
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 4

Analytical Methodology for
Determination of Trace Cu in Hydrated Alcohol Fuel

Fabiana Aparecida Lobo, Fernanda Pollo,
Ana Cristina Villafranca and Mercedes de Moraes

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52514

1. Introduction

Many private and governmental initiatives have been established worldwide to identify viable
alternatives to petroleum derivatives [1,2].The goals are to reduce dependence on imported en‐
ergy from non-renewable sources, while mitigating environmental problems caused by petro‐
leum products, and to develop national technologies in the alternative energy field.

Ethyl alcohol (ethanol) is considered to be a highly viable alternative fuel. Its production from
biomass means that it can provide a source of energy that is both clean and renewable. The in‐
clusion of ethanol as a component of gasoline can help to reduce problems of pollution in many
regions, since it eliminates the needto use tetraethyl lead (historically notorious as a highly tox‐
ic trace component of the atmosphere in major cities) as an anti-knock additive.

The quantitative monitoring of metal elements in fuels (including gasoline, alcohol, and die‐
sel) is important from an economic perspective in the fuel industry as well as in the areas of
transport and environment. The presence of metalspecies (ions or organometallic com‐
pounds) in automotive fuels can cause engine corrosion, reduce performance, and contrib‐
ute to environmental contamination [2-5].

The low concentrations of metals in fuels typically require the use of sensitive spectrometric an‐
alytical techniques for the purposes of quality control. Atomic absorption spectrometry (AAS)
can be applied for the quantitative determination of many elements (metals and semi-metals)
in a wide variety of media including fuels, foodstuffs, and biological, environmental, and geo‐
logical materials, amongst others. The principle of the technique is based on measurement of
the absorption of optical radiation, emitted from a source, by ground-state atoms in the gas
phase. Atomization can be achieved using a flame, electrothermal heating, or specific chemical
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reaction (such as the generation of Hg cold vapor). Electrothermalatomizers include graphite

tubes, tungsten filaments, and quartz tubes (for atomization of hydrides), as well as metal or ce‐

ramic tubes. Flame atomic absorption spectrometry (FAAS) is mostly used for elemental analy‐

sis at higher concentration levels, of the order of mg L-1[3-5]. Table 1 lists some of the published

studies concerning the application of AAS for determination of metals in fuels.

Technique Matrix Sample preparation Reference

Graphite furnace atomic absorption

spectrometry (GFAAS)
Fuel oil Microwave digestion 6

Flame atomic absorption spectrometry Fuel oil Wet digestion 7

Atomic fluorescence spectrometry with cold

vapor generation

Gasoline and other

petroleum derivatives
Wet digestion 8

Graphite furnace atomic absorption

spectrometry
Fuel oil Microwave digestion 9

Graphite furnace atomic absorption

spectrometry
Crude fuel oil

Dilution in xylene/I2, wet

and microwave digestion
10

Flame atomic absorption spectrometry Engine oil Wet digestion 11

Graphite furnace atomic absorption

spectrometry
Fuel oils and naphtha Oil-water emulsion 12

Inductively coupled plasma mass

spectrometry (ICP-MS)
Gasoline

Emulsion with Triton X-100

surfactant
13

Flame atomic absorption spectrometry Ethyl alcohol Dilution in HNO3 5

Graphite furnace atomic absorption

spectrometry
Ethyl alcohol Dilution in HNO3 3,4

Graphite furnace atomic absorption

spectrometry
Ethyl alcohol Dilution in HNO3 2

Graphite furnace atomic absorption

spectrometry
Ethyl alcohol and acids Dilution in HNO3 14

Graphite furnace atomic absorption

spectrometry with a high-resolution

continuum source (HR-CS-GFAAS)

Crude oil Oil-water emulsion 15

Atomic absorption spectrometry with

thermal nebulization in a tube heated in a

flame (TS-FF-AAS)

Ethyl alcohol fuel and

gasoline

Dilution in HNO3/oil-water

emulsion
16

Graphite furnace atomic absorption

spectrometry with a high-resolution

continuum source

Crude oil Oil-water emulsion 17
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Technique Matrix Sample preparation Reference

Atomic absorption spectrometry
Gasoline, diesel, ethyl

alcohol and biodiesel

-

(Review)
18

Graphite furnace atomic absorption

spectrometry
Ethyl alcohol and acids Direct determination 19

Graphite furnace atomic absorption

spectrometry
Biodiesel

Microwave digestion and

emulsion
1

Flame atomic absorption spectrometry Ethyl alcohol Solid phase extraction 20

Graphite furnace atomic absorption

spectrometry
Biodiesel Emulsion 21

Atomic absorption spectrometry with vapor

generation (VP-FAAS)
Ethyl alcohol

Treatment with acid under

UV irradiation
22

Table 1. Analytical methods for the determination of inorganic contaminants in fuels.

The thermospray (TS) technique was originally developed by Vestal et al.in 1978 [23]as an
interface between liquid chromatography and mass spectrometry. In atomic absorption
spectrometry, the tube was heated electrically in order to maintain a constant temperature,
which restricted use of the method to only a few elements. However, Gáspárand Berndt
(2000) proposed the TS-FF-AAS procedure, in which a metal tube is positioned above the
flame of the atomic absorption spectrometer, as a reactor. The sample solution is transported
through a metal capillary, connected to the tube, and heated simultaneously by the flame.
On reaching the hot tip of the capillary, the liquid partially vaporizes, forming an aerosol. In
turn, the aerosol is vaporized within the tube, producing an atomic cloud that absorbs the
radiation emitted by the lamp.

The TS-FF-AAS method was used as an interface between high performance liquid chroma‐
tography (HPLC) and FAAS, employing a flow injection system [25-60].

The objective of this work is to describe the analysis of Cu present in hydrated ethyl alcohol
fuel (HEAF) using the technique of atomic absorption spectrometry with thermal nebuliza‐
tion in a tube heated in a flame (TS-FF-AAS). The atomizers used were a metal tube (Ni-Cr
alloy) and a ceramic tube (Al2O3).

2. Experimental procedures

2.1. Instruments and accessories

The instrumentation consisted of an atomic absorption spectrometer fitted with a flame
atomizer (Perkin-Elmer, model AAnalyst 100), a hollow cathode Cu lamp (λ = 324.8 nm, slit
width = 0.7 nm,i = 15 mA), with an air/acetylene (4:2 ratio) flame gas mixture, and back‐
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ground correction using a deuterium lamp. Other equipment comprised an analytical bal‐
ance (Sartorius BL 2105) and a peristaltic pump (Ismatec, model ICP 8).

The TS-FF-AAS assembly employed a Rheodyne RE9725 injection valve, PEEK tubing, and a
ceramic thermocouple insulator capillary (OMEGATITE450, OMEGA, USA). The capillary
wascomposed of Al2O3(>99.8%), resistant to temperatures up to 1900 °C, with Øext= 1.6 mm
and two orifices with Øint = 0.4 mm (this capillary provided better results than a stainless
steel HPLC capillary, with less noise in the absorbance signal). The atomization tubes were a
metal tube composed of Ni-Cr super-alloy (Inconel, length 100 mm, Øint = 10.0 mm, Øext =
12.0 mm, 6 orifices with Ø = 2.5 mm, perpendicular to an orifice with Ø = 2.0 mm), and a
ceramic tube (99.9% Al2O3, length 100 mm, Øint = 10.0 mm, Øext = 12.0 mm, 6 orifices with Ø =
2.5 mm, perpendicular to an orifice with Ø = 2.0 mm).

Data acquisition employed the software MQDOS (Microquímica), and the absorbance val‐
ues were proportional to the height of the transient signals.

The temperature in the interior of the atomization tube was measured in two ways. The first
method employed a thermocouple with an earthed connection, positioned adjacent to the
metal tube, oriented towards the orifice where the ceramic capillary used to introduce the
sample into the atomizer was located. The temperature measured for the metal tube was 983
± 1°C. Secondly, the thermocouple with connection exposed was positioned adjacent to the
ceramic capillary within the tube, where a temperature of between 1030 °C and 1060°C was
measured, at which the tube glowed ruby-red above the flame [16,40,45,54].

When 50 μL of HNO3 (~0.1 mol L-1) was injected at a rate of approximately 1.5 mL
min-1,there was a temperature reduction of around 50°C, due to cooling of the tube by the
solution, followed by a rapid return to the maximum temperature range.

2.2. Reagents, solutions and samples

Working standard solutions were prepared from a stock 1000 mg L-1 copper standard solu‐
tion (spectroscopic grade), by dilution in 0.14 mol L-1 HNO3 (Synth).

The HEAF samples were prepared by mixing the fuel with an equal volume of 0.14 mol L-1

HNO3,with final volumes of 50 mL [3-5]. Subsequent quantification employed the standard
additions procedure.

2.3. Assembly of the TS-FF-AAS system

A schematic diagram of the TS-FF-AAS system is shown in Figure 1.

It is recommended that the Inconel tube should only be positioned above the burner head
after lighting the flame, to avoid the possibility of an explosion within the tube due to gas
accumulation. The TS-FF-AAS system was therefore first assembled, after which the spec‐
trometer flame was ignited immediately after opening the gas valves to avoid any explosion
risk. This procedure facilitated the positioning of the tube above the burner head, which was
performed while the flame was extinguished. All analyses employed a fixed volume of sam‐
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ple, injected into the flow of air as the carrier, since previous work has shown that injection
using carrier solutions results in greater sample dilution and dispersion [40,45,54,58].

Figure 1. Schematic arrangement of the TS-FF-AAS system (adapted from Davies & Berndt 2003[59].

The sample was introduced into the system using a manual Rheodyne valve (Figure 1), after
which it was transported to the ceramic capillary in the flow of air. Since the capillary was
heated simultaneously with the metal or ceramic reactor tube, the liquid was partially va‐
porized, forming a thermospray, and atomization occurred on arrival in the tube, generating
a transient signal that was captured and stored by the software. The determination em‐
ployed the height of the transient signal peak.

2.4. Optimization of carrier flow rate and sample volume

The influences of the carrier flow rate (in the range 9.0-18.0 mL min-1) and the sample vol‐
ume (50, 100, and 200μL) were evaluated using a standard of 200μg Cu L–1.

2.5. Construction of analytical curve

After optimization of the system, analytical curves were constructed in the concentration
range 0.1-0.4 mg Cu L-1 in 0.14mol L-1 HNO3. Additions of analyte were made to the sample
mixed with an equal volume of 0.14 mol L-1 HNO3. The detection limit (DL) was calculated
from 12 blank readings for each type of tube (metal or ceramic).
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3. Results and discussion

3.1. Optimization of carrier flow rate and sample volume

Good peak reproducibility was achieved when samples were injected into the air flow as
carrier. When samples were injected into 0.14 mol L-1 HNO3, used as the carrier, there was a
rise in the baseline (as expected, due to increase of the blank), followed by a fall due to cool‐
ing of the metal or ceramic tubes. This cooling was significant, since no transient signals
were obtained following injection of standards, indicating that the temperature within the
tubes was insufficient to atomize the analyte, which remained dispersed in the carrier solu‐
tion. This confirmed the findings of earlier work that the use of air (or other gas) as the carri‐
er avoids dilution and dispersion of the sample. Here, all analyses were performed using air
as the carrier, not only because it was less expensive than use of a solution, and minimized
waste generation, but also because it enabled the TS-FF-AAS system to be used to determine
copper, which would not have been possible using a solution as the carrier.

Figure 2 shows the influence of the carrier (air) flow rate, in the range 9.0-18.0 mL min-1, on
the absorbance values obtained using 50 μL of a standard of 200 μg Cu L-1in 0.14 mol L-1

HNO3, using both tubes.In the case of the metal tube, lower absorbance values were ob‐
tained at low flow rates, because the sample arrived slowly at the atomizer,increasing the
measurement duration and resulting in an unpredictable and erratic vaporization. Hence, as
the flow rate was increased, the absorbance also increased due to a more homogeneous va‐
porization of the sample [23,27,58].

Figure 2. Influence of carrier (air) flow rate on the absorbance obtained for 50 μLof a solution of200 μg Cu L-1 in
0.14mol L-1HNO3, using the metal and ceramic tubes.
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This increase proceeded up to a carrier flow rate of 12.0 mL min-1, above which there was no
significant variation in absorbance. The highest absorbance value was obtained at a flow
rate of 18.0 mL min-1, which was therefore selected as the best flow rate to use with the metal
tube.

When the ceramic tube was used, maximum absorbance was achieved at a carrier flow rate
of 9.0 mL min-1. At higher flow rates, the residence time of the liquid in the heated section of
the ceramic capillary was considerably diminished, reducing the time available for evapora‐
tion of the liquid, so that the sample was not delivered in the form of vapor/aerosol, but
rather as a flow of liquid. The temperature within the tube decreased, and the color of the
tube changed from ruby-red to opaque grey. It was also possible to see droplets emerging
from the atomizer tube. Hence, the absorbance values did not increase, while greater varia‐
bility in the signal resulted in elevated standard deviation values. A flow rate of 3.0 mL
min-1was selected, at which the absorbance signal was maximized, and the standard devia‐
tion was minimized.

Figure 3. Influence of sample volume on the absorbances obtained for a solution of 200 μg CuL-1in0.14mol L-1HNO3,
using carrier flow rates of 9.0 and 18.0 mL min-1for the ceramic and metal tubes, respectively.

The sample volume was varied between 50 and 200 μL, using carrier flow rates of 18.0
and 9.0 mL min-1 for the metal and ceramic tubes, respectively. The results (Figure 3) re‐
vealed that  for  both tubes a  sample volume of  50 μL generated the highest  absorbance
value,  with  a  low  standard  deviation,  reflecting  good  repeatability  in  the  experimental
measurements. When 100 μL of sample was used, there was a slight cooling of the ceram‐
ic capillary, and consequently of the atomization tubes, while there was no increase in the
absorbance  values.  At  a  sample  volume  of  200  μL,  the  ceramic  capillary  and  the  tube
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were substantially cooled,  and there was no homogeneous thermospray formation,  with
erratic generation of droplets that acted to disperse the light radiation (probably to a large
degree,  since  the  deuterium lamp was  unable  to  fully  correct  the  resulting  background
signal).  The  unpredictable  atomization  resulted  in  very  high  standard deviation  values.
Using air as the carrier, a sample volume of 50 μL was selected for the subsequent meas‐
urements,  due to  greater  atomization homogeneity,  satisfactory absorbance  for  a  30  mg
Cu L-1 standard, and a low SD value.

3.2. Construction of analytical curves

Figure 4 illustrates the results obtained for the analytical curve in the concentration range
0.1-0.4 μg Cu L–1 in 0.14 mol L-1HNO3, using the optimized conditions of the TS-FF-AAS sys‐
tem. The transient signals were repeatable, and (for both tubes) the curve was linear in the
concentration range studied. A two-fold greater sensitivity was achieved using the ceramic
tube.
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Figure 4. Regression lines fitted to the analytical curves of Cu obtained using the ceramic tube (a) and the metal tube
(b) Equations of the lines: A = 1.16x10-2 + 5.27x10-4(Cu) (ceramic tube);A = 1.20x10-3 + 2.91x10-4(Cu) (metal tube).

Figure 5 illustrates the results obtained for the analytical curves constructed using concen‐
trations of Cu in the range 100-400 μg L–1, with additions of analytein 0.14 mol L-1 HNO3 to
equal volumes of sample, under the optimized TS-FF-AAS system conditions. The presence
of 75.8 μg Cu L-1 in the sample was calculated from curve (a), obtained using the ceramic
tube. This value was slightly above the detection limit (Table 1), although below the concen‐
tration of the first point of the analytical curve. In the case of the metal tube (curve (b)), a Cu
concentration of 80.0 μg L-1 was below the detection limit for this tube, but was nevertheless
in agreement with the result obtained for the ceramic tube.
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Figure 5. Regression lines fitted to the analytical curves of Cu in 1:1 mixtures of fuel samples and standards prepared
in 0.14 mol L-1 HNO3, obtained using the ceramic tube (a) and the metal tube (b) Equations of the lines: A = 1.00x10-2 +
1.32x10-4 (Cu) (ceramic tube); A = 1.16x10-2 + 1.45x10-4 (Cu) (metal tube).

Analytical characteristics Ceramic tube
Metal

Tube

HNO3

Detection limit, DL (μg L-1) 55.6 56.0

Characteristic concentration, Co (μg L-1) 8.35 15.1

Analytical curve interval (μg L-1) 100 – 400

Correlation coefficient (r) 0.9930 0.9978

Analytical frequency (h-1) 26 100

HEAF

Detection limit, DL (μg L-1) 64.5 128

Characteristic concentration, Co (μg L-1) 33.3 30.3

Analytical curve interval (μg L-1) 100 – 400

Correlation coefficient (r) 0.9918 0.9927

Analytical frequency (h-1) 53 82

Table 2. Analytical characteristics for determination of Cu using the TS-FF-AAS system with ceramic and metal tubes.

The analytical parameters obtained for the determination of Cu under the optimized condi‐
tions of the TS-FF-AAS system are provided in Table 2. The analytical curves were linear for
a concentration range of 100-400 μg Cu L-1 in 0.14 mol L-1 HNO3. The system could be con‐
sidered to be sensitive, with characteristic concentrations of 8 and 15 μg Cu L-1 for the ce‐
ramic and metal tubes, respectively, and analysis frequencies (using HNO3 medium) of 26
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and 100 determinations per hour, respectively. Better analytical performance of the system
was achieved using the ceramic tube, compared to the metal tube. The data showed that the
TS-FF-AAS technique was more sensitive than FAAS, with nine-fold (ceramic tube) and
five-fold (metal tube) increases in sensitivity, relative to FAAS with pneumatic nebulization,
for which the characteristic concentration was 77 μg L-1. The increase in power of detectio‐
nobtained using the ceramic tube was around twice that for the metal tube. The sensitivity
for determination of copper using the ceramic tube was therefore two-fold that obtained us‐
ing the metal tube.

4. Conclusions

The TS-FF-AAS system can be used to determine copper at low concentrations, using either
metal (Inconel) or ceramic (Al2O3) tubes as atomizers. Following optimization considering
the most important experimental variables affecting atomization, these systems provided
significantly improved detection limits for Cu determination, with nine-fold (ceramic tube)
and five-fold (metal tube) increases in sensitivity, compared to traditional FAAS with pneu‐
matic nebulization. The TS-FF-AAS technique is simple, fast, effective, and inexpensive. It
requires low volumes of sample (as little as 50 μL) and reagents, and reduces waste genera‐
tion. The method offers a useful new alternative for the determination of copper in alcohol.
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