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1. Introduction

The chemotherapeutic properties of polyphenols have recently received an increasing interest
since it has been established that these compounds can modulate each step of the cancer
progression process (initiation, proliferation, survival, migration, angiogenesis, and metasta-
sis). Polyphenols are believed to be multi-targets drugs and in the present chapter we will give
an overview of recent investigations concerning apoptosis induction by three major com-
pounds, resveratrol, curcumin and epigallocatechin-3-gallate (EGCG) mainly through the
regulation of the p53 tumor suppressor pathway. The potential regulation by polyphenols of
p53 expression at the transcriptional and post-translational levels has been extensively
described. Interestingly, polyphenolic compounds are also able to trigger apoptosis of
numerous cancer cells, independently of the p53 status (wild-type, mutated or deficient).
Moreover alternative mechanisms supported by recent studies highlight the role of p73, a p53
related tumor suppressor, as another key target for polyphenols. Then the molecular mecha-
nisms involved in tumor suppressors (mainly p53 and p73) expression by polyphenols will be
discussed with a specific focus on the role of oxidative stress which is believed to be a key
element in polyphenols-induced cancer cells death.

2. Anticancer properties of polyphenols: Chemoprevention and
chemotherapy

Polyphenols are natural compounds characterized by a structure containing at least one
benzene ring substituted by at least one hydroxyl group. Beside this chemical hallmark,
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phenolic products currently constitute a large and still expanding complex and heterogeneous
family of molecules (more than 8000 phenolic structures currently known) with a great
diversity of structure and size ranging from the low molecular weight simple phenols up to
the high molecular weight tannins [1-3]. Polyphenols are also one of the largest and most
widespread classes of constituents present in plant kingdom and more particularly in plant-
derived foods and beverages giving them their color and taste properties. Polyphenols can be
structurally divided into two main families: flavonoids and non-flavonoids. Flavonoids are
especially abundant in fruits, vegetables, seeds, spices, herbs, tea, cocoa, and wine. The six
major subclasses of flavonoids are anthocyanidins (e.g., cyanidin, delphinidin; primary
sources: red berries, red cabbages, cherries, grapes, and onions), flavan-3-ols (e.g., catechin,
epicatechin, EGCG; primary sources: tea, grapes, cocoa, apples, and red wine), flavanones (e.g.,
hesperitin, naringenin; primary sources: oranges, lemons, and grapefruits), flavones (e.g.,
apigenin, luteolin; primary sources: celery, parsley, and thyme), flavonols (e.g., kaempferol,
myricetin, quercetin; primary sources: apples, beans, broccoli, and onions), and isoflavonoids
(e.g., daidzein, genistein; primary sources: legumes and soy products). Phenolic acids repre-
sent a large subclass of non-flavonoid polyphenolic compounds which can be further divided
into two main types: benzoic acids (e.g., gallic acid, ellagic acid, vanillic acid; primary sources:
tea, red wine, berries, nuts, and herbs) and cinnamic acids (e.g., caffeic acid, chlorogenic acid;
primary sources: coffee, berries, plum, and apple). Other important classes of non flavonoids
with healthy properties are stilbenes, such as resveratrol (primary sources: red wine, berries
and nuts) and curcuminoids such as curcumin the main component of dried turmeric and
curry powder [4]. Polyphenols are considered as secondary plant metabolites and have been
associated with several functions in plants such as resistance against microbial pathogens and
insects, protection against DNA-damaging UV light, reproduction, nutrition and growth [3].
In parallel to their protective properties in plants, polyphenols have long been regarded as a
pool of bioactive natural products with potential benefits for human health. Plant extracts,
herbs and spice containing these compounds have been used for thousands of years in
traditional medicines. Nowadays, plant polyphenols enjoy an ever-increasing recognition not
only by scientific community but also, and most remarkably, by the general public because of
their presence and abundance in fruits, seeds, vegetables and derived foodstuffs and bever-
ages, whose regular consumption has been claimed to be beneficial for human health [3, 5].
Indeed, epidemiological and experimental studies have shown the potential of polyphenols
or polyphenolic nutritional sources in reducing the risk of chronic diseases such as cardiovas-
cular diseases [6-10] and cancers [10-14], as well as the risk of degenerative diseases [10, 15,
16]. Altogether these observations led to the current nutritional recommendations to eat five
servings of fruits and vegetables per days in order to keep healthy.

A wealth of data, including epidemiological and animal studies, has described the chemopre-
ventive and anticancer properties of polyphenolic compounds, such as resveratrol, curcumin
or tea catechins, or polyphenol-rich nutritional sources [13, 14, 17-19]. Nonetheless, recent
investigations have highlighted additional mechanisms responsible for direct anti-prolifera-
tive and chemotherapeutic properties of polyphenols. Indeed, these compounds can interfere
with the initiation, as well as the progression of cancer through the modulation of different
cellular events, such as cell cycle arrest by decreasing cyclins or apoptosis induction through
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cytochrome c release, activation of caspases and down- or up-regulation of Bcl-2 family
members, and inhibition of survival/proliferation signals (AKT, MAPK, NF-kB, etc.). Further-
more, they play an important role in inflammation (COX-2, TNF secretion, etc.), as well as in
suppression of key proteins involved in angiogenesis and metastasis [13]. Importantly, it has
been established that tumor suppressors like p53 and its analogs are key molecular targets of
polyphenols responsible for their pro-apoptotic effect in human and animal cancer models.
Here we provide an overview of the molecular mechanisms involved in p53 family proteins
modulation by three major and well characterized polyphenolic compounds, resveratrol,
curcumin and EGCG.

3. p53 family proteins are chemotherapeutic targets of polyphenols

Since the discovery of p53 in 1979 [20-22] numerous studies have been conducted related to
its functions in response to stress and its regulatory mechanisms. p53 is a sequence-specific
nuclear transcription factor that binds to defined consensus sites within DNA as a tetramer
and represses transcription of a set of genes involved in cell growth stimulation, while
activating a different set of genes involved in cell cycle control, like p21. It causes growth arrest
providing a window for DNA repair or elimination of cells with severely damaged DNA
strands. In some conditions, p53 activation triggers the transcription of pro-apoptotic genes
such as Bax or PUMA, as well as the repression of anti-apoptotic genes like survivin [23].
Moreover, p53 can induce transcription-independent apoptosis. This mechanism involves
early p53 translocation to mitochondria where it binds to Bcl-2 family proteins, such as Bax,
Bak and Bcl-XL, activating cytochrome c release and caspases cascade [24]. Undoubtedly p53
exerts major anti-neoplastic effects and is considered actually as the “guardian of the genome”
[25]. Tumor suppressive capabilities of p53 are related to a coordinated regulatory circuit that
monitors and responds to a variety of stress signals, including DNA damage, abnormal
oncogenic events, telomere erosion and hypoxia [26]. Importantly, in unstressed cells, p53 is
latent and is maintained at low level by targeted ubiquitin-mediated degradation related to
its interaction with ubiquitine ligases, mainly MDM2 [27]. Regarding the “guardian” functions
of p53, mutations of p53 gene or disruptions of p53 coordination such as post-translational
inactivation, can disturb the normal physiological balance, and lead to cancer if genome
disarrangement reachs a critical value [28]. Indeed, low level of functionnal p53 is a common
characteristic of cancer from several localizations including lung, colon, rectum, breast, brain,
bladder, stomac, prostate, ovary, liver or lymphoid organs [29]. Somatic p53 missense
inactivating mutations are found in approximately 50% of human cancers [30] and this
inactivating mutations render the mutant p53 protein unable to carry out its normal function,
that is, transcriptional transactivation of downstream target genes that regulate cell cycle and
apoptosis [31-33]. On the other hand, p53 pathway can be also inactivated in wild-type (WT)
p53-carrying tumors via indirect mechanisms such as MDM2 amplification leading to p53
destabilization [34, 35].

Recently, cDNAs with strong homologies to p53 have been identified and their products were
termed p63 and p73 [36-38]. Both proteins are structurally similar and functionally related to
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P53, and consequently the entire p53 family may be regarded as a unique signalling network
controlling cell proliferation, differentiation and death. Interestingly, in contrary to p53, the
role of the other two p53-related proteins in tumor suppression is less obvious, since they are
rarely deleted or mutated in cancer, and the respective knockout mice die tumor-free from
developmental defects [39-41]. However, increasing number of evidences suggest that both
p63 and p73 have a role in tumor suppression. Indeed, different studies indicated that TAp73
and TAp63, the transcriptionally active isoforms, can induce cell cycle arrest, senescence, DNA
repair, and apoptosis in response to chemotherapeutic drugs, independently of p53 [42-45]. In
addition, even if not mutated, p63 and p73 can be aberrantly expressed in cancer. More
particularly, the dominant negative and transcriptionally inactive isoforms ANp63 and ANp73
are frequently overexpressed in a wide range of tumors, in which they are associated with
poor prognosis [46]. Actually, the imbalance in the TAp73/ANp73 may be more critical for
tumorigenesis and response to chemotherapy than mutations [47]. In summary, despite their
differences, the three members of the p53 family may be considered as therapeutic targets for
cancer management.

Many in vitro studies as well as few in vivo studies have shown that resveratrol, curcumin and
EGCG, as well as nutritional sources of polyphenols induce overexpression of wild-type p53
(Table 1-4). The p53-related anticancer properties of these three isolated molecules have been
extensively evaluated but other polyphenolic compounds such as genistein, luteolin, querce-
tin, and wogonin have been shown also to upregulate wild-type p53 protein in several cancer
cell lines [48-51]. The polyphenol-induced stabilization and expression of wild-type p53 is
often associated with a G1 or G2/M phase cell cycle arrest together with transcriptional
regulation of target genes such as p21, Bax, PUMA and apoptosis induction [52-56]. The key
role of p53 in polyphenol-induced anticancer properties is supported by studies indicating
that p53 downregulation counteracts apoptosis triggered by natural products. Indeed, p53
silencing by siRNA abrogate the cytotoxic effect of curcumin in chondrosarcoma cells [57] and
genetic invalidation of p53 by shRNA leads to inhibition of EGCG plus luteonin-induced
apoptosis of lung cancer cells [58]. In addition, EGCG fails to induce significant cytotoxic effect
in p53-null PC-3 prostate cancer cells, but forced expression of p53 in such cell line leads to
sensitization to the polyphenolic compound [53]. Indeed, in the later study EGCG induces p53
phosphorylation on Serine 15 and upregulation of p53 and p21 expression together with cell
cycle arrest and apoptosis. However the key role of p53 in the anticancer properties of
polyphenols is still controversial, especially for curcumin, since many studies have shown its
anti-proliferative properties in several p53-mutated or p53-null cancer cell lines (Table 2). For
instance, curcumin has significant anti-proliferative effects in two p53-mutated human
glioblastoma cell lines, indicating alternative and p53-independent pathway involved in such
anticancer properties [59]. Similarly, curcumin reduces glioblastoma cells viability irrespective
of p53 mutational status [60]. In this study, curcumin-induced cancer cell death was associated
with caspase-3 activity in p53-wild-type cells, but not in p53-mutated cells, indicating that
polyphenols can trigger p53- and caspases-independent cell death. p53-independent anticanc-
er properties of polyphenols have been also described in many other cancer cells [61-67].
Interestingly, curcumin reduces the expression of the mutated form of p53 in MDA-MB-231
breast cancer cells together with cell cycle arrest [68], suggesting that a polyphenol-dependent
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regulatory process can also modulate the expression of a non-functional tumor suppressor.
However, despite potential apoptosis induction by polyphenols in absence of functional p53
protein, its wild-type expression makes cancer cells more sensitive to pro-apoptotic effects of
polyphenols. Recently, Ferraz da Costa et al. have demonstrated that transient transfection of
wild-type p53 in human non-small lung carcinoma cell line H1299 (p53 negative) dramatically
increased susceptibility to resveratrol-induced apoptosis [69]. Altogether these data indicate
that p53 participates to the cytotoxic effect of polyphenols but also that alternative pathways
might be involve in their anticancer properties.

One of this alternative pathway might involve Egr-1, an immediate early-response gene
induced by stress, injury, mitogens, and differentiation [70]. Egr-1 regulates the expression of
genes involved in the control of growth and apoptosis by transactivating many proteins
including p21. One study has shown that transcription of the p21 gene is activated by Egr-1
independently of p53 but under the control of MAPKSs in response to curcumin treatment in
U-87MG human glioblastoma cells [71]. In addition, the apoptotic effect of resveratrol in
colorectal cancer cells as well as EGCG-mediated cytotoxicity in pulmonary cancer cells are
also associated with Egr-1 upregulation [72, 73].

Alternatively to p53, its functionally related proteins p63 and p73 might represent targets for
polyphenols. Nevertheless only few data are available concerning a potential regulatory effect
of polyphenolic compounds on p63 and p73 (Table1-4). Different flavones (luteolin, apigenin,
chrysin) and flavonols (quercetin, kaempferol, myricetin) are able to induce cytotoxicity in
p53-mutated oesophageal squamous carcinoma cells together with upregulation of p63 and
p73 [74]. Similarly, EGCG induces selective apoptosis in multiple myeloma cells with overex-
pression of p63 and p73 without any change in the p53 expression level [75], as well as
overexpression of p73 in p53-mutated T-lymphocyte leukemic cells [76]. As previously
mentioned, different isoforms of p73 have been described and quercetin has been shown to
control the subcellular localization of the dominant negative isoform ANp73 in melanoma cells
expressing wild-type p53. In this model, quercetin caused redistribution of ANp73 into the
cytoplasm and nucleus, which has been associated with increased p53 transcriptional activity
and apoptosis [47, 77]. Beside isolated compounds, more complex sources of polyphenol such
as red wine polyphenolic extract or berries-derived product can also modulate p53 and/or p73
expression level, in vitro and in vivo (Table 4) [78-81]. Interestingly, a synthetic analogue of
curcumin increases p73 expression level in two distinct p53-wild-type pancreatic cancer cell
lines, BxPC-3 and Colo-357 together with upregulation of pro-apoptotic effector Bax and
simultaneous downregulation of the anti-apoptotic protein Bcl-2 [82]. Curcumin itself has been
shown to stimulate p53 and also p73 expression in p53-mutated C33A cervical cancer cells [83].
Moreover, EGCG upregulates transcriptional target of p53, in a p53-independent but p73-
dependent manner in mouse embryonic fibroblasts [84]. These data suggest that independ-
ently of the p53 status (wild-type, mutated or deleted), p73 seems to be involde in the anticancer
effect of polyphenolic compounds. Many others studies have shown the potential of polyphe-
nols to induce apoptosis of cancer cells in a p53-dependent but also a p53-independent manner
(Table 1-4). In summary data concerning the role of tumor suppressors in the polyphenol-
induced anticancer effects are inconsistent, probably dependent on the cell type, and conse-
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quently remain controversial. Moreover, the molecular mecanisms responsible for p53-family
tumor suppressors regulation by polyphenols are only partially elucidated. However some

evidences indicate that polyphenols might modulate p53 or p73 expression as well as their

stabilization which are under the control of phosphorylation and acetylation levels.

Resveratrol

HO

Cancer model

Described effects on TSG (p53/p73)

References

Prostate cancer cells (LNCaP,
DU145, p53-mutated
CWR22Rv1, p53-null PC-3)

- No change in p53 mRNA, increased expression of p53-p(ser15)
and/or p53-ac(lys382) and total p53 protein

- p53 translocation to mitochondria

- cell cycle alteration and apoptosis induction maintained in p53-
mutated cancer cells

- potentiation of radiation-induced p53 expression in p53-

mutated cancer cells

[135, 158, 164,
165,175, 176]

Ovarian carcinoma cells
(OVCAR-3)

- nuclear accumulation of p53-p(Ser15)

[110]

Breast cancer cells (MCF-7, - increased expression of p53-p(ser15), p53-p(ser20), p53- [177-180]
p53-mutated MDA-MB-231, p(ser392) and p53-ac(lys382/lys373)
53-mutated MDA-MB-435
il dity ) - no change in total p53 protein expression, p53-independent [178,181]
apoptosis
- increased expression of p53 mMRNA and total protein [182-184]
- no change in p53 mMRNA [185]
- p53-independent cytochrome c release [181]
- increased p53-dependent transcriptional activity [50]
Colon cancer cells (HCT116, - increased p53-p(ser15) expression [103]
p53-null HCT116) - resveratrol-induced senescence is p53 dependent
Pancreatic cancer cells - upregulation and nuclear accumulation of p53 in both cell line [186]

(capan-2, colo357)

(restoration of wild-type expression)
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Resveratrol

Cancer model Described effects on TSG (p53/p73) References
Glioblastoma cells (A172, - no change in p53 mMRNA [187]
p53-mutated T98G)

Hepatocellular carcinoma - no change in p53 mMRNA [185]
cells (HepG2)

Osteosarcoma cells (U-2 OS) - increased p53-p(ser15) and p53-p(Ser37) expression [188]
Lung adenocarcinoma cells - increased p53-p(ser15) and p53-p(Ser37) expression [188]
(A549)

Head and neck squamous - increased p53-p(ser15) and total p53 expression [109]
cancer cells (UMSCC-22B)

Cervical cancer cells (Hela) - increased p53-ac(lys373) and total p53 expression [185]
Hodgkin lymphoma cells - increased p53-p(ser15) expression [129]
(L-428)

Follicular lymphoma cells - increased p53-p(ser15) and total p53 expression [190]
(LY8)

Acute lymphoblastic - increased p53-p(ser15) expression [189]
leukemia cells (MOLT-4)

Neuroblastoma cells (B65, -increased p53-p(ser15) and total p53 expression [94,132]

NUB-7)

- nuclear translocation of p53

DMBA-TPA-induced mouse
skin tumor ; DEN-induced rat

hepatocellular carcinoma

- increased p53-p(ser15) and total p53 expression

[18,191,192]

- increased wild-type p53 and decreased mutated-p53 expression

[193]

Cancer cell lines express wild-type p53 except where otherwise stated; ac(lys.)=acetylated lysine, p(ser.)=phosphorylated

serine

Table 1. p53 family-related anticancer properties of resveratrol
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Curcumin

Cancer model Described effects on TSG (p53/p73) References

Breast cancer cells (MCF-7, p53- - increased expression of p53-p(ser15), no change or [68, 178,
mutated MDA-MB-231, p53- increased expression of total p53 194-197]
mutated SkBr3) -decreased expression of mutated p53
Cervical cancer cells (p53- -increased expression of p53 and p73 [83, 198]
mutated C33A, Caski)
Ovarian cancer cells (HEY, -p53-independent cell death [106]
OVCA429, p53-mutated OCCT,
053-null SKOV3, CaOV3, -increased expression of p53-p(ser15) [107, 199, 200]
Ho-8910) -increased expression of p53
Prostate cancer cells (LNCaP, -increased expression of p53-p(ser15),p53-ac(lys) and total [95, 100, 201]
p53-null PC3) p53 protein

-p53-independent cell death

-p53 translocation to mitochondria
Bladder cancer cells (p53 -no change or increased expression of p53 [202, 203]
mutated-T-24 and AY-27)
Erhlich Ascite carcinoma cells -increased expression of p53-ac(lys373) and total p53 [120]
Colorectal cancer cells (LoVo, -increased expression of total p53 [52,204]
HCT116, p53-null HCT116, p53-
mutated HT29, p53-mutated -increased expression of p53-p(ser15), p53-p(ser33) and total  [64]
Colo205) p>3

-no change in p53 expression [173]

-increased expression of p53-p(ser15) [156, 205]

-decreased or unchanged expression of mutated p53
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Curcumin

Cancer model Described effects on TSG (p53/p73) References

-cell cycle arrest, senescence and autophagy independent of ~ [206, 207]
p53 expression
-cytochrome c release independent of p53 expression
-increased expression of total p53

Colitis-associated colorectal -no change in p53 expression [17]

cancer in mice

Acute lymphoblastic leukemia -increased expression of total p53 [208]

cells (B6p210, T315I)

Chondrosarcoma cells and -increased expression of total p53 in vitro and in vivo [57]

xenograft in nude mice (JJ012)  -p53-dependent apoptosis

Melanoma cells (MMRU, p53- -no change in p53 expression [209, 210]

mutated PMWK, B16BL6)

Glioblastoma cells (C6,
U-87MG, p53-mutated
U138MG and U251, DBTRG,
T98G, T67)

-p53-independent cell death

-unchanged or increased expression of p53

[60, 71,163,211,
212]

Neuroblastoma cells (SK-N-AS,
NUB-7, p53-mutated SK-N-
BE(2))

-p53-independent cell death

-nuclear translocation of p53

[65, 94]

Cancer cell lines express wild-type p53 except where otherwise stated; ac(lys.)=acetylated lysine, p(ser.)=phosphorylated

serine

Table 2. p53 family-related anticancer properties of curcumin
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OH
OH
HO O OH
0
OH OH
(0]
OH
Epigallocatechin-3-gallate (EGCG) OH

Cancer model Described effects on TSG (p53/p73) References
Breast Cancer cells (MCF7, p53- -increased expression of p53-p(ser15) and total p53 [213, 214]
mutated MDA-MB-468) -p53-independent cell death

Prostate cancer cells (LNCaP, p53- -increased expression of p53-p(ser6), p53-p(ser15), p53- [53, 66, 89,
null PC-3, p53-expressing PC-3, PC3-  p(ser20), p53-p(ser37), p53-p(ser392), p53-ac(lys373), p53- 139, 140,
ML, p53-mutated DU-145) ac(lys382) and total p53 170, 215]

-p53-dependent and independent cell death

-increased expression of p73

PC3-ML cells (prostate cancer) -increased expression of p53 and p73 (synergistic effect with  [170]
xenograft in mice paclitaxel and docetaxel)

Cervical cancer cells (Hela) -increased expression of p53 [216]
Ovarian cancer cells (PA-1, p53-null ~ -p53-independent cell death [217]

SKOV3, p53-mutated OVCAR-3)

Hepatocellular carcinoma cells -increased expression of p53 [218,219]
(HepG2, p53-null Hep3B) -p53-independent cytotoxicity

Colorectal cancer cells (HCT116, -increased expression of p53 [55, 155,
p53-mutated HT-29) 157]
Head and neck squamous -increased expression of p53-p(ser15) and p53-p(ser37), [101,172,
carcinoma cells (KB, Hep2, Tu686, -decreased expression of p53-p(ser6), p53-p(ser392) 220]

-unchanged or increased expression of p53
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Epigallocatechin-3-gallate (EGCG)

HO

OH
OH
OH
OH
OH
OH

Cancer model Described effects on TSG (p53/p73) References
686NL, Tu212, Tu177, p53-null -p53-dependent cytotoxicity
Mde)
Head and neck squamous cell -increased in vivo expression of p53-p(ser15) [101]
carcinoma syngenic mouse model
(SCCVII/SF cells xenograft)
Lung cancer cells (A549) -increased expression of p53-p(ser15) and total p53 [221]
-absence of p73 expression
-p53-dependent activation of caspases 3/7
Fibrosarcoma cells (HT-1080) -increased expression of p53 [222]
Sarcoma xenograft (5180) -increased in vivo expression of p53 [90]

Multiple myeloma cells (INA6)

-increased expression of p63 and 73, unchanged expression  [75]

of p73

T lymphocyte leukemic cells (p53-
mutated Jurkat, HuT-102, C91-PL,
p53-mutated CEM)

-increased expression of p73

-increased expression of p53

[76,223]

Cancer cell lines express wild-type p53 except where otherwise stated; ac(lys.)=acetylated lysine, p(ser.)=phosphorylated

serine

Table 3. p53 family-related anticancer properties of EGCG
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Polyphenolic Cancer model p53- and p73-related effects References
source
Grape-derived C26 colorectal cancer cells xenograft — -increased expression of p53 and p73 [78]
products (red in mice
i d
Wine, grape see Human colorectal cancer cells (LoVo, -p53-independent apoptosis [224]
tract
extract) p53-mutated HT29, P53-mutated
SW480)
Oral squamous carcinoma cells -p53-independent cytotoxicity [225]
(SCC-25, p53-mutated OEC-MI)
Leukemia cells (p53-mutated Jurkat)  -increased expression of p73 [80]
Teratocarcinoma cells (P19) -increased expression of p53 [174]
Prostate cancer cells (LNCaP, p53- -increased expression of p53-p(ser15)  [226]
mutated DU145) and total p53
Black and green DMBA-induced mammary tumor in -increased expression of wild-type p53  [227]
tea rat and decreased expression of mutated-
p53
3,4-benzopyrene-induced lung -increased expression of p53 [228]
carcinoma in rat
Ehrlich’s ascites carcinoma cell -increased expression of p53 [229]
xenograft in mice
Oral cells from smoker and non- -increased expression of p53 [230]
smoker subjects
Patients with high-risk oral -no association between p53 [231]
premalignant lesions expression and clinical response
Prostate cancer cells (LNCaP, p53- -increased expression of p53- [139, 140]
null PC3) ac(lys373), p53-ac(lys382) and total
p53
-p53-independent apoptosis
Colorectal cancer cells (LoVo, p53- -p53-independent cytotoxicity [232]
mutated HT29)
Berry-derived Leukemia cells (p53-mutated Jurkat) -increased expression of p73 [79]
duct i
products (aronia Breast cancer cells (p53-mutated -increased expression of p73 [81]

juice, strawberry

extract)

T47D)

Cancer cell lines express wild-type p53 except where otherwise stated; ac(lys.)=acetylated lysine, p(ser.)=phosphorylated

serine

Table 4. p53 family-related anticancer properties of polyphenolic sources
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4. Polyphenols as regulator of p53 expression and localization

Under physiological conditions, the transcriptional activity of p53 is downregulated by three
different ways: i) ubiquitin-mediated proteasomal degradation mainly through the action of
mouse double minute protein (MDM?2), ii) nuclear export leading to a decrease in nuclear level,
or iii) transcriptional repression of chromatin. MDM2 is an ubiquitin E3 ligase considered as
an oncoprotein because of its activity in promoting p53 ubiquitination and proteasomal
degradation. Moreover MDM2 binds to the NH2 terminus of p53 and blocks its transactiva-
tional activities [27]. Interestingly, MDM2 promotes also cell cycle progression independently
of p53 for instance by modulating the activity of p21 [85]. Then MDM2 itself represents a
potential target for new drug with chemotherapeutic properties including polyphenolic
compounds [86]. Indeed, curcumin has been identified as an inhibitor of MDM2 expression
(Figure 1) in vitro and in vivo in p53-null and p53-wild-type human prostate cancer cells and
this inhibitory effect seems to be related to the inhibition of the PI3K/mTOR pathway [87]. In
addition, the curcumin analog EF24, which displays higher potency, increases phosphoryla-
tion of p53 together with downregulation of MDM?2, which likely leads to p53 overexpression
and cytotoxicity in hepatocellular carcinoma cells [88]. Similarly, EGCG reduces MDM?2
expression in prostate cancer cells [89], but not in sarcoma cells [90]. Data concerning the effect
of resveratrol on MDM2 expression are more controversial since upregulation or downregu-
lation have been observed in different cancer models [91, 92].

As mentioned previously, p53 activity depends upon its expression level but also its subcel-
lular localization. Indeed, p53 displays direct pro-apoptotic effects related to mitochondrial
translocation and this pathway works in synergy with transcriptional activation function of
p53 dependent upon its nuclear translocation [24, 93]. Therefore, the control of p53 subcellular
localization might interfere with p53-mediated cell death. For instance, treatment of neuro-
blasma cells by either curcumin or resveratrol transiently upregulated p53 expression and
induced nuclear translocation of p53, followed by induction of p21 and Bax expression
associated with apoptosis [94]. In addition curcumin increases p53 and Bax expression in
mitochondrial fraction under the control of the PI3K/Akt pathway in prostate cancer cells
followed by caspase-dependent apoptosis [95]. Altogether, these data indicate that polyphe-
nols are able to control not only p53 expression, but also its localization and therefore its pro-
apoptotic activity in cancer cells. However, other post-translational regulatory effects of
polyphenols have been also described and related to phosphorylation and acetylation of the
tumor suppressor.

5. Polyphenols as regulator of p53 phosphorylation

Phosphorylation of serine/threonine residues are essential for stabilization and activation
of p53, the most extensively studied being serine 15 (Ser 15). These phosphorylation sites
are mainly concentrated in the N-terminal transactivation domain and in the C-terminal
regulatory domain [96]. Recent data about p53 phosphorylation induced by resveratrol,
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Figure 1. Overview of p53- or p73-mediated pro-apoptotic effects of polyphenols in cancer cells. Polyphenols likely
induce intracellular oxidative stress and DNA damage with subsequent activation of kinases (MAPK, ATM, DNA-PK) re-
sponsible for p53 phosphorylation. Simultaneously, and also in response to DNA damage, acetylation of p53 or p73 have
been described due to enhanced acetylase activity from p300 and/orto reduced deacetylase activity from SIRT1 or HDAC.
In addition, p53 expression has been shown to be under the control of MDM2 as well as MTA1/NuRD, both factors being
downregulated by polyphenols. Phosphorylation and acetylation, together with MDM?2 inhibition resultin p53,andto a
less extend, p73 stabilization and sustained expression which activate cell death cascade in cancer cells.

curcumin or EGCG, in vitro and in vivo, are summarized in Tables 1, 2 and 3 as well as in
Figure 1. The DNA damage is one of the main signals relayed to p53 subsequently activated
by phosphorylation at serine residues that are the target of ataxia-telangiectasia mutated
(ATM), ataxia telangiectasia and Rad3 related (ATR) and DNA-dependent protein kinase
(DNA-PK) [97]. The DNA damage response could be activated by chemotherapeutic drugs,
UV or oxidative stress [98, 99], but activation of this pathway by polyphenols remains
controversial. Watson et al. investigated the pro-apoptotic effect of curcumin which is
similar in p53+/+ (wild-type) and p53-/- (knockout) HCT116 colorectal cancer cells.
Moreover, they demonstrated the ability of this polyphenol to induce up regulation of p53-
p(Ser 15) and total p53 without any change in the expression level of ATM, ATR or DNA-
PK. In contrast, curcumin enhances p38, JNK and ERK1/2 phosphorylation in both p53+/+
and p53-/- HCT116 cell lines; this suggests that the cytotoxic effects of curcumin are
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independent of the DNA-damage/ATM/ATR/DNA-PK pathway but associated with
Mitogen-Activated Protein Kinases (MAPKSs) activities [64]. On the other hand, treatment
of LNCaP prostate cancer cells or HCT116 colorectal cancer cells with curcumin induces
the phosphorylation of ATM, histone H2AX (a marker of DNA damage) and p53 at Ser 15
together with increased expression of p53, suggesting p53 activation through the DNA
damage/ATM pathway [52, 100]. The importance of ATM in polyphenols-induced cytotox-
icity is also supported by recent data showing that EGCG lose the ability to trigger p53
phosphorylation at Ser 15 in absence of ATM [101]. In addition, genistein induced p53
phosphorylation at Ser 6, 9, 15, 20, 46 and 392 in the ATM-proficient human lymphoblas-
tic cell lines, but not in ATM-deficient cell lines, indicating a key role of ATM kinase
activity for polyphenol-induced p53 activation [102]. Moreover, stimulation of the ATM/p53
pathway by polyphenols like resveratrol has been shown to also participate in senes-
cence of cancer cells [103]. On the other hand, quercetin strongly induced DNA-PK
expression, p53 phosphorylation and apoptosis in melanoma cells, suggesting that other
kinases might be activated by polyphenols [77].

Alternatively, MAPKSs such as ERK1/2, p38 or JNK have been involved in p53 activation and
phosphorylation [104, 105]. Therefore, the potential MAPKs/p53-dependent activation of
apoptosis by polyphenols has been investigated. As previously mentioned, curcumin induces
phospho-p38, phospho-ERK1/2 and phospho-JNK in colorectal as well as ovarian cancer cells
[64, 106, 107]. In addition, it has been shown that resveratrol- or luteolin-induced apoptosis
depends on the activities of ERK1/2, JNK and p38 kinase which target p53 phosphorylation at
Ser 15[49, 108]. An alternative pathway which implicates cyclooxygenase (COX)-2 activity and
expression has been decribed by Lin et al. They have shown that resveratrol-induced apoptosis
of human head and neck squamous cancer cells or human ovarian carcinoma cells is associated
with p53 phosphorylation at Ser 15 and that both processes are downregulated by pERK1/2
and COX-2 specific inhibitors [109, 110]. Recent investigations indicate that ERK and p53
regulate each other and that ATM controls their interaction [104]. Therefore polyphenols might
likely trigger p53 activation through ATM and MAPKs complementary pathways.

6. Polyphenols as regulators of p53 and p73 acetylation

Functions of p53 and p73 are also regulated by acetylation on different lysine (Lys) residues.
These posttranslational covalent modifications occur in response to DNA damage in the close
vicinity of the oligomerization domain. The main Histone Acetyl Transferases (HATS)
responsible for these modifications include p300, CREB-Binding Protein (CBP), P300/CBP-
Associated Factor (PCAF) and Tat-Interactive Protein of 60 kDa (TIP60) [38]. As a consequence
of its acetylation, p53 is stabilized by excluding ubiquitination on the same site and acetylation
also promotes p53 transcriptional activity [96]. In comparison to p53, only few data are
available concerning p73 interaction with HAT and acetylation. It has been established that
p300 can acetylate p73 in response to DNA damage, but p300 can also behave as a co-activator
of p73 independently of its HAT activity [111]. Importantly, the level of p53 or p73 acetylation
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seems to be a major way of regulation for the tumor suppressors function since deacetylated
P53 and p73 are compromised in their ability to induce cell cycle arrest and apoptosis [91, 112].

The transcriptional coactivator p300 is a large multidomain protein that possesses histone
acetyl-transferase ability [113]. Together with its homolog CBP, p300 mediate transcription
through binding to transcriptional activators such as JUN, E1A, NF-kB, as well as to the p53
family members and they have been involved in human diseases including cancers [114].
Recent studies indicate that the transcriptional activity of p53 and p73 in response to genotoxic
stress is regulated by its interaction with p300 [115-117]. Indeed, it has been established that
interaction between p73 and p300 acetyl-transferase promotes first p73 stability and then its
transcriptional activity.

Narayanan et al., have suggested that resveratrol-induced apoptosis of prostate cancer cells is
mediated by transcriptional activation of p300 which subsequently acetylates and stabilizes
p53[118]. Similarly in breast cancer cells, resveratrol enhanced p300 expression and interaction
with the phosphorylated form of p53 by a MAPK-dependent mechanism [119]. Interestingly,
p53-p300 interaction fails to occur in doxorubicin-resistant cells, but curcumin pre-treatment
could restore this interaction. Consistently, curcumin also restored drug-induced p53 acety-
lation (lysine 373) and p53-dependent transcription of Bax, PUMA, and Noxa in resistant cells
leading to their apoptosis [120]. Therefore, polyphenols-induced acetylation of p53 by p300
might represent a key molecular mechanism for the cytotoxic properties of these natural
compounds in cancer cells including chemoresistant cells (Figure 1).

Acetylation level of tumor suppressors is dependent upon the balance between acetylation
and deacetylation reactions. Indeed, deacetylation of p53 or p73 by SIRT1 (silent information
regulator 1), a member of the sirtuin Histone DeACetylase (HDAC) class III family, prevents
p53-mediated transactivation of cell cycle inhibitor p21 and pro-apoptotic factor Bax, allowing
promotion of cell survival after DNA damage and ultimately tumorigenesis [121]. Members
of the Silent Information Regulator family (SIRT or sirtuins) are evolutionary conserved NAD-
dependent protein deacetylases and adenosine diphosphate (ADP)-ribosylases. There are
seven identified isoforms (SIRT1-7) that differ in their subcellular localization (cytoplasmic,
mitochondrial or nuclear), substrate specificities and functions [122]. The founding member
of this class of deacetylases, SIRT1 (homolog of yeast silent information regulator, Sir2), is the
most widely studied sirtuins. SIRT1 has been associated with aging processes as well as a
variety of human diseases such as metabolic syndrome, inflammation, neurodegeneration and
more recently cancer [123, 124]. SIRT1 can deacetylate a variety of histones as well as a number
of non-histone substrates, the first identified of these non-histone substrates being p53 (Lys
382-p53). The SIRT1 activity on p53 results in repression of p53-dependent apoptosis in
response to DNA damage and oxidative stress [125, 126]. SIRT1 deacetylates also other tumor
suppressors such as p73 [91]. Then SIRT1 has been considered as an oncogenic protein because
of its role in inactivating tumor suppressors such as p53, p73 but also PTEN [127], and/or
activating other oncogenic proteins like N-Myc [128]. Nevertheless, the oncogenic potential of
SIRT1 has been controversial and, depending on the context, SIRT1 might also act as a tumor
suppressor [122]. However, inhibition of the oncogenic potential of SIRT1 is likely able to
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induce apoptosis by counteracting the deacetylation of p53 or p73 and other key factors such
as FOXO3a [91, 125, 129].

In 2003, resveratrol was the top hitin a screen designed to identify activators of sirtuin enzymes
[130] and was subsequently shown to extend lifespan in yeast. However following experiments
led to confusing data suggesting that resveratrol might not be a direct activator of SIRT1 [131].
Regardless of the controversy about its mode of action, resveratrol has been confirmed to have
numerous health benefits, including anticancer properties. Nevertheless, the role of SIRT1 in
the anti-proliferative and pro-apoptotic effects of resveratrol on cancer cells is still unclear.
Indeed, in neuroblastoma cells, resveratrol-induced apoptosis was associated with a reduced
expression of SIRT1 as well as up-regulation of the acetylated and active form of p53, but the
pre-treatment of cancer cells with SIRT1 enzymatic inhibitors such as sirtinol or nicotinamide
has no cytotoxic effect suggesting that resveratrol-induced apoptosis is independent of SIRT1
activity [132]. In the opposite, siRNA-mediated downregulation of SIRT1 in lymphoma cells
decreased the resveratrol-induced apoptosis, indicating in this case a critical role of SIRT1 in
polyphenol-mediated cancer cell death [133]. Interestingly, Frazzi et al., have recently descri-
bed anti-proliferative effect of resveratrol associated with downregulation of SIRT1 expression
and activity together with upregulation of acetylated-Lys 373-p53, the active form of p53, and
total p53 overexpression [129]. All together, these data suggest that, in the context of cancer
cells, resveratrol might be an inhibitor, instead of an activator, of SIRT1 functions (Figure 1).
However, only few data are available concerning potential regulation of SIRT1/p53 pathway
by other polyphenolic compounds [134]. Therefore additional investigations are needed to
further understand the role of SIRT1 in polyphenols-mediated anticancer effects.

On the other hand, resveratrol has been shown to enhance p53 acetylation and apoptosis
in prostate cancer cells through alternative pathways. Indeed, resveratrol caused down-
regulation of MTA1 protein, leading to destabilization of MTA1/NuRD complex thus
allowing acetylation/activation of p53 [135]. Metastasis-associated protein 1 (MTA1) is part
of the nucleosome remodelling deacetylation (NuRD) complex involved in global and gene-
specific histone deacetylation, alteration of chromatin structure and transcriptional
repression [136, 137]. This complex, which also contains Histone DeACetylase (HDAC)1
and HDAC2, plays an essential role in governing deacetylation of histones but also non
histone proteins, such as p53 [138]. In addition, green tea polyphenols have been shown
to behave as HDAC class I inhibitors which results in p21 and Bax expression irrespec-
tive of p53 status in prostate cancer cells [139, 140]. Moreover HDAC inhibition by EGCG
is associated with p53 acetylation in p53-wild-type LNCAP prostate cancer cells suggest-
ing an increase of p53 halftime and binding to p21 and Bax promoters as previously
described [141]. The mechanism by which HDAC inhibition could induce apoptosis in
absence of functional p53 in p53-null PC3 prostate cancer cells might be related to
interaction with p73 pathway as previously suggested [142, 143] or direct regulation of p21
promoter activation [144]. Similar HDAC inhibition by curcumin has been also seen in
prostate cancer cells [145]. However the exact role of HDAC inhibition in polyphenol-
induced apoptosis of cancer cells remains to be elucidated especially in vivo.
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7. Role of oxidative stress and DNA damage in p53/p73 regulation by
polyphenols

Polyphenolic compounds have been extensively described as anti-oxidant molecules with the
capability to scavenge reactive oxygen species (ROS), which include radical oxygen and
nitrogen species such as O2" (superoxide anion), HO' (hydroxyl radical), NO- (nitric oxide
radical), ONOO" (peroxinitrite anion) and H,O, (hydrogen peroxide), as well as oxidatively
generated free radicals RO- and ROO- from biomolecules like lipids, proteins or nucleic acids
(DNA and RNA) [3, 146]. Polyphenols are not only able to quench the ROS but also to regulate
directly the oxidative stress-mediated enzyme activity, therefore reducing the formation of
ROS. These anti-oxidant properties have been linked to the polyphenol-mediated reduction
of chronic disease risk including cancer chemoprevention [13, 147]. Indeed, redox changes are
often reported as important inducer of neoplastic transformation as well as chemoresistance.
Cerutti et al. identified for the first time in 1985 the close relationship between pro-oxidant
conditions and cancer development [148]. More than twenty years later, accumulated eviden-
ces indicate that the non-physiological alterations of the intracellular redox state could be
considered as a hallmark of tumor biology. Indeed, redox changes have been involved in
several key events of carcinogenesis such as self-sufficiency in growth signals [149, 150],
resistance to apoptosis [151, 152], sustained angiogenesis [153, 154], autophagy and invasive-
ness. However, recent findings also suggest that this redox changes might be exploited as
therapeutic strategy to selectively kill tumor cells.

Recently and unexpectedly, it has been established that various and structurally different
(flavonoids or non-flavonoids) polyphenols are able to induce ROS (mainly superoxide anions
or hydrogen peroxide) formation in cancer cells and for some of them to activate the DNA-
damage response pathway [51, 79, 80, 95, 102, 103, 155-158]. Heiss et al. have also shown that
the resveratrol-induced senescence in colon cancer cells is dependent upon an increased
formation of ROS and the subsequent phosphorylation of p53 on the Serl5, suggesting a
relationship between polyphenol-induced oxidative stress and p53 activation [103]. On the
other hand, curcumin and wogonin induce ROS production and cause cytotoxicity in p53+/+
and p53-/- cancer cells [56, 64], indicating that ROS formation is an event independent of p53
and might be an earlier step in the cell death pathway. This hypothesis is supported by the
study showing ROS in cancer cells as earlier as 20 minutes after the beginning of wogonin
treatment. Moreover, in the same study, the subsequent up-regulation of p53 (maximal
activation at 16 hours) is significantly inhibited by anti-oxidants such as N-Acetyl-Cysteine.
Importantly, most of the studies did not investigate the possible alternative role of p73 in p53-
mutated cells, but we and others have shown that in p53-mutated or p53-deficient cells, a
polyphenolic compound (EGCG) or source (red wine polyphenolic extract, polyphenol-rich
aronia juice) strongly induced oxidative stress-mediated up-regulation of p73 and apoptosis
[79, 80, 84]. Further reports also supported that p53-family tumor suppressors regulation might
be related to oxidative stress [159].

Interestingly, the cytotoxic effects induced by curcumin or its analogue HO-3867 were reduced
in non-cancerous cells as well as the ROS formation in comparison to human ovarian cancer
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cells. This suggests that the specific pro-oxidant activity of polyphenols in cancer cells might
explain the selective anticancer properties of these compounds, sparing healthy normal cells
[107, 160]. Similarly, EGCG increased preferentially ROS formation, p53 and p21 expression
and cytotoxicity in colorectal cancer cells but not in human embryonic kidney cells and normal
human lung cell line [157].

Oxidative stress is one of the major conditions that damages DNA, acting as a mediator of
environmental stressors such as UV-and X-rays irradiation, drugs, and of metabolicimbalance
[161]. Since p53 might be regulated by the redox environment [162], especially by the
ROS/DNA damage pathway, it has been proposed that polyphenol-mediated anticancer
effects are related to a ROS/DNA damage/p53 pathway (Figure 1). Indeed polyphenol-induced
DNA damage and apoptosis have been demonstrated with various compounds such as
curcumin in glioblastoma and prostate cancer cells [100, 163], resveratrol in prostate cancer
cells [164, 165], EGCG in lung cancer cells and xenograft in mice [166], wogonin in glioblastoma
and prostate cancer cells [51, 56], and luteolin in lung and head and neck cancer cells [58].
Therefore the current molecular mechanism of the anticancer properties of polyphenols might
involve selective ROS formation together with DNA damage in cancer cells. Thus, this process
might lead to the regulation of several pathways (ATM/DNA-PK, MAPKs, p300, SIRTI,
HDAUC, see Figure 1), and ultimately to the expression and stabilization of p53-family tumor
suppressors triggering programmed cell death.

8. Therapeutic perspectives

Recent investigations have demonstrated additional or synergistic effects when polyphenols
are combined with chemo- or radiotherapy. Indeed, resveratrol induces synergistic apoptosis
with 5-fluorouracile [167]. Similar observations have been made with curcumin associated
with doxorubicin, cisplatin, gemcitabine or radiation for cell death induction of glioblastoma
cells and prostate cancer cells [60, 87]. More importantly, curcumin and its analogue, HO-3867
sensitized doxorubicin-resistant ascite carcinoma cells and breast cancer cells as well as
cisplatin-resistant ovarian carcinoma cells together with enhanced p53 expression [107, 120,
168, 169]. Similarly, EGCG displayed synergistic upregulation of p53 and p73 as well as
anticancer properties with taxanes (paclitaxel and docetaxel) in vitro but also in vivo in prostate
cancer models [170, 171]. Because all of the previously mentioned drugs demonstrated the
ability to induce DNA damage, it is likely that polyphenols might amplify these damages
leading therefore to synergistic effects. Surprisingly, EGCG has also synergistic effects with
targeted therapy such as erlotinib (inhibitor of epidermal growth factor receptor) to induce
P53 phosphorylation on Ser15 and expression together with apoptosis [172].

Interestingly, curcumin also ameliorated oxaliplatin-induced chemoresistance in colorectal
cancer cells without significant effect on p53 expression [173]. Similarly, curcumin and
EGCG sensitized glioma cells in vitro and in vivo to chemotherapeutic drugs and also to
radiation in a p53-independent manner [163]. These data suggest that polyphenols can
effectively circumvent resistance of cancer cells to chemotherapy, but likely through a p53-
independent pathway.
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Numerous in vitro studies have demonstrated the cytotoxic effects of polyphenols by using
micromolar concentrations which are much higher than current chemotherapeutic drugs
under development. However, polyphenols still keep their potential as chemotherapeutic
drug, firstly because of their activity on chemo- or radioresistant cancer cells and secondly
because of their very low toxicity on healthy tissues giving them a large therapeutic index.
Indeed, many recent in vitro studies have highlighted the selective pro-apoptotic properties of
polyphenols or analogues with no or low cytotoxic effect on non-cancer healthy cells, such as
endothelial cells, cardiomyocytes, lymphocytes, chondrocytes, ovarian cells, prostate and
mammary epithelial cells, astrocytes, or neurons [54, 57, 60, 79, 95, 107, 158, 163, 169, 174].
Interestingly, the selective pro-apoptotic effect of curcumin in breast cancer cells is associated
with an increased expression of p53, whereas p53 is only slightly upregulated in normal
mammary epithelial cells, suggesting a selective activation of p53 pathway in cancer cells
sparing normal cells [54]. Moreover, in vivo treatment with polyphenolic compounds or
products in tumor model such as cancer cells xenografts induced a significant inhibition of
tumor growth together with a very good tolerance for healthy tissues, including heart, liver,
kidney, lung and haematopoietic tissue [60, 78]. However, more animal studies and human
clinical trials are now necessary to clearly determine whether polyphenols or their natural
nutritional sources are safe and efficient to treat cancer.

9. Concluding remarks

The present literature review has summarized the results of recent studies focusing mainly on
the p53-related anticancer properties of three major polyphenolic compounds (resveratrol,
curcumin and EGCG). Despite highly active research in this area, the data are still controversial
concerning the possible key role of the tumor suppressor p53 in the polyphenol-mediated
apoptosis of tumor cells. However, according to the emerging evidences suggesting that
polyphenols might alternatively regulate also the structurally- and functionally-related tumor
suppressors such as p73, these natural compounds might be considered as general executors
of the p53 family-mediated programmed cell death in cancer cells. Importantly, the selective
anticancer properties of polyphenols are maintained even when p53 is mutated or absent, as
well as when cells are resistant to current therapies. However, further investigations are still
mandatory to better understand the underlying molecular mechanism in vitro as well as in
vivo before a potential clinical development.
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