evaluation of the transmission dynamics of resistant strains
and more accurate prediction of a future disease scenario. Adequate monitoring of drug
resistance, especially MDR/XDR-TB in new patients and its transmission, molecular charac‐
terization of the drug-resistant strains, and analysis of patients’ immune status and genetic
susceptibility are also needed to address the problem of the fitness, virulence and transmissi‐
bility of drug-resistant M. tuberculosis strains.
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