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1. Introduction 

Signal transduction systems regulate complex biological events such as cell proliferation and 

differentiation via phosphorylation/dephosphorylation kinetic reactions. Therefore, 

dysregulation of these systems lead to a variety of diseases such as diabetes, abnormal bone 

metabolism, autoimmune disease and cancer [1-4]. Above all, cancer is well-known to be 

caused by aberrant regulation of signaling pathways. Although a large number of studies 

regarding phosphorylation events in cancer cell networks were performed, a global view of 

these complex systems has not been fully elucidated.  Recent technological advances in mass 

spectrometry-based proteomics have enabled us to identify thousands of proteins in a single 

project [5-7] and, in combination with relative quantitation techniques such as Stable Isotope 

Labeling by Amino acids in Cell culture (SILAC), quantitative analysis regarding signaling-

related molecules can also be performed [8,9]. Recently, establishment of phosphorylation-

directed peptide/protein enrichment technology has led us to capture the comprehensive 

status of phosphorylated cellular signaling molecules in a time-resolved manner [10-12]. 

Tyrosine-phosphoproteome analysis conducted by utilizing anti-phosphotyrosine 

antibodies unveils key regulatory signaling dynamics triggered by tyrosine kinases such as 

epidermal growth factor receptor (EGFR) in various contexts of cancer cell signaling. 

Furthermore, chemistry-based phosphopeptide enrichment technologies such as 

immobilized metal affinity chromatography (IMAC) [13,14] and metal oxide 

chromatography (MOC) including titanium dioxide (TiO2) allows us to describe a 

serine/threonine/tyrosine-phosphorylation dependent global landscape of cellular signaling 

at the network level [15,16]. In this chapter, we introduce recent technological development 

regarding quantitative phosphoproteomics and discuss the future direction of cancer 

research toward exploration of drug targets in complex signaling networks from a system-

level point of view. 
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2. Shotgun proteomics technology  

2.1. Mass spectrometry-based proteomics methodology 

Recent progress in mass spectrometry-based proteomics technique has greatly contributed 

to elucidation of the regulatory networks constituted by a small amount of signaling-related 

molecules [17]. Especially, modern mass spectrometers termed linear ion trap (LTQ)  

Orbitrap instrument coupled to nano-flow liquid chromatography (nanoLC) enables us to 

identify and quantify thousands of signaling factors, leading to characterize diverse aspects 

of biological processes [18,19]. This system is made up of LTQ [20] and Orbitrap [21], which 

permits reliable peptide identification with high sensitivity, high mass resolution and high 

mass accuracy. In principle, there are two methodologies (in-gel digestion and in-solution 

digestion) for mass spectrometric sample preparation (Figure 1). Recently, liquid-

fractionation entrapment technology has also been developed to improve 

comprehensiveness as well as sensitivity.  

 

Figure 1. Experimental workflow for advanced mass spectrometry-based proteomics. Two standard 

methodologies (in-gel digestion and in-solution digestion) are usually applied to sample preparation. 

2.2. In-solution fractionation techniques  

In order to achieve peptide identification more comprehensively, in-solution fractionation 

techniques including two dimensional (2D) nanoLC system, Gelfree 8100 Fractionation 

System (Protein Discovery) [22] and 3100 OFFGEL Fractionator (Agilent) [23] have been 

developed for further sample separation. 2D nanoLC system consists of on-line strong 

cation exchange (SCX) and reversed-phase (RP) columns (Figure 2A), whereas off-line 

fractionation systems such as Gelfree 8100 Fractionation System and 3100 OFFGEL 

Fractionator separate proteins by molecular weight and isoelectric point, respectively 



 
Phosphoproteomics-Based Characterization of Cancer Cell Signaling Networks 187 

(Figure 2B, 2C). These systems enable us not only to reduce the complexity of samples but 

also to minimize the amount of starting materials compared with in-gel digestion. 
 

 

Figure 2. Schematic illustrations for in-solution protein/peptide separation techniques based on 

fractionation A) using SCX and RP columns (2D nanoLC system), B) by molecular weight (Gelfree 8100 

Fractionation System) and C) by isoelectric point (3100 OFFGEL Fractionator). 

3. Quantitative proteomics  

Quantitative description based on mass spectrometry is not readily available because of the 

principle that ionization efficiency for mass spectrometric detection depends on the 

chemical property of each peptide. In recent years, several methods have been intensively 

developed for absolute and relative quantification [24]. The former methodology enables us 

to determine the absolute amount of proteins using standard peptides or proteins that are 

labeled by stable isotopes [25-27]. Meanwhile, the latter can provide information on the 

relative change in protein/peptide amount. There are two major approaches for relative 

quantification termed label-free and stable isotope-based methods.  

3.1. Label-free methods 

The label-free methods that utilize spectral counting or signal intensity for relative 

quantitation (Figure 3) are simple and economical but less accurate than isotope-based 

methods [28,29]. 
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Figure 3. Representative chromatograms acquired under two different conditions. Relative quantitation 

can be performed by comparing these chromatograms. The red rectangle indicates the peak intensities 

increased in condition 2 compared with condition 1. 

3.2. Stable isotope-based methods 

Stable isotope-based methods allow us to distinguish the status of protein/peptide amount 

of even post translational modifications (PTMs) in a more accurate manner. Stable isotope-

labeled reagents were incorporated into specific amino acids by chemical derivatization or 

metabolic labeling. Isotope-Coded Affinity Tag (ICAT) [30,31], isobaric Tag for Relative and 

Absolute Quantitation (iTRAQ) [32-34] and Tandem Mass Tag (TMT) [35,36] belong to the 

former chemical derivatization techniques. As for metabolic labeling strategies, Stable 

Isotope Labeling by Amino acids in Cell culture (SILAC) technique [37,38] is known as the 

most useful and accurate for relative quantitation.  

3.2.1. ICAT 

The chemical structure of the ICAT reagent consists of three regions: a reactive group with 

cysteine, an isotopically coded linker and a biotin tag (Figure 4). In order to perform a 

quantitative analysis, the cellular proteomes in two different conditions are labeled with 

light and heavy ICAT reagents, respectively. After the two samples are combined, they are 

proteolytically digested and purified with avidin affinity chromatography. The differential 

analyses are sequentially performed by detecting mass shift using liquid chromatography 

combined with tandem mass spectrometry (LC-MS/MS).  
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Figure 4. Peptide quantitation using cleavable ICAT. Differentially labeled peptides with ICAT tag at 

cysteine residues are preferentially enriched and analysed by LC-MS/MS. The ratio of heavy (red peak) 

to light (green peak) area indicates relative abundance of each peptide. 

3.2.2. Isobaric reagents (iTRAQ and TMT) 

The isobaric reagents such as iTRAQ and TMT contain an isobaric tag and an amine specific 

peptide reactive group. This strategy enables us to label all peptides derived from samples. 

Relative quantification of the mixed sample is performed at the MS/MS fragmentation stage 

(Figure 5).  

 

Figure 5. Peptide quantitation using iTRAQ. Peptides labeled by isobaric tags on the N-termini and 

lysine side chains are mixed and analyzed by LC-MS/MS. After fragmentation, MS/MS spectra of 

reporter ions are observed in the low mass region. The ratio of these peaks represents a relative amount 

of each peptide. 
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3.2.3. SILAC 

As for metabolic labeling, Stable Isotope Labeling by Amino acids in Cell culture (SILAC) 

technique has widely been used to quantify protein abundance or PTM status in different 

conditions (Figure 6). Two cell populations are grown in different culture media including 

light or heavy stable isotopes of arginine and/or lysine. The lysates from these cell 

populations are equally combined, proteolytically digested and analyzed by LC-MS/MS. 

Regarding each mass pair detected, the ratio of the peak intensities corresponds to the 

relative peptide abundance.   

 

Figure 6. Peptide quantitation using SILAC. Proteins metabolically labeled by differential stable 

isotopes are combined, proteolytically digested and subjected to nanoLC-MS/MS analysis. The ratio of 

heavy to light peak area accounts for a relative amount of each peptide. 

4. Analytical methodologies for enrichment of phosphorylated molecules 

The mechanistic principles for transmitting signals within cellular networks rely greatly on 

PTMs such as phosphorylation, ubiquitination and acetylation. Although reversible 

phosphorylation events are well-studied in signal transduction research, a global landscape 

of phosphorylation-dependent signaling networks remains almost unclear. Here we 

introduce several phosphoprotein/phosphopeptide enrichment methods for mass 

spectrometry-based global phosphoproteome analysis. 

4.1. Immunoprecipitation using anti-phosphotyrosine antibodies 

Anti-phosphotyrosine antibodies are frequently used to enrich tyrosine-phosphorylated 

proteins (Figure 7A) for analyzing phosphotyrosine-based biological networks using mass 

spectrometry. These are some previous studies in which this methodology was successfully 
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applied for phosphotyrosine-related signaling networks in leukemia cells [39] and human 

HeLa cells [10]. Salomon et al. identified 64 phosphorylation sites on 32 distinct proteins in 

leukemia cells by treatment with STI571 (Gleevec) [39]. Blagoev et al. showed that 81 

signaling related molecules including 31 novel effectors were activated in response to 

epidermal growth factor (EGF) stimulation in a time-dependent manner [10]. These 

researches provided the key aspects of cellular regulation in each signaling context.          

 

Figure 7. Overview of the affinity status of phosphorylated molecules with A) anti-phosphotyrosine 

antibody, B) IMAC, C) Phos-Tag and D) TiO2 

4.2. IMAC 

Immobilized Metal Affinity Chromatography (IMAC) is based on the notion that phosphate 

groups can chelate with metal ions such as iron, zinc or gallium (Figure 7B). Stensballe et al. 

showed that some phosphopeptides could be unambiguously identified using only low-

picomole of samples by Fe(III)-IMAC technique [13]. This approach is also known to be 

suitable for identification of multiply phosphorylated peptides rather than singly modified 

ones. 

4.3. Phos-Tag 

Phos-Tag has a vacancy on two metal ions that is accessible for phosphomonoester dianion 

(Figure 7C). The peptides with phosphorylated serine, threonine and tyrosine residues can 

be all captured by the chemical structure [40,41].  

4.4. TiO2  

Titanium dioxide (TiO2)-based method is one of the most frequently used technique for 

phosphopeptide enrichment (Figure 7D) [15,16].  Olsen et al. detected 6,600 phosphorylation 
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sites on 2,244 proteins in human HeLa cells and showed that 14 % of the identified 

phosphorylation sites were altered by at least 2-fold in response to EGF stimulation [16]. The 

unbiased large-scale phosphoproteome data provided more extensive insights regarding 

phosphorylation-dependent cellular processes.   

5. Proteomics-driven computational analysis  

In recent years, several functional annotation and network analysis tools have been 

developed to understand cellular processes from a system-level point of view. Here we 

introduce two representative computational tools for analyzing large-scale proteome data. 

Database for Annotation, Visualization and Integrated Discovery (DAVID) [42] 

(http://david.abcc.ncifcrf.gov/home.jsp), which consists of an integrated biological 

knowledgebase and some analytical tools, enables extraction of the related information from 

the functional annotation databases (Figure 8). 

 

 

Figure 8. DAVID-based functional description of DNA replication (KEGG pathway). Red symbols 

indicate the molecules detected by the shotgun proteome analysis of glioblastoma stem cells [43]. 

Ingenuity Pathways Analysis (IPA) software (http://www.ingenuity.com) (Ingenuity 

Systems) is used to find networks in relation to experimental proteome data using the 

Ingenuity Knowledge Base derived from thousands of peer-reviewed journals (Figure 9). 
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Figure 9. Representative description using IPA software. A) Statistical classification of canonical 

pathways extracted from experimental data. B) Pathway analysis based on quantitative proteome data.  
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6. Proteomics-based description of cancer signaling networks   

6.1. Phosphoproteome dynamics in cancer cells 

Signal transduction systems regulated by tyrosine phosphorylation events are widely 

known to play a crucial role in fundamental biological processes such as cell proliferation, 

differentiation and migration. Thus, phosphoproteomics-based approaches have first been 

applied to reveal the molecular mechanisms governed by tyrosine phosphorylation in 

response to external growth factors such as EGF [10,11,44,45], fibroblast growth factor (FGF) 

[46] or heregulin (HRG) [47]. Schulze et al. identified interaction partners of the four 

members belonging to the ErbB receptor family (EGFR, ErbB2, ErbB3 and ErbB4) using the 

corresponding synthetic peptides as baits in an unbiased proteomic manner [45]. They 

revealed that most interaction partners to tyrosine residues were located at the C-terminal 

end outside the kinase domain of each ErbB family member. Hinsby et al. demonstrated that 

28 components were induced by basic fibroblast growth factor (bFGF) stimulation in FGFR-1 

expressing cells [46]. The effect of EGF stimulation on human epithelial carcinoma A431 

cells was also examined in a time-resolved manner [11] (Figure 10A). Among a total of 136 

proteins identified, 56 molecules were quantified by more than 1.5-fold changes upon EGF 

stimulation.  Moreover, the temporal perturbation effects of the Src-family kinase inhibitor, 

PP2, on the prolonged activation phase were also evaluated regarding various cellular 

proteins including Src-family kinase substrates. Consequently, the effect of PP2 on the 

molecules which belong to cell adhesion such as Catenin δ showed significant down-

regulation, whereas the impact on the factors related to classical cascades such as EGFR was 

modest (Figure 10B). IPA analysis was then performed to elucidate the PP2 effects on the 

EGF-induced A431 cells at the network level (Figure 11). These results clearly showed the 

differences in tyrosine-phosphorylation levels in the presence or absence of PP2. Thus, these 

data provide further insight into how such complex biological systems would function in 

response to external perturbation. 

By combining quantitative phosphoproteome and transcriptome data in silico, Oyama et al. 

performed a system-level analysis regarding cellular information networks in wild-type 

(WT) and tamoxifen-resistant (TamR) human breast adenocarcinoma MCF-7 cells in 

response to HRG and 17β-estradiol (E2) stimulation [47] (Figure 12). The integrative analysis of 

phosphoproteome and transcriptome in MCF-7 cells revealed that activation of glycogen-

synthase kinase 3β (GSK3β) and mitogen-activated protein kinase (MAPK) 1/3 signaling might 

be associated with altered activation of CREB and AP-1 transcription factors in TamR MCF-7 

cells, which potentially defines drug-resistance properties against tamoxifen (Figure 13).  

6.2. Large-scale proteomic characterization of cancer stem/initiating cells 

Cancer cells are widely known to be heterogeneous, even though they were derived from a 

single transformed cell [48]. Some of them show resistance to anti-cancer drugs and 

radiation therapies [49,50] and recent studies also demonstrated the existence of cancer stem 

cells (CSCs) in various types of cancer cells including leukemia [51], breast cancer [52], 

glioma [53,54] and colon cancer [55,56]. Moreover, it has been getting clear that CSCs have  
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Figure 10. Schematic procedures for identification and SILAC-based quantitation of tyrosine-

phosphoproteome in A431 cells [11]. A) The experimental procedure using three different SILAC media 

to describe tyrosine-phosphoproteome dynamics in response to EGF stimulation. B) Comparative 

analysis using two distinct SILAC media for evaluation of the perturbation effects by Src-family kinase 

inhibitor, PP2.  Green lines show EGF activation profiles ,whereas red ones indicate temporal 

perturbation effects by PP2.       
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Figure 11. Network analysis of the quantitative phosphoproteome data on A431 cells A) upon EGF 

stimulation and B) subsequently perturbed by PP2, respectively. Red and green nodes indicate up- and 

down-regulated signalling molecules, respectively. 
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Figure 12. A schematic procedure for identification and quantitation of large-scale phosphoproteome in 

ligand-stimulated MCF7 cells [47]. The phosphorylated molecules captured by anti-pTyr antibodies or 

Phos-tag agarose were analysed by nanoLC-MS/MS. 

the ability of treatment refractory [57-60] as well as biological properties similar to normal 

stem cells such as self-renewal and differentiation potency [61]. Recent studies also pointed 

out the possibility that CSCs were derived from normal stem cells and any non-CSCs might 

also convert to CSCs [62]. Therefore, comprehensive elucidation of signaling networks in 

CSCs is considered to be one of the most important steps in cancer research. Thus, we 

applied mass spectrometry-based shotgun proteomics technology to characterize protein 

expression profiles [43] and global phosphorylation-dependent signaling networks [63] in 

glioblastoma stem/initiating cells derived from brain tissues (Figure 14). 

In order to gain a comprehensive overview of protein expression in glioblastoma 

stem/initiating cells, we conducted a shotgun proteome analysis, leading to identification of 

2,089 proteins in total [43]. The DAVID-based pathway analysis showed the expressed 

proteome were enriched in ribosome (Figure 15), spliceosome and proteasome to a high 

degree. Thus, global protein expression analysis using advanced mass spectrometry offers 

novel viewpoints for characterization of key factors besides other methodologies such as 

fluorescence-activated cell sorting (FACS) and gene expression analyses.    

The global phosphoproteome analysis of these glioblastoma stem cells also enabled us to 

determine 6,073 phosphopeptides derived from 2,282 proteins using two fragmentation 

methodologies of collision induced dissociation and higher energy C-trap dissociation [63]. 

The IPA analysis of the phosphoproteome data unveiled a variety of canonical pathways 
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that have been reported to play a crucial role in cancer cells and normal stem cells (Figure 

16). Among them, mTOR signaling, which is known to play an important part in stem cell 

regulation [64,65], was found to be one of the most highly enriched pathways. Very 

interestingly, the phosphorylation status of EIF4EBP1 and RPS6, which enhance mRNA 

translation, were up-regulated by EGF stimulation (Figure 17). The analysis also led to 

identification of various novel phosphorylation sites on the molecules with stem cell-like 

and glioma properties such as nestin and vimentin [66]. More intriguingly, some novel 

phosphopeptides derived from undefined regions within the human transcript sequences 

were also determined from the large-scale phosphoproteome data and the phosphorylation 

status of the peptide encoded by supervillin-like (LOC645954) was found to be altered upon 

EGF stimulation (Figure 18). 

 

 

 
 

 
 

 

Figure 13. Integrative network analyses of quantitative phosphoproteome and transcriptome data 

obtained from MCF7 cells A) after HRG stimulation and B) after E2 stimulation. Red and green nodes 

indicate up- and down-regulated signaling molecules, respectively. 
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Figure 14. Schematic procedures for identification and quantitation of the expressed proteome and 

phosphoproteome in glioblastoma stem cells. The whole proteome and phosphoproteome were 

analysed by nanoLC-MS/MS. 

 

Figure 15. DAVID-based functional description of Ribosome pathway (KEGG pathway). Red symbols 

indicate the molecules detected in the proteomic analysis of glioblastoma stem cells [43]. 
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Figure 16. Representative canonical pathways enriched in the phophoproteome of glioblastoma stem 

cells. Red and green bars indicate up- and down-regulation of phosphorylation levels in response to 

EGF stimulation, respectively. Orange dots denote –log(p-value) by Fisher’s Exact test, indicating the 

statistical significance of the molecules in each criterion. 

  

Figure 17. IPA-based network description of mTOR signaling extracted from the large-scale 

phosphoproteome data on glioblastoma stem cells. Red and green nodes indicate up- and down-

regulated signaling effectors in response to EGF stimulation, respectively.     
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Figure 18. Mass spectra of the novel phosphopeptide encoded by supervillin-like (LOC645954) in 

HeLa-derived cells and glioblastoma stem cells upon EGF stimulation [63]. 

7. Conclusion 

Advanced mass spectrometry-based proteomics has become a powerful tool for 

comprehensive understanding of signal transduction networks at the system level. In this 

chapter, we introduced recent proteomics technologies regarding relative quantitation and 

enrichment of phosphorylated proteins/peptides for large-scale description of signaling 

network dynamics. Utilizing these approaches, thousands of phosphorylation sites on 

diverse signaling-related molecules can now be identified in an unbiased fashion. 

Quantitative information on the effects of ligand stimulation and inhibitor perturbation also 

proved beneficial to understand the phosphorylation dynamics at the network level. 

Furthermore, extensive in silico analyses based on comprehensive proteome data enabled us 

to describe a system-level view of biological networks in a statistical manner. Consequently, 

mass-spectrometry-based proteomics will pave the way to evaluate molecular hubs in 

signaling systems and to develop novel targets for treatment of various diseases caused by 

signaling aberration [67,68].   

Author details 

Hiroko Kozuka-Hata, Yumi Goto and Masaaki Oyama 

Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Shirokanedai, 

Minato-ku, Tokyo, Japan 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 202 

Acknowledgement 

We thank all the members of Medical Proteomics Laboratory, IMSUT. This work was 

supported by Genome Network Project and Cell Innovation Program, Ministry of 

Education, Culture, Sports, Science and Technology of Japan.  

8. References 

[1] Hunter T. Signaling—2000 and beyond. Cell 2000;100 (1): 113-27. 

[2] Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000;103(2): 211-25.  

[3] Cuesta N, Martín-Cófreces NB, Murga C, van Santen HM. Receptors, signaling 

networks, and disease. Sci Signal 2011;4(161): mr3.  

[4] Cohen P. The twentieth century struggle to decipher insulin signalling. Nat Rev Mol 

Cell Biol 2006;7(11): 867-73.  

[5] Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003;422 (6928): 

198-207. 

[6] Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li 

Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, 

Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, 

Polakiewicz RD, Rush J, Comb MJ. Global survey of phosphotyrosine signaling 

identifies oncogenic kinases in lung cancer. Cell 2007;131(6): 1190-203.  

[7] Stokes MP, Rush J, Macneill J, Ren JM, Sprott K, Nardone J, Yang V, Beausoleil SA, Gygi 

SP, Livingstone M, Zhang H, Polakiewicz RD, Comb MJ. Profiling of UV-induced 

ATM/ATR signaling pathways. Proc Natl Acad Sci U S A 2007;104(50): 19855-60.  

[8] Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 

2006;7(12): 952-8. 

[9] Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable 

isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate 

approach to expression proteomics. Mol Cell Proteomics 2002;1(5): 376-86. 

[10] Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-

dependent signaling networks by quantitative proteomics. Nat Biotechnol 2004;22(9): 

1139-45.  

[11] Oyama M, Kozuka-Hata H, Tasaki S, Semba K, Hattori S, Sugano S, Inoue J, Yamamoto 

T. Temporal perturbation of tyrosine phosphoproteome dynamics reveals the system-

wide regulatory networks. Mol Cell Proteomics 2009;8(2): 226-31.  

[12] Hammond DE, Hyde R, Kratchmarova I, Beynon RJ, Blagoev B, Clague MJ. 

Quantitative analysis of HGF and EGF-dependent phosphotyrosine signaling networks. 

J Proteome Res 2010;9(5): 2734-42.  

[13] Stensballe A, Andersen S, Jensen ON. Characterization of phosphoproteins from 

electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass 

spectrometry analysis. Proteomics 2001;1(2): 207-22.  



 
Phosphoproteomics-Based Characterization of Cancer Cell Signaling Networks 203 

[14] Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt 

DF, White FM. Phosphoproteome analysis by mass spectrometry and its application to 

Saccharomyces cerevisiae. Nat Biotechnol 2002;20(3): 301-5.  

[15] Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJ. Highly selective 

enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide 

microcolumns. Mol Cell Proteomics 2005;4(7): 873-86.  

[16] Olsen J V, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in 

vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 

2006;127(3): 635-48. 

[17] Walther TC, Mann M. Mass spectrometry-based proteomics in cell biology. J Cell Biol 

2010;190(4): 491-500. 

[18] Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, 

Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning 

S. A dual pressure linear ion trap Orbitrap instrument with very high sequencing 

speed. Mol Cell Proteomics 2009;8(12): 2759-69.  

[19] Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based 

proteomics. Nat Rev Mol Cell Biol 2010;11(6): 427-39.  

[20] Schwartz JC, Senko MW, Syka JE. A two-dimensional quadrupole ion trap mass 

spectrometer. J Am Soc Mass Spectrom 2002;13(6): 659-69.   

[21] Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new 

mass spectrometer. J Mass Spectrom 2005;40(4): 430-43.   

[22] Tran JC, Doucette AA. Multiplexed size separation of intact proteins in solution phase 

for mass spectrometry. Anal Chem 2009;81(15): 6201-9.   

[23] de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F, Walther TC, Mann 

M. Comprehensive mass-spectrometry-based proteome quantification of haploid versus 

diploid yeast. Nature 2008;455(7217): 1251-4. 

[24] Cox J, Mann M. Quantitative, high-resolution proteomics for data-driven systems 

biology. Annu Rev Biochem 2011;80: 273-99.  

[25] Steen H, Jebanathirajah JA, Springer M, Kirschner MW. Stable isotope-free relative and 

absolute quantitation of protein phosphorylation stoichiometry by MS. Proc Natl Acad 

Sci U S A 2005;102(11): 3948-53. 

[26] Hanke S, Besir H, Oesterhelt D, Mann M. Absolute SILAC for accurate quantitation of 

proteins in complex mixtures down to the attomole level. J Proteome Res 2008;7(3): 

1118-30.   

[27] Singh S, Springer M, Steen J, Kirschner MW, Steen H. FLEXIQuant: a novel tool for the 

absolute quantification of proteins, and the simultaneous identification and 

quantification of potentially modified peptides. J Proteome Res 2009;8(5): 2201-10.  

[28] Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K. Identification and characterization of 

propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem 2009;284(47): 

32288-95.  

[29] Sadygov R, Wohlschlegel J, Park SK, Xu T, Yates JR 3rd. Central limit theorem as an 

approximation for intensity-based scoring function. Anal Chem 2006;78(1): 89-95.  



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 204 

[30] Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of 

complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999;17(10): 

994–9.  

[31] Yi EC, Li XJ, Cooke K, Lee H, Raught B, Page A, Aneliunas V, Hieter P, Goodlett DR, 

Aebersold R. Increased quantitative proteome coverage with (13)C/(12)C-based, acid-

cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. 

Proteomics 2005;5(2): 380-7.  

[32] Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, 

Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, 

Jacobson A, Pappin DJ. Multiplexed protein quantitation in Saccharomyces cerevisiae 

using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004;3(12): 1154–

69. 

[33] Zieske LR. A perspective on the use of iTRAQ reagent technology for protein complex 

and profiling studies. J Exp Bot 2006;57(7): 1501–8.  

[34] Gafken PR, Lampe PD. Methodologies for characterizing phosphoproteins by mass 

spectrometry. Cell Commun Adhes 2006;13(5–6): 249–62. 

[35] Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, 

Johnstone R, Mohammed AK, Hamon C. Tandem mass tags: a novel quantification 

strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 

2003;75(8): 1895–904.  

[36] Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, 

Sanchez JC. Relative quantification of proteins in human cerebrospinal fluids by MS/MS 

using 6-plex isobaric tags. Anal Chem 2008;80(8): 2921–31.  

[37] Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable 

isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate 

approach to expression proteomics. Mol Cell Proteomics 2002;1(5): 376-86.   

[38] Ong SE, Kratchmarova I, Mann M. Properties of 13C-substituted arginine in stable 

isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2003;2(2): 173-

81.  

[39] Salomon AR, Ficarro SB, Brill LM, Brinker A, Phung QT, Ericson C, Sauer K, Brock A, 

Horn DM, Schultz PG, Peters EC. Profiling of tyrosine phosphorylation pathways in 

human cells using mass spectrometry. Proc Natl Acad Sci U S A 2003;100(2): 443-8.  

[40] Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. Phosphate-binding tag, a new 

tool to visualize phosphorylated proteins. Mol Cell Proteomics 2006;5(4): 749-57. 

[41] Nabetani T, Kim YJ, Watanabe M, Ohashi Y, Kamiguchi H, Hirabayashi Y. Improved 

method of phosphopeptides enrichment using biphasic phosphate-binding tag/C18 tip 

for versatile analysis of phosphorylation dynamics. Proteomics 2009;9(24): 5525-33. 

[42] Dennis G Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: 

Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 

2003;4(5): P3. 

[43] Kozuka-Hata H, Nasu-Nishimura Y, Koyama-Nasu Y, Ao-Kondo H, Tsumoto K, 

Akiyama T, Oyama M. Global proteome analysis of glioblastoma stem cells by high-



 
Phosphoproteomics-Based Characterization of Cancer Cell Signaling Networks 205 

resolution mass spectrometry. Current Topics in Peptide & Protein Research 2012;13: 1-

47. 

[44] Tasaki S, Nagasaki M, Kozuka-Hata H, Semba K, Gotoh N, Hattori S, Inoue J, 

Yamamoto T, Miyano S, Sugano S, Oyama M. Phosphoproteomics-based modeling 

defines the regulatory mechanism underlying aberrant EGFR signaling. PLoS One 

2010;5(11): e13926.  

[45] Schulze WX, Deng L, Mann M. Phosphotyrosine interactome of the ErbB-receptor 

kinase family. Mol Syst Biol. 2005;1: 2005.0008.  

[46] Hinsby AM, Olsen JV, Mann M. Tyrosine phosphoproteomics of fibroblast growth 

factor signaling: a role for insulin receptor substrate-4. J Biol Chem 2004;279(45): 46438-

47.  

[47] Oyama M, Nagashima T, Suzuki T, Kozuka-Hata H, Yumoto N, Shiraishi Y, Ikeda K, 

Kuroki Y, Gotoh N, Ishida T, Inoue S, Kitano H, Okada-Hatakeyama M. Integrated 

quantitative analysis of the phosphoproteome and transcriptome in tamoxifen-resistant 

breast cancer. J Biol Chem 2011;286(1): 818-29.  

[48] Park CH, Bergsagel DE, McCulloch EA. Mouse myeloma tumor stem cells: a primary 

cell culture assay. J Natl Cancer Inst 1971;46(2): 411-22.  

[49] Cho RW, Clarke MF. Recent advances in cancer stem cells. Curr Opin Genet Dev 

2008;18(1): 48-53. 

[50] Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev 

Cell Dev Biol 2007;23: 675-99.  

[51] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that 

originates from a primitive hematopoietic cell. Nat Med 1997;3(7): 730-7.  

[52] Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective 

identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100(7): 

3983-8. 

[53] Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, 

Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature 

2004;432(7015): 396-401. 

[54] Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, 

Christopher N, Zhang W, Park JK, Fine HA. Tumor stem cells derived from 

glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and 

genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006;9(5): 

391-403. 

[55] Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, 

Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF. Phenotypic 

characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 

2007;104(24): 10158-63.  

[56] Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. 

Identification and expansion of human colon-cancer-initiating cells. Nature 

2007;445(7123): 111-5.  

[57] Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, 

Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 206 

Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF. Association of reactive 

oxygen species levels and radioresistance in cancer stem cells. Nature 2009;458(7239): 

780-3. 

[58] Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-

initiating cells to radiation. J Natl Cancer Inst 2006;98(24): 1777-85.  

[59] Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS. 

Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in 

glioblastoma. Mol Cancer 2006;5: 67. 

[60] Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, 

Rich JN. Glioma stem cells promote radioresistance by preferential activation of the 

DNA damage response. Nature 2006;444(7120): 756-60. 

[61] Bianco P, Robey PG. Stem cells in tissue engineering. Nature 2001;414(6859): 118–21. 

[62] Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast 

development and breast cancer. Cell Prolif 2003;36 Suppl 1: 59-72. 

[63] Kozuka-Hata H, Nasu-Nishimura Y, Koyama-Nasu Y, Ao-Kondo H, Tsumoto K, 

Akiyama T, Oyama M. Phosphoproteome of human glioblastoma initiating cells reveals 

novel signaling regulators encoded by the transcriptome. PLoS ONE 2012;7(8):  e43398. 

[64] Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, 

Yonezawa K, Yamanaka S. mTOR is essential for growth and proliferation in early 

mouse embryos and embryonic stem cells. Mol Cell Biol 2004;24(15): 6710-8. 

[65] Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF, Um SH, Brown EJ, 

Cereghini S, Thomas G, Kozma SC. Disruption of the mouse mTOR gene leads to early 

postimplantation lethality and prohibits embryonic stem cell development. Mol Cell 

Biol 2004;24(21): 9508-16. 

[66] Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, 

Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The 

epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 

2008;133(4): 704-15. 

[67] Oyama M, Tasaki S, Kozuka-Hata H. Tyrosine-Phosphoproteome Dynamics. In: Choi S. 

(ed.) Systems Biology for Signaling Networks: Springer; 2010. p447-54. 

[68] Kozuka-Hata H, Tasaki S, Oyama M. Phosphoproteomics-based systems analysis of 

signal transduction networks. Front Physiol 2011;2: 113. 


