We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter 1

Genomic Expression Profiles: From Molecular
Signatures to Clinical Oncology Translation

Norfilza M. Mokhtar, Nor Azian Murad, Then Sue Mian and Rahman Jamal
Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53766

1. Introduction

Study related to diseases such as cancer has changed tremendously for a decade. For many
years, the study was restricted largely to a single gene or a few genes in cancer cells. The
studies have uncovered the roles of individual genes in the uncontrolled behavior of cancer
cells. Studying the functional roles of genes in cancer cells has deepened our understanding
not only the cancer cells as well as normal cells. Since 2003 onwards, the trend of
publications was focusing on the analysis of thousands of genes with related molecular
pathways. Steps taken from this analysis is then translated to clinical practice for the
biological markers for an early detection, monitoring, prognosis of the disease and response
to therapy.

The completion of the Human Genome Project in 2003 enabled a new era in biological
sciences, in particular molecular medicine. The availability of the database of full sequences
of approximately 3 billion base pairs and approximately 30,000 genes in human DNA will
lead to a better understanding of physiological and pathophysiological changes in human
body. Genome-wide expression technology allows the simultenous analysis of thousands of
genes in a single experiment. The availability of the technology alters the way biological
experiments can be designed. This has resulted of so called ‘discovery biology’. The large
amount of data produced by microarray resulted to new and unexpected features of cellular
functions.

Since it was first introduced, microarrays are widely used for basic research, the
development of prognostic tests, target discovery or toxicology researchs. The new form of
cancer screening utilizes the molecular data generated from microarray studies. We will
discuss the application of gene profiling data in the clinical screening of cancer. It is
hopefully will give a broad picture the pipeline required to discover biomarkers of cancer.
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The chapter is subdivided into a series of sections; each will discuss the scientific evidence
on the molecular and cellular studies in selected cancers. We will try to critically assess the
evidence upon which the theory on the cancer was built. The conversion of normal cells into
cancer cells is a complex process and multistep processes. Scientists for many years tried to
uncover the causes of cancer and emphasize certain oncogenes, or tumor suppressor genes
or other groups of genes. Further information on how these findings were translated to the
clinical settings will be provided. To date, with the massive gene expression profile data
available to the researchers, there are still major hurdles in validating and reproducing the
results. We will discuss the major drawbacks associated with the use of molecular
signatures as the biomarkers or response to treatment.

2. Molecular signatures in colorectal carcinoma

Colorectal cancer (CRC) is a type of cancers that develops in the colon or the rectum of the
human digestive system or gastrointestinal tract (1).Colorectal cancer is the third leading
cause of death in both men and women in the US with 141,210 new cases and 49,380 death
expected in 2011 (2). CRC progresses slowly over a period of time usually between 10 to 15
years (3, 4). The tumor begins with noncancerous polyps where the tissues that form the
lining of the colon or rectum differentiate into cancerous tissues (5). Approximately, 96% of
colorectal cancers are adenocarcinomas, which arise from the glandular tissue (6). It can
grow along the lining of the epithelium into the wall of the colon and rectum and invade the
digestive system (7). In addition, the cancerous cells can also penetrate into the circulating
systems, the blood and lymphatic systems which known as metastasis (7). Typically, the
cancerous cells will first spread into the nearby lymph nodes and subsequently penetrate
into other organs such as liver, lungs and ovary through blood vessels (8, 9). Colorectal
cancer can be classified as tumors/nodes/metastasis (TMN) staging and Dukes classification
(12). The TMN assigns the number based on three categories, T, M and N, which are the
degree of invasion of the intestinal wall, lymph node involvement and the degree of
metastasis, respectively (10). The higher number of TNM system indicates the advanced
stage of colorectal cancer (10).

Unhealthy lifestyles such as alcohol consumption, high intake of red meat, obesity, smoking
and lack of physical activities are among the risk factors for CRC (1, 11). Age and gender
also play significant role in the development of CRC as the risk is higher in male and
elderly(7). People with inflammatory bowel disease such as ulcerative colitis and Crohn’s
disease are also at high risk of getting CRC (12). Among the patients with Crohn’s disease,
approximately, 2%, 8% and 18% of the patients will develop CRC after 10, 20 and 30 years,
respectively (12). About 20% of patients with ulcerative colitis develop CRC within the first
10 years (13). Mutations in genes such as KRAS, APC, and MMR are the well-documented
genetic factor that contributes to colorectal cancer (3, 14, 15). Individual with family history
of CRC in two or more first degree relatives have 2 or 3-fold greater risk of getting CRC and
this has accounted for 20% of all cases (7). Examples of CRC involving genetic mutations are
hereditary nonpolyposis colorectal cancer (HNPCC or Lynch Syndrome), Gardner
syndrome and Familial adenomatous polyposis (16).
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Diagnosis of CRC is based on tumor biopsy performed during the sigmoidoscopy or
colonoscopy (7). CT scan of chest, abdomen and pelvis could be performed to determine the
metastasis state and in certain cases, PET or MRI may be used to assist in the diagnosis
(7).Molecular testing for patients with a strong family history can be performed to identify
mutation, thus initiate early diagnosis and screening in family members. In addition,
molecular characterization of mutations involved in CRC may help doctors to plan a better
treatment strategy for the patients. Managing our lifestyles can help us to reduce our risk of
getting CRC, for example by improving lifestyle through regular exercise, increasing the
consumption of whole grains, fruits and vegetables and reducing the red meat intake (17).
The treatments for CRC include surgery, chemotherapy and radiotherapy.

2.1. Molecular biology of colorectal cancer

Colorectal cancer is a multistep process that includes accumulation of several genetic and
epigenetic alterations (18, 19). It is well characterized that the adenoma to carcinoma
sequence is due to accumulation of the genomic alteration, which is induced by genomic
instability (4, 20). Genomic instability is an event, which will increase tendency of the
genome to acquire mutations when several important processes in maintaining and
replicating the genome are malfunction. It is a hallmark of many human cancers (20). There
are three well-reported genomic instability pathways that could lead to colorectal cancer,
which will be discussed in details below.

a. Chromosomal instability (CIN)

Chromosomal instability lead to increase rate of losing or gaining chromosomes during
cell division and accounts for 15% to 20% of sporadic CRC as well as Lynch Syndrome
(Hereditary Non-Polyposis Colorectal Cancer) (21).There are three mechanisms
involved in this process that includes structural chromosome instability, the
chromosome breakage-fusion-bridge (BFB) cycles and numerical instability (22).
Structural chromosome instability is caused by high incidences of DNA double-strand
breaks, which may lead to abnormalities in chromosomal segregation during mitosis.
Chromosomal damage may result in mitotically unstable chromosome, which may
promote an event known as breakage-fusion-bridge (BFB) (22). An abnormal number of
centrosome may be caused by abnormal mitotic polarity as well as unequal segregation
of chromosomes during the anaphase stage (23). CIN promotes cancer progression by
increasing clonal diversity (21). In the clinical perspective, large meta-analysis has
shown that CIN is a marker of poor prognosis in colorectal cancer (20).

b. Microsatelite instability (MIN)

Microsatellites are repetitive sequences of DNA, which is highly varied between
individuals (24). The most common microsatellites in human is a dinucleotide repeat of
CA (25). MIN is a condition, which is manifested by damaged DNA due to defective in
the DNA repair mechanism. CRC with the presence of MIN have a better prognosis
compared to CRC with CIN (26). MIN involves the inactivation of the DNA Mismatch
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Repair (MMR) genes via aberrant methylation or somatic mutation (26). HNPCC or
Lynch Syndrome is an example of CRC, which is caused by MIN with 15% occurrence
(27). MIN could cause CRC in 2 mechanisms; 1) mutations in the MMR genes where
error in the microsatellite repeat replication is unfixed. This leads to the inactivation of
tumor suppressor genes (TSG), a group of genes which is crucial in maintaining cell
cycle progression and apoptosis induction (20). Inactivation of these genes may lead to
tumorigenesis through uncontrolled cell division 2) epigenetic changes that silence the
MMR genes (20).

c¢. CpG Island Methylation and CpG Island Methylator Phenotype (CIMP)

Hypermethylation of the promoter region of a gene that contains CpG Island (CGI) and
global DNA hypomethylation are associated with epigenetic instability in colorectal
cancer (20). CGlIs are short sequences rich in the CpG dinucleotides and are observed in
the 5 region of almost half of all human genes (28). In-vitro study of BRAF in CRC cell
lines showed no correlation between BRAF and CIMP (29).

2.2. Genome Wide Association Study (GWAS) in colorectal cancer

The completion of Human Genome Project in 2003 and the International HapMap Project in
2005 have opened up a new era in genetic and phenotype correlation study (30). The
completion of these two projects has made the Genome wide association study (GWAS)
possible. GWAS is considered as the most powerful tool to study the association between
phenotypes and genotypes and also to identify common, low-penetrance susceptibility loci
in a particular disease. In addition, GWAS can also be employed to investigate gene-
environment interactions and the pooled analyses may also lead to the identification of
novel modifying genes. Several GWAS studies have been performed in colorectal cancer
and several loci were identified to be associated with CRC such as 8q24 (128.1-128.7 Mb,
rs6983267) (31, 32). The C-MYC (MYC) oncogene is located approximately 300 kb from this
region and is often over-expressed in CRC (33). Validation studies have confirmed that
rs6983267 loci as the most promising variant in CRC, which has increased the chance of
getting CRC by approximately 1.2 fold (33, 34). Recent publication has suggested that this
variant is involved in enhancing the Wnt signaling and MYC regulation, which are known
pathways in carcinogenesis (35). However, further functional analyses are still needed in
order to determine the function of this variant. In the Japanese population, this variant leads
to an increase risk of CRC with an allelic OR=1.22. Even after the adjustment for
confounders, the OR remains significant (OR = 1.25). In the ARCTIC report, a locus at 9p24
was identified to be associated with CRC and was confirmed in the Colorectal Cancer
Family Registry. Several numbers of loci that include 18q21:SMAD?7; 15q13.3:CRAC1; 8q23.3:
E1F3H; 14q22.2:BMP4; 16q22.1: CDH1 and 19q13.1:RHPN2 were also found to be associated
with CRC. These genes have been shown to be involved in CRC progression. Studies
conducted in Korean and Japanese patients with CRC have identified a novel susceptible
locus in SLC22A3, which was significantly associated with distal colon cancer (36). The
variant, rs7758229, was located on 6q26-q27 with OR=1.28. Three variants, rs7758229,
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rs6983267 and rs4939827, in SMADY together with alcohol consumption may increase the
risk of CRC by approximately two-fold. Several variants including rs6983267, rs6695584,
rs11986063, rs3087967, rs2059254 and rs72268855 showed evidence of association with CRC
in Singaporean Chinese (31). sSSNP rs3087967 at 11q23.1 was associated with increased risk
of CRC in men (OR=1.34) compared to women (OR=1.07). The rs 10318 at locus 15q13
(GREM1) was also associated with CRC with OD =1.19 (37).

Almost half of the susceptibility loci in CRC are located nearby the transforming growth
factor beta gene (T'GF-p1), which is important in the carcinogenesis (38). An elevated level of
TGF-p1 was linked to tumor progression and recurrence in CRC. Germline mutations in
components of TGF-f1 signaling pathway such as SMAD4 is responsible for the high-
penetrance juvenile polyposis syndrome. Other genes are SMAD4, RHPN2, BMP4, BMP?2
and GREM]1.

2.3. Gene expression profiling in colorectal cancer

Gene expression profiling was performed to compare between colorectal adenomas and
CRCs and the result showed that the level of six cancer-related gene sets were increased in
CRCs compared to adenomas (FDR<0.05). These include genes that involved in
chromosomal instability, proliferation, differentiation, angiogenesis, stroma activation and
invasion. Changes in the activity of the chromosomal instability were the most significant
gene set (FDR=0.004) (39). The key genes that are associated with colorectal adenoma to
carcinoma progression are AURKA, TPX2 (Chromosomal instability), PLK1 (Proliferation),
ADRMI1 (Differentiation), SSCA1 (Stroma activation), SPARC and PDGFRB (Invasion). The
expression levels of these genes were significantly higher in CRC compared to adenoma
(p<le-5). Overexpression of AURKA induces centrosome amplification, aneupploidy and
cellular transformation in vitro (40). AURKA interacts with TPX2 and plays a role in
centrosome maturation and spindle formation (41). The polo-like kinase 1 (PLK1) is
important in spindle formation and cell cycle progression during the G2 and M phase (42).

Wu and colleagues showed that the extracellular matrix and metabolic pathways were
activated and the genes related to cell homeostatsis were downregulated. In this study, they
compared cancer transcriptome using massive parallel paired-end cDNA sequencing in 3
different tissues, CRC tissue (stage III), adjacent non-tumor tissue and normal tissue from a
57 years old female patient. They detected 1660, 1528 and 941 significant differential genes
(DEGs) between the CRC and adjacent tissue, the CRC and normal tissue; and the adjacent
and normal tissue respectively. 15-prostaglandin dehydrogenase (15-PGDH) was
downregulated in cancer compared to normal tisssue, which is common oncogenic event in
approximately 80% of CRC cases. The transition between adenoma and carcinoma processes
involved inactivation of TGFBR2, thus progressive inactivation of this gene from cancer-
adjacent and normal tissue was expected. In addition, APC, MYH, CD133, IDH1 and MINT2
were also dysregulated in CRC. They also identified many genes involved in extracellular
matrix (ECM) receptor interactions were highly dysregulated in cancer. The findings
showed that all collagen type proteins were overexpressed up to 1000-fold in cancer tissue.
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In addition, members of MMP family, which degraded the ECM structures, were also
induced significantly in tumor. These include MMP1, MMP3, MMP14 and MMP7. Other
cell-cell adhesion-related molecules for examples laminins (LAMA4, LAMA5, LAMBI,
LAMB2 and LAMC2) and integrins (ITGA5, ITGB5, ITGA11 and ITGBL1) were elevated in
cancer tissues. It was suggested that “angiogenesis switch” was activated in tumor tissues
since vascular endothelial growth factor (VEGF) was found to be upregulated. In conclusion,
up-regulation of the ECM pathway and the angiogenic growth factors may lead to
remodelling of the ECM pathways as well as expansion of the new vessel networks, which
subsequently resulted in CRC progression. Since their results in concordance with previous
studies that showed the ECM pathway was subjected to intensive epigenetic modification,
therefore this ECM may be a good candidate as prognostic biomarkers in CRC (43).

3. Molecular signatures in ovarian cancer

Ovarian cancer is among the top ten leading cancers among women the United States. In
this country alone, there are approximately 22,280 new cases and 15,500 estimated death in
2012 (44). At our local population, approximately 1627 women were diagnosed in 2003 to
2005 and the figure showed increasing trend in 2007(45).In Japan and Sweeden, the
incidence of ovarian cancer per 100,000 women is 3.1 cases and 21 cases respectively (Green
et al.,, 2012). Due to vague or absence of early signs and symptoms, patients suffer from this
cancer seek late treatment (46). Therefore, the cancer is normally diagnosed late when the
disease is not longer confined to the ovary. Based on different morphological characterisitcs
of the cancer, it is divided into epithelial and nonepithelial types. The epithelial type is
further subdivided into serous, mucinous, endometrioid and clear cells. On the other hand,
the nonepithelial is granulosa cells, mixed germ cells tumour, immature teratoma,
dysgerminoma and teratoma. The risk factor for this cancer is unclear, however the
European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study has
recently documented that women who smoke more than 10 cigarettes a day had doubled
the risk to develop mucinous ovarian cancer (47). This has suggested that the effect of
smoking differs based on different histological subtypes of ovarian cancer(47). On the other
hand, a study has shown that long period of breastfeeding seems to have reduced risk of
ovarian cancer (OR =0.986, 95% CI 0.978-0.994 per month of breastfeeding) (48).This effect of
breastfeeding was also varies between histological subtypes as there was no association
between breastfeeding and borderline serous or mucinous cancer (48).

Ovarian cancer was initially divided based on molecular pathways involved in the
development and progression of the subtypes (49). Type I is low-grade serous, low-grade
endometrioid, mucinous and clear cells. They are believed to arise from benign lesions such
as ovarian inclusion cyst or endometriotic lesions. These lesions follow the stepwise pattern,
whereby it evolved from the benign adenoma to borderline and finally to malignant
tumours (table 1).

Type II ovarian cancer is high-grade serous, high-grade endometrioid and undifferentiated.
The common mutations that are found in these subtypes are p53, BRCA1/2, PIK3CA with
chromosomal instability. They normally involve the peritoneum and grow rapidly.
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Characteristics of tumour Typel Type II

Type of tumor Low-grade serous High-grade serous
Low-grade endometrioid High-grade endometrioid
Mucinous Undifferentiated
Clear cell

Common mutations and genetic KRAS p53

modifications BRAF BRCA1
PTEN BRCA2
CTNNBI1 PIK3CA

Microsatellite instability =~ Chromosome instability

Table 1. Ovarian subtypes based on common mutations and genetic modifications

In clinical practice, the gyneoncologist still use CA125 as the biomarker to monitor treatment
of this cancer. However, it is not sensitive and specific to detect the cancer in its early stage
(46). It is of great demand to find new molecular marker for the ovarian cancer.

Ovarian cancer is treated by surgery, radiation or platinum-taxane based chemotherapy
depending on the subtypes and extent of the cancer (50). Patients at stage I and II will
undergo bilateral salphingo-oophorectomy. While for advanced cases, adjuvant
chemotherapy combined with surgery is highly recommended. With the latest
understanding on the mutational types of ovarian cancer, mitogen activated protein kinase
(MEK) inhibitor such as CI-1040 was used to test the potential therapeutic agent in in vitro
ovarian cancer cell line (51). This cell lines containing KRAS or BRAF mutations, which are
known mutations for type I ovarian cancer. The targeted therapy for type II ovarian cancer
encounters difficulty due to lack of common molecular pathways. In two cohort studies
involving 16 international centers, women with BRCA1 or BRCA2 mutation were treated
with two different doses of Olaparib (52). This drug is orally active poly(ADP-ribose)
polymerase (PARP) inhibitor. The result showed a promising therapeutic indexin ovarian
cancer patients with mutation of BRCA1 or BRCA2 (52).Based on this study, Olaparib has
possible as therapeutic agent in type II ovarian cancer.

3.1. Molecular biology of ovarian cancer

Ovarian cancer is a heterogenous disease and thus, there is no clear molecular genetics
involved in the transition of normal ovarian epithelial cells into cancer cells. Approximately
10 to 15% of ovarian cancer is thought to run in the families (53). It is closely related to
BRCA1 and BRCA2 mutation (53). It was recently published that suggested screening of
BRCA1/2 mutation in patients with ovarian cancer prior to chemotherapy treatment (54).
This is because presence of such mutations may influence the treatment outcomes (54).
Human DNA repair mismatch genes for example MLH1 and MSH2 accounts for 10% of
patients with hereditary nonpolyposis colon cancer syndrome (55). Other related genes
include glutathione S-transferase M1 (GSTM1) is associated with endometrioid or clear cells
ovarian cancer.
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Approximately 85% of ovarian cancer is regard as sporadic with no apparent hereditary
factors. Accumulation of mutagenic genes and deregulation of signaling pathway frequently
lead to the development of cancer. Different subtypes of ovarian cancer reveal different
molecular pathways. Coagulation pathway was reported to be disturbed in clear cell
ovarian carcinoma (56). Genes that stimulate or inhibit coagulation were noted to be
dysregulated. Angiogenesis and glycolysis are two major activated pathways in clear cell
ovarian carcinoma (56). Vascular endothelial growth factor (VEGF) and its receptor FLT1
were upregulated in this type of cancer and involved in angiogenesis. Earlier study by
Yamaguchi et al 2010, reported molecular pathway related to clear cell ovarian cancer was
related to hypoxia-inducible factor 1 (HIF1a) (57). HIF1a regulates ADM, which is related to
angiogenesis. It also regulates genes that are linked to glucose metabolism including
SLC2A1 in glucose transport and HK1/HK2 and ENO1/ENO2 in glycolysis. Both pathways
could act as potential therapeutic target based on the small interfering RNA of genes related
to these pathways combined with antiangiogenic drug, Sunitinib(56).

3.2. Gene expression profiling in ovarian cancer

In ovarian cancer study, microarray was used to classify 113 samples from five different
histopathological subtypes; endometrioid, serous, mucinous, clear cell and mixed type
according to the gene expression pattern (58). The results showed 95% of all samples were
clustered within their expected groups. Gene expression profile in this study failed to
distinguish between high-grade endometrioid and serous ovarian cancer. The result derived
from the principal component analysis demonstrated the separation of celar cell, mucinous
and endometrioid with serous ovarian cancer. This can be explained through the origin of
these types of cancer, which is Mullerian epithelium. In contrast to serous ovarian cancer,
which most likely arise directly from ovarian surface epithelium (58). Microarray was also
used to distinguish between various grades of clear cells ovarian cancer from other subtypes
of ovarian cancer including serous papillary (59). Among genes identified were E-cadherin
and osteonidogen were detected at high level in clear cells. While discoidin domain receptor
family member (DDR1), estrogen receptor 1 and cytochrome P450 4B1 were at a low level in
clear cells ovarian cancer compared to other ovarian cancers (59).

A separate microarray study was done on 285 of various grades of endometrioid and serous
ovarian cancer samples that were analysed together with low-grade serous and
endometroid ovarian cancer (60). The result showed high-grade serous subtype was related
to overexpression of Wnt/Bcatenin and cadherin pathway genes including N-cadherin and
P-cadherin but low E-cadherin protein expression. This finding demonstrated the high-
grade serous ovarian cancer contained messenchymal expression pattern. Also it has
suggested there is epithelium-mesenchymal transition in this subtype of ovarian cancer.
High expression of genes related to proliferation and extracellular matrix-related genes such
as COL4A5, COL9A1 and CLDN6. Immune cell markers such as CD45, PTPRC and
lymphocyte markers, CD2, CD3D and CD8A were expressed low in the high-grade serous
subtype (60).
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Gene expression profiling was also performed to detect genes that were differentially
expressed in primary ovarian cells as compared to the neighboring metastatic tissue
omentum (61). Among significant genes include hepsin (HPN), which is related to epithelial
cells. Using immunohistochemistry technique, HPN protein was localised in epithelial cells,
suggestive that it can be a marker of epithelia cells and not cancer (61). In advanced stage of
ovarian cancer, predictive markers were suggested to be different. For example EZH?2,
PTTN and Lamin-B, were positively detected in primary as well as metastatic omental
tissue. MGB2 is another biomarker that significantly overexpressed in primary as well as
ovarian metastatic tissue. To characterize two different cancers; breast and ovarian cancers
that involve serosal cavities, gene expression profiling was carried out (62). About 288
differentially expressed genes with at least 3.5-fold up-regulated in breast and
ovarian/peritoneal serous cancers (62). These groups of genes may potentially used to
distinguish both cancers for better therapeutic intervention.

Microarray of the nonepithelial ovarian cancer or type II ovarian cancer is still limited.
Despite its rare incidence of this subtype of ovarian cancer, we have performed microarray
assay on the formalin-fixed paraffin embedded tissues (63). About 804 differentially
expressed genes with at least 2-fold change (P<0.005) (63). Among the significant genes were
EEF1A2 and E2F2; which were up-regulated in nonepithelial ovarian cancer as compared to
the normal ovarian cells. EEF1A2 may act as oncogene and play an important role in the
progression of cancer (64). E2F2 plays a role in cell cycle and positive immunostaining in all
subtypes of nonepithelial ovarian cancer may suggest its role as an oncogene (63).

4. Molecular signatures in endometrial cancer

Cancer of endometrium is cancer arises from the inner lining of the uterus. The cancer
appears in multiple histologic subtypes as a result of mullerian differentiation. They are
divided into two broad groups that include endometrioid and non-endometrioid (65). The
recent surgical staging of endometrial cancer is based on the International Federation of
Gynecology and Obstetrics in 2008 (66). Endometrial cancer is divided into two types based
on the underlying pathogical findings and clinical observations. There are endometrioid
(type I) and nonendometrioid carcinoma (type II). The former is the commonest type (85%
of total cancer) with history of estrogen exposure with underlying endometrial hyperplasia
(67).Also the cancer cells expressed estrogen and progesterone receptor and typically of low
histopathological grade (68). The majority of patients are relatively young with good
prognosis. While the second type is less common and it is not related to estrogen. It presents
with high histopathological grade with poor prognosis. The cancer has an underlying
atrophic endometrium (69). Apart from this classification, there are still cancers that do not
fit into these two categories, in particular endometrioid carcinoma with high
histopathological grade (67).

Endometrial cancer is the most common malignancy of gynecological tract in the United
States (44). The incidence is relatively high compared with Southeast countries such as

11
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Malaysia where the cancer affects approximately 3.3% of women between the year 2003 to
2005 (70) and the figure increases to 4.6% in 2007 (45) . Among the main races in Malaysia,
Chinese has the highest age-standardized incidence rate with 4.5 per 100,000 population,
followed by Indians and Malays (45). Failure to control overweight problem, manage
chronic anovulation and increased usage of estrogen, are most likely the reason for
continued high incidence for this cancer.

Risk factors associated with endometrioid endometrial cancer include old age,
unoppossed exposure of estrogen as in estrogen replacement therapy, nulliparity and
obesity. Also it is seen in diseases associated with high estrogen level, such as polycystic
ovarian syndrome and estrogen-secreting ovarian cancer (71). Presence of estrogen
increases the proliferative activity of endometrial cells, therefore causing higher chance to
cause coding errors and somatic mutations (72). For nonendometrioid type, the risk
factors are slightly different, which include additional history of primary cancers such as
breast, colorectal and ovarian cancer (73). Combined oral contraceptives can interruptwith
the menstrual cycle seems to have good benefits in reducing the risk of endometrial
cancer (74). The current treatment for the disease is a combination of surgery with or
without an adjuvant chemotherapy consisting of intravenous cisplatin, doxorubicin and
cyclophosphamide (75). Diagnosis of this cancer is based on the clinical symptoms with
underlying risk factors for endometrial cancer. Postmenopausal women under 50 years
old presented with vaginal bleeding were reported to be free from endometrial cancer
(76). This was based on the initial screening using transvaginal ultrasound scanning and
endometrial biopsy procedure. The patients were follow-up between one to five years
(76).

4.1. Molecular basis of endometrial cancer

Endometrial cancer can be divided based on its molecular change. Type 1 or endometrioid
endometrial cancer was documented to have PTEN mutation(67).However, a recentcase
control study investigating on the single nucleotide polymorphism in several cancer-
related genes include PTEN, PIK3CA, AKT1, MLH1 and MSH2 failed to show any
association with endometrial cancer (77).Approximately 20 to 40% of this type displayed
mircosatellite instability or B-catenin mutations. Additionally, K-ras mutations occur in 15
to 30% of this cancer. Mutations in p53 and E-cadherin were detected in about 10 to 20%
of cases and the lowest percentage of genetic alteration is in p16 inactivation. The genetic
pattern in type II or nonendometrioid endometrial cancer is slightly different from the
endometrioid type. This small percentage tumour comes from mesenchymal cells.The
majority of this cancer (80 to 90%) has p53 mutations or E-cadherin alterations (78, 79).
The type of cancer rarely contains mircosatellite instability, B-catenin or K-ras mutations
(67).Sporadic endometrial cancer with positive microsatellite instability (MIN) was not
associated with somatic mutations of mismatch repair genes such as MSH2 and MLH1
(80). Poor association was also observed between positive MIN with mutations in genes
with coding region microsatellites repeats (80).
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Genetic alterations Endometrioid or type I Nonendometrioid or type II
Microsatellite instability 20 - 40% 0-5%

K-ras mutations 15 - 30% 0-5%

p53 mutations 10 - 20% 90%

PTEN inactivation 35 -50% 10%

[-catenin mutations 25-40 % 0-5%

p16 inactivations 10% 40%

E-cadherin alterations 10 - 20% 80 —90%

Table 2. Molecular changes in both subtypes of endometrial cancer (67)

4.2. Molecular carcinogenesis of endometrial cancer

Endometrial cancer cells has the ability to proliferate without control or able to spread
throughout the body following multistep processes.

Atypical
. hyperplasia, Myometrial Vascular
£ dNorma! ;lon-twlalc‘al endometrial invasion & invasion &
MCHDELUT ypeipasa intraepithelial dissemination dissemination

neoplasia
-Germ-line mutation in -PTEN silencing RUNX1 -P53 mutation
hMLH2 & hMLH6 -K-ras &pB-catenin ETV5 -HER2/neu
-epigenetic silencing of mutations TGFB overexpression
MLH1 -Microsatellite
-polyclonal proliferation instability

Figure 1. Figure 1: A model of endometrial cancer development. The genetic alterations at the early
stage are different from the late stage of endometrial cancer (72).

4.3. Gene expression profiling in endometrial cancer

Earlier studies on the microarray in endometrial cancer tried to discriminate between
different histologic types of endometrial cancer using the genomic expression profiling (81).
The study analysed 119 endometrial cancer consisted of endometrioid, papillary serous,
mixed mullerian tumor and normal cells. The result showed 151 genes that were
significantly expressed with at least 2-fold change among endometrioid as compared to
papillary serous cancer (P<0.001). Among the genes detected were BUB1, CCNB2 and Myc)
(81). Comparing between mixed mullerian tumors and endometrioid revealed 1,132 genes
that were significantly different with at least 2-fold change (81). High expression of IGF2
(somatomedin A) was reported in mixed mullerian tumor as compared to endometrioid and
papillary serous tumour (81). Our local data showed low expression of IGF2 in
endometrioid endometrial cancer compared with normal endometrium (82). Low expression
of IGF2 was corresponds to an early stage of endometrial cancer (83). All reported results
from these expression profiling studies have concluded that different histologic types of
endometrial cancer displayed different expression profiles.
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The use of microarray when combined with laser capture microdissection (LCM) tissues has
presented reliable results (84). However, the decision whether to use the LCM technique is
still relied on the ratio of stromal cells to the surrounding cancer cells. Pathways that are
closely related to endometrial cancer were identified after isolation of microdissected
cancerous cells was used (82). Among the significant pathways comprise of Wnt-3 catenin,
insulin action, cell cycle and NOTCH and B-cell pathways (82). The malignant potential of
endometrial cancer cells was studied to identify gene signatures of vascular invasion (85).
Total of 18-gene signatures were differentially expressed with at least fold change of 2.
Among the genes were IL8, MMP3, COL8A1 and ANGPTL4, which were closely related to
invasiveness, vascular biology and matrix remodelling (85). Microarray was also used to
discrimate between different genetic backgrounds. As an example, molecular profiling was
used to differentiate between self-described African-American with self-described
Caucasian women (86). The result failed to differentiate the racial group using molecular
background. This was probably due to limited sample size to represent the whole
population.

5. Molecular signatures in breast cancer

Breast cancer is the most frequent cancer in women in most parts of the world (87).
Approximately 1.1 million of women in the world were diagnosed with breast cancer every
year and 410,100 died from the disease. Breast cancer can be divided into two main types;
ductal carcinoma and lobularcarcinoma (88). The most common type is ductal carcinoma,
which starts in the tubes or ducts that move milk from the breast to the nipple. Lobular
carcinoma originates from lobules in the breast that produce milk. Breast cancer could
become invasive where the cancerous cells may acquire the properties to escape from its
primary sites into other tissues in the breast. Noninvasive or also known as “in situ” indicates
that the cancerous cells have not yet invaded other tissues within the breast. There are
several grading systems used to classify breast cancer, which include histopathology, grade,
stage and receptor status (89). Breast cancer staging uses TNM system, which is based on the
size, the spreading and metastatic properties of the tumor to the other organs. There are 3
receptors on the surface as well as in the cytoplasm and nucleus of the breast cancer cells
(90). The receptors are estrogen receptor (ER), progesteron receptor (PR) and HER?2 receptor
(90). Immunohistochemistry technique may be employed to differentiate whether the tumor
has positive or negative ER, PR and HER?2 receptors (90).

Risk factors of getting breast cancer in women include age and gender. The risk of getting
breast cancer is increased in elderly (88). Women are 100 times more likely to get breast
cancer compared to men. Genetic factors may also play a role in the development of breast
cancer, although it is estimated that only 5-6% of breast cancer are hereditary (91).
Mutations in the BRCA1 and BRCAZ2 genes account for 80% of hereditary breast cancer (92).
Patient’s positive for BRCA1 and/or BRCA2 may have 50% to 80% lifetime risk of
developing breast cancer and 15% to 65% risk of developing ovarian cancer (92, 93). Other
risk factors are high-fat-diet, alcohol intake, environmental factors such as tobacco smoking
and radiation (94).
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The diagnosis of breast cancer is based on the microscopic analysis of breast biopsy,
mammography and clinical breast exam (95). However, if the test is inconclusive, then Fine
Needle Aspiration and Cytology (FNAC) may be used (96).Stage 1 breast cancer is treated
with lumpectomy to remove a small part in the breast and usually have high prognosis.
Stage 2 and 3 cancers are treated with lumpectomy or mastectomy, chemotherapy and
radiation and usually have poor prognosis and high risk of recurrence. Stage 4 has poor
prognosis and is treated by various combination of all treatments. Drugs used to treat breast
cancer include hormone-blocking therapy for ER+ patients (tamoxifen, aromatase
inhibitors), chemotherapy (cyclophosphamide and doxorubicin) and monoclonal antibodies
(trastuzumab) for HER2+ breast patients (97).

5.1. Genome wide association study (GWAS) in breast cancer

A single nucleotide polymorphism (rs2046210, A/G allele) at 6q25.1 was identified in
Chinese women. In a pooled analysis study performed in the East Asian, European, and
African ancestries, this variant was also found to be associated with breast cancer risk in
Chinese women (OR=1.3), Japanese women (OR=1.31), European (OR=1.07), and American
women (OR=1.18) (98). However, there was no association observed in African American
women (OR=0.81). This variant was found to be associated with increased breast cancer risk
in all Chinese in Tianjin, Nanjing, Taiwan and Hong Kong. This was also in agreement with
three studies conducted in Japanese women (Nagoya, MEC and Nagano) as well as studies
performed in European women (NBHS, CBCS and LIBCSP). A putative functional variant,
rs6913578 was identified at 1,440 downstream of rs2046210, which was associated with
breast cancer risk in Chinese (r>=0.91) and European ancestry (r>=0.83), but not in Africans
(r>=0.57). Genes located at rs2046210 are PLEKHG1, MTHFDI1L, AKAP12, ZBTB2, RMND]I,
C60rf211, Ceorf97, ESR1, C6orf98, SYNE1 and NANOGP11. In vitro functional analysis on
rs6913578 altered luciferase reporter activity hence may influence the DNA binding protein
interactions, which subsequently lead to alteration of their neighboring genes expression.
Electrophoretic mobility shift assay confirmed that the C allele of rs6913578 alter the DNA-
nuclear protein interaction and could modify the expression of neighboring genes.

There was an association between an increased breast cancer risk with rs9397435 at the
6q25.1 locus in European, Chinese and African populations. This variant was located at
2,854 bp downstream of rs2046210 and 1,414 downstream of rs6913578. However, this
variant was weakly correlated with rs2046210 in Europeans (r>=0.087) and African (r>=0.039)
(99). Turnbull and colleagues conducted a GWAS in 3,659 European ancestry cases and
4,897 controls. They found that SNP rs3757318, which was located at 200kb upstream of
ESR1 and 34,253bp of upstream of rs2046210 has the most significant association with breast
cancer risk (OR=1.21). It was strongly correlated with rs2046210 in Chinese populations
(r>=0.48) but weakly correlated in Europeans (r>=0.181) (100).

In Ashkenazi Jews population, Gold and colleagues performed three phases of GWAS in 249
familial breast cancer cases and 299 controls. In the first phase, they compared the allele
frequencies of 150,080 SNPs in 249 high-risk, BRCA1-BRCA2 mutation-negative AJ familial
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cases with control cases. In phase II, 343 SNPs were genotyped from 123 regions, which were
most significantly associated with breast cancer including 4 SNPs in FGFR2 region in other sets
of 950 consecutive breast cancer cases. Major associations were replicated in third independent
set of 243 breast cancer cases and 187 controls. The results showed a significant association at
rs1078806 in the FGFR2 region of chromosome 6q22.33 with OD=1.26 for all cases combined.
Candidate genes in this locus such as ECHDCI and RNF146, which encode for mitochondrial
fatty acid oxidation and ubiquitin protein ligase were among the known pathways in the
pathogenesis of breast cancer (101). It is well known that results reported from GWAS could
not be applied across all ethnicities. This is not surprising since most all variants are tagging
SNPs, therefore they exist differently in the genetic make-up of different ethnic groups. Hence,
it is important to determine the SNPs in breast cancer or any particular diseases in different
populations to identify the risk of developing the disease in an individual.

5.2. Gene expression profiling in breast cancer

A research done to study bimodal gene expression profiles in breast cancer using 5 studies
that used different microarray platforms including cDNA arrays, Affymetrix and Agilent
(102). Bimodality is a conditional expression property of a particular gene and is associated
with certain physiological conditions such as disease state and normal. They found 866
bimodal genes shared across all platforms. These genes were enriched in breast cancer-
associated genes and involved in pathways related to carcinogenesis for example: ERBB2,
ESR1, CEACAMS5 and AR. They also examined the close neighbor group and the analysis
showed that 15 out of 23 bimodal genes were known and have been reported as breast
cancer associated genes. These include TCAP, PSMD3, GRB7 and CXCL10 (PMC2822536).

Microarray was also used to classify the differential gene expression in ER+ve and ER-ve
breast cancer patients. A study showed that 67 genes were overexpressed in ER+ve tumors
while 17 were overexpressed in ER-ve breast cancer. ADCY1, ACOT4 AR, ATP2A3, DNAJA4
were examples of genes that overexpressed in ER+ve breast cancer. An example of genes
that were overexpressed in ER —ve were ACN9, EGFR, LYN and MALL (103).

Gene expression profiling of tumor-associated stroma in breast cancer showed large changes
during cancer progression (104). In this study, laser capture microdissection was used to
dissect the normal epithelium, stroma, tumor epithelium and tumor-associated stroma
samples followed by microarray and gene ontology analyses. Tumor-associated stroma
undergoes massive changes in the expression profile of genes composed of the extracellular
matrix, matrix metalloproteases and cell cycle-related protein. An increased in the
mitochondrial ribosomal proteins and decreased in cytoplasmic ribosomal proteins were
also observed in both, the tumor epithelium and stroma. The changes in expression profiles
of the tumor-associated stroma were somewhat similar to tumor epithelium, which
indicated that the tumorigenesis occured even before the tumor cells invaded into the
stroma.

Gene expression profiling using whole genome oligonucleotide microarrays to catalog
molecular variation in 52 widely used breast cancer cell lines. The cell lines were divided
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into different categories including luminal with ER positive, basal and ER-ve, which
subdivided into basal A (established at UT Southwestern including 2 BRCA1 mutant lines)
and basal B (non-tumorigenic lines and several highly invasive cell lines). They identified 80
loci of high level of amplification in 35 different cell lines. These include increased
expression of known oncogenes involved in breast cancer, for example MYC (8q24), CCND1
(11q13) and ERBB2 (17q12). Gain or losses resulting in increased or decreased expression of
oncogenes or tumor supressor genes, which subsequently led to breast cancer. Using DR-
Correlate, 3,511 genes were differentially expressed and correlated significantly with altered
gene copy number (FDR<0.05). In total, 487 genes were resided in loci of high-amplitude
CNA including known breast cancer genes such as EGFR, FGFR1, ERBB2, PPMID and
ZNF217. In addition, several genes involved in oncogenesis such as cell proliferation,
survival, migration/invasion, ER-signaling, maintenance of genome integrity were also
upregulated in cancer cell lines. These include EIF3H, CDC6, GAB2 (cell proliferation),
MCL1, APIP, MAP3K3 (survival), ADAMY9, CDD4 (migration/invasion), MUC1, NCOA3 (ER-
signaling), RAD21, RAD9A and RAD51C (maintanence of genome integrity) (105).

Gene expression profiling study was carried out on peripheral blood cells for an early
detection of breast cancer in 121 females referred for mammography. Genome Survey
Microarrays v2.0 that contains 32,878 probes representing 29,098 genes was used to
determine the differentially expressed genes in breast cancer compared to normal. Genes
that expressed higher in blood of breast cancer patients were EEF1G, RPL14, RPLL15
(translation), ATP5E, ETF1, ATP6VOB (cellular biosynthetic process), TIRAP, DEFA3 and
ANXAT1 (response to external stimulus). Several genes involved in cellular lipid metabolic
process, steroid metabolic process, catecholamine metabolic process and phenole metabolic
processes were downregulated in breast cancer compared to normal control. These include
HDC, PEMT, HEXA, ACAT and SULT1A4 (106).

6. From lab to bedside: FDA approval

Advances in genomic research resulting in new molecular tools that serves as prognostic
and predictive markers in cancer treatment. Particularly in breast cancer, surgeons know
that early detection is one of the keys to successful treatment. If breast cancer is caught early,
the tumor can be surgically removed and with an appropriate treatment, most patients can
recover. However, within 5 to 10 years, 30% increase number of patients with early stage
breast cancer develops metastases. The identification of patients with high risk of distant
recurrence is essential for systematic adjuvant therapy to be most effective. At the same
time, adjuvant therapies such as chemotherapy and hormonal therapy (e.g. Tamoxifen or
aromatase inhibitors) may reduce the risk of distant metastases by approximately one-third
for some patients. It is estimated that more than 70% of patients receiving such therapy may
have survived without it —-and may have safely avoided the harmful side effects (107-109).

Commercially available multigene molecular tests such as Oncotype DX® (Genomic Health,
USA) and MammaPrint® (Agendia, Netherlands) have revolutionized the predictive and
prognostic tools in clinic. Using the patients” own genetic expression patterns, it can provide
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clinicians with more information on the treatment outcomes of using chemotherapy,
endocrine therapy or combination therapies by stratifying the risk of recurrence for patients.
Oncotype DX® and MammaPrint® provide clinical judgment as opposed to laboratory
results that requireinterpretation by a clinician. Moreover, the algorithm used to reach this
judgment is proprietary and thus inaccessible to the clinician. Therefore the arrival of the
first generation of multigene molecular test involved a need for a paradigm shift in the
configurations of persons and tools that marry genomic techniques to market, legal, and
regulatory strategies in ways that reframe conceptions of risk, diagnosis, prognosis, therapy,
discovery, utility, and validity. In addition, regulatory bodies need to handle these new
advances without sacrificing patient’s safety. These first generation multigene molecular
tests are considered the first regulatory-scientific hybrid products (110).

The Oncotype DX® is a multigene panel which has been clinically validated to predict the
risk of recurrence for those women with early stage (I, II, Illa) invasive breast cancer that are
estrogen-receptor positive (ER*), human epidermal growth factor receptor negative (Her2),
lymph node negative or positive, and predict who may or may not significantly benefit from
adjuvant chemotherapy. While MammaPrint® analyzes 70 genes from an early-stage breast
cancer tissue sample to determine if the cancer has a low or high risk of recurrence within 10
years after diagnosis. They claimed to be the first and only FDA-cleared IVDMIA breast
cancer recurrence assay in their official website, http://www.agendia.com/pages/
mammaprint/21.php (110). The researchers at the Netherlands Cancer Institute (NKI) who
discovered it, established a company to commercialize it as a test (111). Oncotype DXbegan
as a commercial platform; the company (Genomics Health) that produced it did not discover
a signature but rather constructed it by asking users at every step what clinical question
they wanted the signature to answer and what data would be credible in that regard. The
test has been designed to minimally disrupt existing clinical workflows (110, 112).
MammaPrint requires a change in pathologists’” and clinicians’ routines in terms of specimen
storage. MammaPrint requires specimen to be stored in RNARetain®, a proprietary RNA
storage liquid instead of the standard FFPE block. Breast cancer classification was based on
genomic signature instead of histopathology diagnosis as well as clinical judgement on the
decision for chemotherapy treatment (113). Thus, while these two trials signify a new
departure for clinical cancer trials on a number of levels — they both incorporate new models
of interaction between biotech companies and public research. They also aim to establish the
clinical relevance of genomic markers and also embody a different socio-technical direction.
One attempts to accommodate established routines, while the other openly challenges
prevailing evidential hierarchies and existing biomedical configurations (110).

The legal statute of the USA gives the US Food and Drug Administration (FDA) the power
to regulate drugs and devices, with the multigene molecular tests fall under the less
rigorous medical devices statute. The FDA has traditionally exercised ‘enforcement
discretion” by leaving the actual performance of ‘in-house’ tests to be regulated by a
different mechanism defined by the Clinical Laboratory Improvement Amendments (CLIA).
It is a set of federal regulatory standards that falls under the authority of the Centers for
Medicare and Medicaid Services (114). The intention was to ensure the reliability and
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accuracy of clinical laboratory testing. FDA regulators have suggested the development of
translational medicine tests such as Oncotype DXand MammaPrint might constitute an
entirely new regulatory category. In 2006 and 2007, the FDA published two versions of ‘Draft
Guidance’, signaling the Agency’s inclination to step in and take direct responsibility for the
novel test category. In 2007, MammaPrint was submitted to the FDA and successfully obtained
FDA clearance after only 30 days. An ‘FDA cleared’” button promptly appeared on all
commercial MammaPrint material (http://www.agendia.com/pages/mammaprint/ 21.php).
Given the non-binding nature of the FDA draft guidance, Genomic Health chose not to pursue
this regulatory route. Instead they try to gain ‘official’ recognition from the clinicians via
inclusion in the clinical practice guidelines of professional oncology organizations. The
company viewed the pursuit of FDA clearance as much more costly and time-consuming than
simply lobbying professional organizations of clinicians — many of whom the founders already
knew through their previous works at Genentech (110). The American Society of Clinical
Oncology (ASCO) included Oncotype in its 2007 guidelines and the US National
Comprehensive Cancer Network (NCCN) followed suit in its 2008 guidelines.

6.1. Study design of the multigenes panel

In cancer epidemiology, both retrospective case — control studies and prospective cohort
studies are observational, rather than experimental, studies. Neither type of study involves
random assignment of exposure hence; observed associations between exposures and
disease do not provide as strong a basis for claims of causality as in experimental studies.
The most serious limitation of epidemiological studies is their non-experimental nature, not
whether they are retrospective or prospective. In therapeutics, many retrospective analyses
are also non-experimental, with treatment selection based on patient factors and referral
pattern rather than on randomization. Such studies are also often conducted without a
written protocol and are unfocused, with numerous patient subsets and endpoints
compared without control for the overall chance of a false-positive conclusion. In contrast,
prospective randomized clinical trials contain internal control of treatment assignment,
careful and proscribed data collection (including outcomes and endpoints), and a focused
analysis plan that is developed before the data are examined (112).

Many biomarker studies are conducted with convenience samples of specimens, which just
happen to be available and are assayed for the marker. They have not prospectively
determined subject eligibility, power calculations, marker cut-point specification, or
analytical plans. Such studies are more likely resulting in highly biased conclusions and
truly deserved to be pejoratively labeled as “retrospective.” However, if a “retrospective”
study is designed to use archived specimens from a previously conducted prospective trial,
and if certain conditions are prospectively delineated in a written protocol before the marker
study is performed, it might be considered as a “prospective — retrospective” study. Such a
study should carry considerably more weight toward determination of clinical utility of the
marker than a simple study of convenience, in which specimens and assays were happened
to be available. Multiple studies of different candidate biomarkers based on archived tissues
from the same prospective trial would present a greater opportunity for false-positive
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conclusions than a single fully prospective trial focused on a specific biomarker.
Consequently, independent confirmation of findings for specific biomarkers in multiple
prospective — retrospective study (115).

6.2. Oncotype DX breast cancer assay

The Oncotype DX® analyzes the expression of 21 genes (16 cancer-related and 5 reference
genes) within a tumor to determine a recurrence score (RS) using reverse transcription PCR
(RT-PCR) in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue samples. In the
earlier stage, the researchers has to show that RNA extracted from FFPE tissues could match
fresh tissue results in terms of producing a high concordance in the RT-PCR results (116,
117).To interpret the result, Oncotype DX test results assign a Recurrence Score (RS) — a
number between 0 and 100 - to the early-stage breast cancer or DCIS as stated below:

e RS lower than 18: The cancer or DCIS has a low risk of recurrence. The benefit of
chemotherapy for early-stage breast cancer or radiation therapy for DCIS is likely to be
small and will not outweigh the risks of side effects.

e RS between 18 and 31: The cancer or DCIS has an intermediate risk of recurrence. It’s
unclear whether the benefits of chemotherapy for early-stage breast cancer or radiation
therapy for DCIS outweigh the risks of side effects.

e RS greater than 31: The cancer or DCIS has a high risk of recurrence, and the benefits of
chemotherapy for early-stage breast cancer or radiation therapy for DCIS are likely to
be greater than the risks of side effects.

The RS corresponds to a specific likelihood of breast cancer recurrence within 10 years of the
initial diagnosis, as well as response to adjuvant treatment. Using recurrence score, it may
be possible for healthcare providers and patients to determine whether adjuvant
chemotherapy is needed following primary therapy for breast cancer (118, 119).

i. NSABP Study B-14

The Oncotype DX was developed and clinically validated on the basis of a retrospective
analysis of the existing material from two randomized clinical trials (NSABP-B-20 and
NSABP-B-14). The signature is based on the expression of genes that are associated with
proliferation, ER signaling, HER2, and invasion (118). The 21 multigene chosen were
always at the top of the list in published literature. The developers used the samples
from 447 patients as the ‘discovery’ or ‘training’ set to select the 21 genes eventually
included in the Oncotype test. Company researchers then applied an algorithm to the
results of the tests and developed the aforementioned RS score. They believe the score is
one of the strengths of the Oncotype test: as a single number on a continuous 0-100 scale
and not a category (that is, yes/no, good/poor). It is supposed to provide clinicians with
‘useful” information as a basis on which to act, while preserving clinical decision-
making as a clinician’s prerogative, since by not providing a categorical answer it does
not entail a specific intervention (110). Results from this study demonstrated that
Oncotype DX is an accurate and reliable predictor of breast cancer recurrence. (120). The
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study also concluded that the RS has been validated as quantifying the likelihood of
distant recurrence in tamoxifen-treated patients with node-negative, estrogen receptor-
positive breast cancer (118).

ii. NSABP Study B-20

About 668 samples of cancer tissue from a clinical trial called NSABP B-20 (“A Clinical
Trial to Assess Tamoxifen in Patients with Primary Breast Cancer and Negative Axillary
Nodes Whose Tumors Are Positive for Estrogen Receptors) were used to show that
Oncotype DX can predict chemotherapy benefit (119). The study concluded that the RS
of the assay not only quantifies the likelihood of breast cancer recurrence in women
with node-negative, estrogen receptor-positive breast cancer, but also predicts the
magnitude of chemotherapy benefit (118).

iii. Kaiser Permanente study

A large clinical study of 234 cases and 631 controls available for pathology studies (after
screening of 4964 patients) conducted by Kaiser Permanente confirmed in a community
setting that Oncotype DX helps to predict the likelihood of breast cancer survival at 10
years (121). The primary objective of this study was to determine whether the proportion
of patients who were free of a distant recurrence for more than 10 years after surgery was
significantly greater in the low-risk group than in the high-risk group. The second
primary objective was to determine whether there was a statistically significant relation
between the RS and the risk of distant recurrence. The cutoff points were prespecified to
classify patients into the following categories: low risk, intermediate risk and high risk.
The cutoff points were chosen on the basis of the results of NSABP trial B-20. The study
concluded that in a large, population-based study of lymph node-negative patients not
treated with chemotherapy, the RS value was strongly associated with risk of breast
cancer death among ER-positive, tamoxifen-treated and -untreated patients.

iv. SWOG 8814 study

SWOG-8814 was a randomized phase III clinical trial of 1,477 postmenopausal women,
all of whom had estrogen receptor-positive (ER+) breast cancer that had spread to the
axillary lymph nodes. All women in the trial got daily tamoxifen for up to five years,
longer than the standard therapy for treating ER+ breast cancer. One arm of 361 patients
got only tamoxifen. The rest got tamoxifen plus a three-drug chemotherapy regimen of
cyclophosphamide, Adriamycin®, and 5-fluorouracil, a combination known as CAF.
Investigators retrospectively analyzed tumor specimens from this trial using the
Oncotype DX® in 367 women with ER-positive, mainly tamoxifen-treated lymph node-
positive, the RS assay quantified the likelihood of breast cancer recurrence and also
predicted the magnitude of chemotherapy benefit (122).

v. Oncotype DX TAILORXx Trial

Following the development of the specialized translational research program from
National Cancer Institute (NCI), the Program for the Assessment of Clinical Cancer
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Tests (PACCT) launched the TAILORXx trial (123).Since the validation of the Oncotype
DX Breast Cancer Assay Recurrence Score were able to clearly show that the multigene
panel were able to predict chemotherapy with hormonal treatment benefit for patients
with high Recurrence Score while patients with low Recurrence Score do not benefit
from chemotherapy. However as high as 37% of patients fall into the intermediate
range, which do not show a clear outcome of the benefit of chemotherapy (122). A
randomized prospective clinical trial is currently ongoing to further validate a group of
node-negative, ER+ breast cancer patients with a RS in the intermediate range, which is
known as Trial Assigning IndividuaLized Options for Treatment (Rx) TAILORx
conducted by the North American Breast Cancer Group (http://www.cancer.gov/
clinicaltrials/noteworthy-trials/tailorx). Since 2006, the trial enrolled 10,000 patients (of
which 4500 were to be in the randomized arm) in 900 participating centers (110).
Patients with mid-range RS will be randomized for chemotherapy while patients with
low and high RS will not be randomized as the outcome has been clearly defined in
previous studies.

6.3. Recommendation of use as tumor marker

Because Oncotype DX was able to achieve level II evidence to support it's prognostic role,
Oncotype DX has received approval from the American Society of Clinical Oncology
(ASCO) in the2007 guidelines (124). It was included in the National Comprehensive Cancer
Network (NCCN) 2008 guidelines (Breast Cancer version 1.2011 [http://www.nccn.org].) as
an option to evaluate prognosis and as a complement to clinicopathological features to
predict response to chemotherapy for patients with ER-positive, node-negative breast
cancer. None of the microarray-based prognostic signatures has been endorsed by these
professional bodies.

6.4. MammaPrint

MammaPrint (initially known as the 70 Gene Amsterdam Signature) was originally
developed as an academic/scientific endeavor using whole genome microarray technology.
The objective was to develop a gene expression signature that could accurately identify
early stage breast cancer patients who were either at high risk or at low risk of recurrence
and, therefore, enable more individualized treatment. The MammaPrint investigators from
the NKI-AVL in collaboration with the Rosetta Inpharmatics (a Seattle company) procured
and analyzed 78 tumors with the whole-genome microarray. Out of the 25,000 genes in the
human genome, 231 genes were selected according to its association with the disease
outcome. Further bioinformatic analysis using 2-D cluster analysis followed by a leave-one-
out cross validation procedure produced 70 critical genes that were shown to correlate best
with the likelihood of distant recurrence. These 70 genes affect all steps known to be
important for metastasis including cell cycle regulation, angiogenesis, invasion, cell
migration and signal transduction (111).The resulting 70-gene signature profile classifies
tumors as either high risk or low risk of recurrence. If it is used in conjunction with other
risk factors, it helps to identify patients who will benefit from the adjuvant therapy. The 70-
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gene signature was constructed as a dichotomy as the discussions between the research
team and clinicians, who insisted that the main goal of the test should be to avoid
overtreatment of the disease. To accomplish this end, the low-risk group had to be defined
inclusively. At the same time, the test developers felt that clinicians expected a clear answer
(good/poor signature) from the test, hence the dichotomy (111). This position, once again,
contrasts with the Genomic Health’s decision to report their Oncotype DX data analysis as a
continuous variable that leaves room for clinical judgment (110).

With this 70-gene signature, further validation was needed on a larger, independent patient
population. The primary validation was thus carried out via another retrospective study
that used samples from 295 patients held in the same NKI bio-bank. The first validation for
the 70-gene signature was undertaken in a series of 295 consecutive women with breast
cancer. The proportion of patients who remained free from distant metastases at ten years
was 87% in the low-risk group and 44% in the high-risk group. The profile was a statistically
independent predictor and added to the power of standard clinico-pathologic parameters
(125). A research network team called TRANSBIG, an abbreviation for “Translating
molecular knowledge into early breast cancer management: building on the BIG network for
improved treatment tailoring”, used the 70-gene signature as retrospective study in 2006
using 307 pab4tient samples from five European institutions. The results showed that the
proportion of patients who remained free from distant metastases at 10 years was 90% in the
low-risk group and 71% in the high-risk group. The 70-gene signature was found to provide
prognostic information more than what could be determined from patient age, tumor grade,
tumor size, and ER status in a population of lymph node negative patients without adjuvant
chemotherapy (113). Although they initially favored licensing the technology, the NKI team
found no viable taker. So, in 2003 the original researchers, in consultation with the NKI
board of directors, established a spin-off company using private venture capital and
European Union (EU) funding, and convinced the director of oncology at a leading
diagnostic company, Agendia, for Amsterdam Genetic Diagnostics Amersham (110). The
Agendia team had a signature but they did not have a test. In other words, it was not
immediately obvious how to convert the 70-gene signature into what eventually became
MammaPrint, a ‘high-throughput diagnostic test’ (126). The original signature had been
developed using microarrays containing 25,000 oligonucleotides, a highly impractical
platform for routine use. The company therefore developed a customized microarray
containing a reduced set of probes, whose production was entrusted to Agilent, to whom
Rosetta had, in the meantime, sold its technology.

The TRANSBIG Consortium performed another independent validation study of 302
adjuvantly untreated patients with at least ten years of follow-up. For the NKI researchers,
the problem was less RNA extraction than the microarray analysis itself. Compared with
RT-PCR, microarray analysis was a relatively novel, non-standardized technology and as
such, it raised a number of logistic and statistical challenges (127, 128). As a result, in
addition to the validation studies of the signature per se, researchers conducted a number of
other studies to show that sample collection for the test (as distinct from the centrally
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performed test itself) was feasible and reproducible in community-based settings (129).
Additional studies demonstrated that the MammaPrint classifies greater than 95% of ER-
negative cancers as poor prognosis and there was a strong correlation between 70-gene
signature-defined poor prognosis and high histological grade (130, 131). Furthermore, the
studies demonstrated that the 70-gene signature would outperform the current methods
based on clinicopathological parameters for chemotherapy use.

One study revealed that MammaPrint validates in older American breast cancer patients
(132). While another study demonstrated that MammaPrint has strong prognostic value in
patients with 1-3 positive lymph nodes (133). With more than 14,000 patient results reported
to date, the technical robustness and reliability of MammaPrint is well established.
MammaPrint is a considerable a step forward in the advancement of personalized cancer
treatment. Several other prognostic signatures including the 76-gene signature (134, 135)
and genomic grade index (136-139) were also shown to be independent predictors for the
cancer outcomes.

i. MicroarRAy PrognoSTics in Breast CancER (RASTER) study

To evaluate whether the prognostic signature is suitable for the use in clinical practice,
the MammaPrint was used to assess feasibility of implementation of the test as a
diagnostic test in community hospitals in the Netherlands. The study aimed to test the
effect of the signature on the use of adjuvant systemic treatment; proportion of patients
with “poor” versus “good” prognosis in a series of unselected patients with node-
negative breast cancer; and finally to examine the concordance between risk predicted
by the prognosis signature and risk predicted by commonly used clinicopathological
guidelines. The findings of this study show that implementation of the 70-gene
prognosis signature as a diagnostic test is feasible in community hospitals in the
Netherlands (129).

ii. MINDACT Trials

MammaPrint is currently being tested in the MINDACT (Microarray In Node-negative
and 1-3 positive lymph-node Disease may Avoid ChemoTherapy) trial (140). This is to
determine whether this signature can actually replace clinicopathological parameters
for the identification of patients who could be spared from the use of chemotherapy.
The more ‘confrontational attitude” of the MINDACT leaders toward traditional clinico-
pathological tools has resulted in a very different trial design compared to the Oncotype
DX TAILORx Trial.In the MINDACT trial, women recruited into the trial are assigned
to high- and low-risk categories using both standard clinical-pathological features and
the 70-gene MammaPrint test results. An open-access computer program, Adjuvant!
Online, developed in the US and widely used by breast cancer clinicians to estimate the
outcome in terms of relapse and survival with or without chemotherapy. By
confronting the predictions of MammaPrint and Adjuvant! Online, the trial directly
compares between these two prognostic tools: women whose Adjuvant! Online and
MammaPrint results are discordant (when clinical/pathological features indicate high
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risk of recurrence and when MammaPrint indicates low risk, or vice versa) are then
randomized for chemotherapy.

6.5. Conclusion

Based on the recommendation by the Evaluation of Genomic Applications in Practice and
Prevention (EGAPP) Working Group, the general consensus was that retrospective study of
samples and data from prospective studies were insufficient, although these studies were
superior to studies using ‘convenience samples’, such as those contained in a general-purpose
bio-bank. However, potential for patient selection bias cannot be excluded (141), therefore the
working group recommend prospective studies such as TAILORx and MINDACT as the gold
standard for testing the value of a multigene molecular test such as Oncotype or MammaPrint.
From their review on these multigene molecular tests, they found insufficient evidence to
make a recommendation for or against the use of tumor gene expression profiles to improve
outcomes indefined populations of women with breast cancer. The working group found
preliminary evidence on the potential benefit of the Oncotype DX testing results to some
women who face decisions about treatment options (reduced adverse events due to low risk
women avoiding chemotherapy) but could not rule out the potential harm for others (breast
cancer recurrence that might have been prevented). The evidence is insufficient to assess the
balance of benefits and harms of the proposed uses of the tests. The working group therefore
encourages further development and evaluation of these technologies. There are still
limitations that prevent these multigene molecular test such as the Oncotype DX,
MammaPrint and other genomic prognostic markers from replacing the microscope for
diagnosis, prognosis and treatment of an early breast cancer. However, additional important
clinical information from this test has added to traditional histology and IHC determination of
ER, PR and HER? in terms of prognostic and predictive power.

7. Challenges associated with the clinical translation

Advances in laboratory and clinical science has propelled to a transitional period, which
requires a redefinition of biology, genomics, and medicine in relation to one another.
“Molecular gene signatures” is a new buzz word within the field of personalized medicine in
the treatment of breast cancer (111, 118), thyroid cancer (142), endometrial cancer (143),
ovarian cancer (144) and other cancers as well. However, the road from the scientific discovery
of molecular signatures associated with cancer until it can be translated to clinical application
is long and arduous. A recent review on the current status of translational research in cancer
genetics has analyzed the extramural grant portfolio of the National Cancer Institute (NCI)
from Fiscal Year of 2007. From the study, the funded grants and publications were classified as
follows: To as discovery research; T1 as research to develop a candidate health application (e.g.,
test or therapy); T2 as research that evaluates a candidate application and develops evidence-
based recommendations; Ts as research that assesses how to integrate an evidence-based
recommendation into cancer care and prevention; and T as research that assesses health
outcomes and population impact (145). An “explosion” in gene expression research during the
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last few years has already led to the development of several genetic classifiers in the genomic
discovery (To) stage and Ti stage (which bridges discovery to candidate health application, or
“bench to bedside”). However, less genomic research was conducted and published in T2 and
above, with only 1.8% of the grant portfolio and 0.6% of the published literatures in these
categories. In addition to discovery research in cancer genetics, a translational research
infrastructure is urgently needed to methodically evaluate and translate gene discoveries for

cancer care and prevention (146, 147).

POPULATION ONCOLOGY

TRANSITION

PERSONALIZED ONCOLOGY

determination

and stage-based

implementation of molecular markers

Screening Population-wide risk reduction Population-wide approaches modified Individualized risk estimation and programs
for at-risk subpopulations adapted to individual risk

Diagnosis Organ-of-origin-/histology-based Organ of origin, histology, and Primarily molecular marker-based
some molecular markers

Staging Anatomic extent of disease Anatomic extent with some Primarily molecular risk-based
molecular risk profiling

Treatment Typically organ-of-origin- Organ-of-origin- and stage-based with some Primarily molecular marker-based

Assessment intervals

Based on clinical evaluation/
examination findings

Based on routine interval imaging

Early, frequent serial assessments by
imaging, circulating tumor cells, and other
marker assessments

single-arm, noncomparator trials

some randomized controlled trials

Early phase Oriented to maximum Oriented to "optimum biologic dose” Determine range of tolerable and active doses
clinical trials tolerated dose

Mid-phase Histology and prior treatment- Histology and prior treatment-based Some trials, histology, and prior treatment-based
clinical trials based eligibility; typically eligibility; some marker-based screening; eligibility with rapid, serial assessments; many

with eligibility restricted to tumor marker subsets

Table 3. Systemic therapy options for the treatment of invasive breast cancer in the adjuvant and
advanced disease settings. Among solid tumors, breast cancer treatment arguably has made some of the
greatest advances during the previous 3 decades (148). Advances in laboratories and clinical science
have propelled us into the current transitional period and how clinical trials must evolve to lead us into
the era of personalized oncology (148)

7.1. Challenges of gene expression profiling studies

In order to understand challenges associated with the clinical translation of molecular gene
signature obtained from microarray studies, we must understand the challenges and
limitations of gene expression profiling. Although gene expression profiling seems to have
value in the discovery of molecular markers for potential use in diagnosis or as a therapeutic
target, translating this technology into genomic medicine is still a work in progress. For a
better understanding in terms of strengths and limitations of gene expression profiling
techniques, we need to understand biological, technological, statistical, and informatics
challenges and caveats.

7.2. Biological challenges

A microarray experiment presents a snapshot of the gene expression of the biological system
that is dynamic and constantly changing at a given time point, which may not provide the
complete picture or accurately depict of what is really happening at cellular level. Thus, the
presence of mRNA does not explicitly mean that it was just synthesized. Likewise, the
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inability to detect an unstable transcript may be due to its high degradation rate (149). The
expression of some genes (“housekeeping genes”) is thought to be more stable, and these
genes are often used as controls for the normalization of expression levels of other genes.
However, the expression of traditionally used controls such as ribosomal RNA genes, also
changes across different tissues and experimental conditions making it difficult to select
“gold standards” (150). Sampling issues such as biopsy method (151), contamination from
neighboring tissues may seriously affect in different expression profiles as microarray
technology is very sensitive to such variations (152). RNA quality is a critical issue in
genome-wide analysis of gene expression. RNA is less stable than DNA and care should be
taken and adequate protocols followed to preserve the quality of biological material. This is
particularly important in clinical setting. Another limitation in prognostic or predictive
markers from gene expression profiling is that microarray covers only part of the whole
picture. Most of cellular functions are performed by proteins and physiological changes can
be modulated by not only changes in protein levels but also by protein modifications such
as glycosalation, methylation, acethylation, and phosphorylation. These modifications could
change protein conformation and lead to changes in activity, which is not detectable by gene
expression profiling (152).

7.3. Technological challenges

All of the microarray platforms available in the market are proprietary, a general concern for
the inter-platform variability in the gene expression profiles has been addressed by the
MicroArray Quality Consortium II (MAQC) (153). Despite the high variability in gene
expression attributed to differences in microarray platforms, studies have demonstrated that
reproducibility across platforms can be dramatically improved when standardized protocols
are implemented for RNA labeling, hybridization, data processing, data acquisition, and
data normalization. When these technical variables are standardized, different microarray
platforms can produce comparable outcomes (154, 155). Nevertheless, the results from
comparison across different platforms can be misleading and should be interpreted with
great caution (156). Technicalities of the microarray platforms deals with binding efficiency
of labeled target to the respective probe as well as technical variation during experiments
also may affect the reproducibility of the gene expression profiles (152). With regards to
prospective experiments, the uniformity of experimental conduct will help to minimize
potential bias and thus improve the validity of a study. The establishment of the Microarray
Quality Control (MAQC) project in 2005 to develop procedural guidelines and quality
control metrics in the first phase and the second phase aims to evaluate various data
analysis method and predictive models (153). One of the serious problems has been a wide
diversity of data formats used in microarray experiments. As a result, the Microarray
GeneExpression Database Society (MGED) was created in 1999 to develop a common
standard for data input and reporting that could be shared among scientists in the
microarray field. In 2001, the MGED created the Minimum Information About a Microarray
Experiment (MIAME) guidelines, which serve as a template for researchers to report an
adequate description of how microarray data were obtained (157).
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7.4. Statistical and and bioinformatic challenges

The experimental design of the microarray studies is of paramount importance, as it should
have a clear goal and a specific hypothesis to test. In the design of a microarray experiment,
all potential sources of variation should be taken into account to avoid any systematic bias.
Researchers should adhere to the sound principles of study and match the experimental
variables of cases and controls to the fullest extent possible. It is important to select
biologically homogenous sample populations, balancing a design with respect to all factors
that can confound results among the comparison groups, and handling samples uniformly
through the course of the entire experiment when designing a microarray study (158).
Randomization of samples will assure baseline equality between the groups being
compared. Violation of these principles will lead to biased results and can cause a loss in
power. It should be pointed out that statistical analysis of data couldn’t solve fundamental
problems of study design. Significantly, the validity of gene expression profiles depends on
the characteristics of samples and selection bias, eligible criteria of participation and other
confounding factors. An adequate sample size is necessary to achieve sufficient power to
demonstrate significance of findings, especially in microarray studies where thousands of
genes are tested simultaneously (159). Appropriate preprocessing of microarray data,
known as “normalization” prior to analysis is critical for identifying differentially expressed
genes. Normalization attempts to remove variability among chips and other systematic
biases that are unrelated to biological variation so that a meaningful biological comparison
can be made. Transformation is used for multiple purposes, including stabilizing variance in
data so that underlying assumptions required for the statistical analysis method are met.
Although it is expected that the choice of a preprocessing procedure does not affect the core
results of microarray data, different normalization and/or transformation methods may
result in different outcomes (160).

Application of appropriate analysis methods to the microarray data, for example
classification and cluster analysis are typical analytical approaches to categorized
microarray data into manageable classes. However, there is no standard “method” to how to
best analyze the genomic data and it’s very tempting to present / published the best-looking
result, leading to biased evaluation of the statistical prediction rule. Another issue of
classification is “overfitting”, which occurs when a classifier is made to perfectly fit a set of
data that was used in the model development, but has no discriminatory power so that the
results cannot be reproduced in a set of completely independent samples (161). This may
lead to insufficient evidence of accuracy and reproducibility of multigene signature from
gene expression profiles for clinical use, although it showed initial promising and
reproducible results in class discovery studies and preclinical analysis (162). An adequate
sample size is essential for any cross-validation technique to be effective. Another significant
challenge for researchers is to reconstruct network structure from available expression data.
Many different methods for network inference have been proposed (163). A common
problem of such models is exponential complexity: the number of parameters increases
exponentially with the number of variables. Thus, many alternative and equally probable
network structures may be constructed from a given dataset. Dupuy and Simon (164)
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reviewed the cancer literature of studies relating gene expression profiles to patient
outcome, either response to treatment, survival or disease-free survival and found that 50%
of the publications had at least one flaw so serious as to raise questions about the validity of
the conclusions. The three most common serious flaws they found were: misleading use of
cluster analysis, lack of adjustment for the multiplicity of analyzing thousands of genes, and
erroneous use of partial cross-validation. They pointed out that cluster analysis rarely has a
valid role in the development of predictive classifiers. Its wide use in the literature reflects a
lack of proper statistical guidance or collaboration in the conduct of expression profiling
studies (164).Therefore, cancer research organization need to better appreciate the
fundamental changes occurring in the nature of biomedical research and make major
commitments to departments for providing professional biostatistical collaboration as an
integral part of translational research.

7.5. Challenges in incorporating molecular profiling assays into routine clinical
practice

While the first-generation prognostic multigene classifiers, such as the MammaPrint assay
and the Oncotype DX breast cancer assay, are the closest to clinical practice, the second-
generation prognostic multigene assays have not been commercialized. This includes the
assessment of breast cancer microenvironment or host immune response. The assay requires
further external validation studies to determine their clinical utilities (165). Despite several
studies, the translation of predictive multigene classifiers into the clinic is even more
challenging than that of prognostic multigene classifiers (166). Most of the predictive assays
are derived mainly from cell lines. Microarray as the assay platform is not as quantitative as
using a qRT-PCR assay. Therefore, subtle changes in gene expression may not be reflected in
microarray-based assays, although these subtle differences may be sufficient to cause
resistance to chemotherapeutics. Furthermore, resistance may occur due to low penetrance
of the drug being administered and may be unrelated to tumor tissue. To incorporate
prognostic and/or predictive multigene classifiers into clinical practice, the following key
criteria need to be fulfilled:

First, the platform on which the classifier is based should be suitable for broad clinical
application and ensure that the classifier is stable under a variety of operating conditions. If
not, the classifier needs to be translated to a clinically applicable platform (167). The assay
protocols should be standardized to achieve satisfactory inter-laboratory and intra-
laboratory reproducibility, thereby establishing analytic validity. Assay standardization
includes pre-analytic parameters, such as sample storage and preparation, and analytic
performance parameters, such as the sensitivity and specificity of the system as well as
assay reproducibility. The Clinical Laboratory Improvement Amendments of 1988 (CLIA)
requires laboratories to independently establish analytic validity and improve assay
standardization. To venture from scientific discovery to the beginning of clinical
translational research is a challenge as academic scientist are usually funded and rewarded
for discovery, rather than to pursue focused translational research as members of a large
interdisciplinary team. Funding agencies may not be experience in funding and monitoring
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focus translational research. In some other developing countries, to fund such large
interdisciplinary and multicenter translational research is prohibitively expensive. Because
of these limitations in conducting and funding focused translational research, a defined
discovery to a product for use in a defined medical context goes untranslated unless they
are of interest to the industry (168, 169).

Second, it is critical to classify studies as developmental or validation studies in order to
increase the clinical validity of the classifier. For assays that purport to elucidate predictive
significance, this strategy needs to be applied to determine the clinical utility of the classifier
(167, 170). Developmental studies need to include internal clinical validation; this can be
accomplished either by splitting the study population into two populations (the training
model and the testing model or by cross-validation based on repeated model development
and testing on random data partitions. These approaches will increase the accuracy of the
classifier, which in turn makes its further development possible. Independent validation
studies are critical to further evaluate the predictive accuracy and usefulness of the classifier
in clinical practice. The studies should be prospectively designed, and should verify both
clinical validity and clinical utility. Pusztai et al (171) identified out of the 939 publications
over twenty years period on prognostic factors for patients with breast cancer, only estrogen
receptor, progesterone receptor and HER2 amplification and Oncotype DX RS were included
alongside the traditional staging variables recommended by the ASCO guidelines. The
pitfall for most of these genomics discovery researches is that only a few of the markers
studied were properly validated in a cohort. However, most of the studies were performed
using convenience sampling of heterogenous collection of patients and difficult to use such
results in therapeutic decision making for individual patients. Finally, most of the
publications were based on research assays without demonstration of robustness or
analytical validity. Without a diagnostic company to develop a robust assay for a test with a
clear and important medical application, the publication is unlikely to be part of successful
translational research (169).

Third, does the classifier only assess prognosis? Or does it help with selection of a certain
type of therapy? What is the therapeutic relevance of the classifier? Prognostic multigene
classifiers assess the likelihood of disease recurrence, whereas predictive multigene
classifiers evaluate the potential benefit from certain types of chemotherapy or anti-estrogen
therapy. However, a prognostic classifier may also exhibit predictive significance. If a
classifier is a predictive classifier, the bar for utility is often quite low. For example,
approximately half of patients with HER2 positivity respond to trastuzumab. However, if
the assay assesses low likelihood for recurrence or metastases (a prognostic assay), patients
classified as low risk need to have such a low risk that they can be spared from adjuvant
therapy without affecting their long-term prognosis (172).

Fourth, the incorporation of the classifier into the clinic might be more beneficial if it
outperforms or adds predictive power to existing prognostic methods; this would help
justify the money and time invested in its external validation in a trial of a much larger scale.
In other words, it is important to determine cost-effectiveness. The “intrinsic” classification
was the first assay to use modern molecular tools to classify breast cancers. MammaPrint
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(111) and the Oncotype DX(118) have been tested in more than one validation cohort and are
being tested for further clinical utility in large prospective trials in Europe (MINDACT;
MammaPrint assay) (140) and in the United States (TAILORx; Oncotype DX assay)(173). Both
assays have completed a cost-benefit analysis on the utility of the assay in clinical practice
(174-178). Both assays demonstrate cost effectiveness in guiding adjuvant chemotherapy
treatment in patients with early-stage breast cancer. Another assay in an advanced stage of
development is a 50-gene assay (PAM50) (179), although the clinically applicable platform
of intrinsic subtype classification is still a long away from clinical application.

The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working
Group (EWG) assessed the value of the Oncotype DX and MammaPrint assay. The EWG
found insufficient evidence to make a recommendation for or against the use of tumor gene
expression profiles to improve outcomes in defined populations of women with breast
cancer (180). The EWG encouraged further development and evaluation of these
technologies. It is clear that the molecular profiling tests have a great potential to improve
clinical decision making, since they address the complexity of breast cancer. It was
suggested that the combinatorial use of these assays with the existing traditional
clinicopathologic parameters to be more favorable, as clinicians are hesitant to do away with
the existing clinicopathologic parameters. Indeed, a recent study used a similar
combinatorial approach in which the Oncotype DX RS was integrated with
clinicopathological parameters to develop a tool, the RS-Pathology-Clinical (RSPC)
assessment (181). This model although requires validation, might have the greatest
predictive and/or prognostic utility in cases classified as “intermediate risk” by the Oncotype
DX (182).These studies highlight the difficulties in prognostication in patients with breast
cancer and the need to use anatomical, histological, and biological approaches to assist with
clinical decision-making. It is indisputable that multigene classifiers cannot replace, but
rather strengthen, prognostication and prediction in combination with clinicopathological
parameters. They do not have a role in cases in which the patient (or the clinician) has
already made the decision to proceed with systemic adjuvant therapy. However, these tests
have a role to play in those patients who are undecided or for whom a definite decision
cannot be made based on clinicopathological findings. No test should be ordered if its
results are not going to influence clinical decisions (168).

i. Problems related to early detection

Scientists postulate the basic underlying prognostic microarray studies is that all
tumors acquire a metastasis phenotype through the same unique mechanism, and that
gene expression data in tumor tissue obtained at resection of the primary tumor can be
used to clearly distinguish between tumors that will relapse or will not relapse. The
results of the pioneering prognostic microarray study concerning breast cancer (111) are
considered proof of concept and have led to general acceptance of the postulate.
However, the performances of microarray studies are poorer than initially thought and
published gene signature lists are unstable (161). Some of the multi-biomarker scores do
show consistent prognostic value such as in breast cancer, but until the recent advent of
large validation studies, microarray studies are not significantly better prognostic
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ii.

classification than conventional prognostic models (113, 122). In addition, it has been
shown that almost all first-generation gene signatures in breast cancer provide a
quantitative read-out of the same biological pathway of proliferation (183, 184). As of
today we are still in need of a precise estimation of the incremental value (185-187).
Moreover, by assuming a unique mechanism for the metastasis phenotype, the
postulation contradicts with the concept of cancer heterogeneity and consequently with
personalized treatments. The potential interest of microarrays could not be rejected
provided true critical consideration, incorporating, and not opposed to, full clinical
evidence is now necessary.

Problems related to prognosis indicator

The validation of “first-generation” prognostic signatures, usually based exclusively on
gene expression profiling, has proven particularly challenging (188). It has been even
more difficult to identify and validate predictors of response to nontargeted therapies
(radiotherapy and chemotherapy), although analysis of large sample sets from clinical
trials have already provided preliminary evidence of novel markers (189).

Limitations to the current prognostic multigene signatures

The ability of the Oncotype Dx and MammaPrint, to determine prognosis seems to be
directly correlated to the assessment of proliferation/cell cycle-related genes (183, 190).
The fact that these multigene signatures are mere surrogates of proliferation poses some
important problems for their uses. First, given that proliferation has been shown to be
prognostic in ER-positive disease and not in ER-negative cancers, first-generation
signatures are applicable only for the prognostication of patients with ER-positive and
HER2-negative breast cancers (190, 191). As the expression level of proliferation related
genes in ER-positive cancers has been demonstrated to follow a continuum rather than
a bimodal distribution, the subdivision of ER-positive cancers into good-prognosis
(luminal A) and poor-prognosis (luminal B) groups is considered artificial (183, 190). In
fact, the continuous nature of the Oncotype DX RS is more representative of the ranges
of prognosis of patients with ER-positive disease. It should be noted, however, that this
approach for clinical decision-making might be problematic. For instance, the
prognostication and management of patients with an intermediate RS remain unclear,
and up to 40% to 60% of clinically intermediate-risk patients (that is, breast cancers
combining ER-positive, HER2-negative, and grade II status) are allocated to the
intermediate-risk RS group (175). Therefore, the actual contribution of Oncotype DX to
the management of this particular group of patients remains to be elucidated, and is
currently being examined in the TAILORXx trial (173, 175). Lack of prognostic power of
first-generation prognostic signatures in ER-negative breast cancer and their
associations with proliferation in ER-positive breast cancer have brought to the
forefront of cancer research the limitations of histological grading. Classical histological
grade is not prognostic in ER-negative disease and is strongly associated with
proliferation (190, 192). It should be noted, however, that the levels of intra- and inter-
observer agreement of histological grade remain suboptimal, despite the numerous
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efforts to implement a standardized histological grading system (192). It could be
argued, on the basis of the above observations that the major contribution of first-
generation prognostic gene signatures is to provide a standardized proliferation assay
for breast cancer. A second limitation of the first-generation prognostic signatures stems
from the fact that most of them were developed to predict short-term distant recurrence
(<5 years) and were shown to have a strong ‘time dependence’ and a reduced
prognostic value after 5 to 10 years of follow-up (113, 193). Hence, these signatures may
represent merely early distant recurrence surrogates and are unable to predict late
relapses with the same accuracy. Thus, there is still a need to develop signatures that
could identify patients who have a higher risk of late relapse and who may benefit from
prolonged therapy.

iii. Problems related to therapeutic response

There is also increasing evidence that better classifiers and improved prognostication
can be derived from combined analysis that profile both tumour DNA and RNA (194-
196). Neoadjuvant therapy trials hold great promise as the right framework to identify
these predictive biomarkers for chemotherapy (and targeted therapies) response. ER
and Her2 are predictors of a lack of benefit from targeted therapies, hormone therapy
and anti-Her2-targeted agents, when the cancers do not express the markers. These
predictors, however, fail to identify tumours that despite expressing the biomarkers still
fail to respond to the targeted therapies (197).

7.6. Gene expression signatures and response to chemotherapy

With the clinical need for predictive markers for specific chemotherapy agents and
multidrug regimens, several groups have developed multigene signatures specifically
designed to predict response in patients receiving either chemotherapy or endocrine
therapy. Using supervised approaches, several studies have attempted to identify multigene
signatures of response to chemotherapy by comparing gene expression profiles between
high sensitivity and low-responsiveness tumors (198-201). The majority of the studies
focused on neoadjuvant chemotherapy and analyzed tumor samples obtained from biopsies
taken at diagnosis before initiation of chemotherapy by microarrays or RT-PCR.
Chemotherapy sensitivity usually was estimated with rate of pathological complete
response to neoadjuvant therapy (pCR) as a surrogate of long-term benefit from the
treatment. For example, a 30-gene signature was developed by the MD Anderson Cancer
Center group in 82 breast cancer patients receiving T/FAC chemotherapy (paclitaxel,
fluorouracil, doxorubicin, cyclophosphamide). This predictor signature was then validated
in 51 independent patients and predicted pCR probability with higher sensitivity and
negative predictive value than clinical variables based on age, grade, and ER status (198,
200), which were later confirmed in an independent study (202). Despite these interesting
preliminary results, the accuracy of the 30-gene predictor was not found in a recent study in
which it was not an independent predictor of pCR after multivariate analysis and did not
perform better than clinical variables (203). A similar 78-gene signature to MammaPrint that
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was developed from a dataset of metastatic breast cancerpatients who did and did not
respond to tamoxifen treatment was identified as truly predictive of tamoxifen response.
They found that their signatures seemed to be more predictive than prognostic compared
with the RS in an independent set of tamoxifen-treated ER-positive metastatic breast cancer
patients (204). Whilst the metastatic setting may be the most logical way to investigate the
true predictive ability of a biomarker, it remains plausible that metastatic breast cancer
patients have different disease biology compared with those having early-stage disease.
Miller et al (205) used the neoadjuvant or preoperative setting to uncover gene profiles for
which baseline expression and relative change with 14 days of treatment differed between
breast cancers that were clinically responsive or resistant toletrozole therapy. The advantage
of the neoadjuvant settingis that it allows multiple ways of assessment of response to
therapy, eg, monitoring of changes in tumor size during the first months of treatment and
sequential tumor biopsiesbefore and after neoadjuvant treatment with letrozole. Gene
expression profiles were then related to clinical responses as assessed from tumor volume
measurements after three months of treatment. This study underscores the potential of the
neoadjuvant setting for high-level correlative science, but also supports the need for
biologically driven hypotheses and stratification of luminal subtypes, and also highlights
the difficulties of serial analyses using high-dimensional data.

An alternative attempt to predict chemosensitivity to specific chemotherapy regimens was
developed with the use of in vitro models. Using a combination of in vitro signatures
associated with drug sensitivity in cell lines, a composite signatures that could predict
response to multidrug regimens were derived and translated to patients receiving
multidrug chemotherapy (206). These ‘regimen-specific’ signatures tested in patients who,
as participants in the European Organization for Research and Treatment of Cancer
(EORTC) BIG00-01 clinical trial, received TET (docetaxel, epirubicin-docetaxel) or FEC
(fluorouracil, epirubicin, and cyclophosphamide) chemotherapy resulted in a validation
study (207). Importantly, problems with the methodology of these studies have been
identified (208) and serious concerns about the validity of the published results were raised.
Subsequently, after a series of investigations, the findings derived from in vitro studies were
considered invalid, and this led to the discontinuation of the clinical trials based on these
prediction models (166, 209).

Another method to develop multigene classifiers of chemosensitivity is based on the use of
metagenes, groups of co-expressed genes associated with a small number of biological
processes. A retrospective microarray analysis of prospectively collected ER-negative breast
cancer samples demonstrated that increased stromal gene expression predicted resistance to
FEC chemotherapy, which was subsequently validated in two independent cohorts (210).
Despite the promising initial results, the signatures of chemotherapy sensitivity have so far
had limited use in clinical practice. Most of them have been developed in small, convenience
cohorts and require further external validation. None of the different predictors of
chemosensitivity is commercially available, and additional evidence is still required before
they can be implemented in clinical practice. A recent review has discussed the reasons for
the limited success of the predictive signatures available to date (166). On the basis of the
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design employed in most of the studies, the predictive signatures for multidrug regimens
are likely to capture the transcriptomic features of sensitivity/resistance to cytotoxic agents
in general. These mechanisms may constitute convergent phenotypes, that are multiple
genetic/epigenetic aberrations that may lead to resistance to cytoxic agents (211).

8. Conclusion

Cancer is a multi-factorial disease that involves multiple genes and distinct pathways. The
ultimate objective in the high throughput gene expression study approach is to fill the gap
in the early biomarker detection, prognostication improvement and gene-targetted therapy.
Outcomes from these studies can be obtained from the literatures and some are available as
open public databases. Scientists have taken steps forward by using the data either as a
single gene studies or multiple genes with related molecular pathways to investigate further
on an individual cancer. However, there is a great challenge to devise the suitable gene lists
from heterogenous data especially for drug discovery studies. With a great amount of
genomic data avaiable, nearly all cancers faced the same setbacks of unable to pick the right
genes for the right cancer. Among all cancer, breast cancer has the most advance experience
in translating the lab findings into the clinical practice with the emergence of multigene
signatures. The current array data can provide a platform for future scientists to explain the
complexity of cancer in combination with the latest advancement in deep sequencing
technology,
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