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Chapter 1

Seismic Hazard Analysis for Archaeological Structures —
A Case Study for EL Sakakini Palace Cairo, Egypt

Sayed Hemeda

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54395

1. Introduction

The modern architectural heritage of Egypt is rich, and extensively variable. It covers all kinds
of monumental structures from palaces, public buildings, residential and industrial buildings,
to bridges, springs, gardens and any other modern structure, which falls within the definition
of a monument and belongs to the Egyptian cultural heritage. We present herein a comprhen‐
sive geophysical survey and seismic hazard assesment for the rehabilitation and strengthening
of Habib Sakakini’s Palace in Cairo, which is considered one of the most significant architec‐
tural heritage sites in Egypt. The palace located on an ancient water pond at the eastern side
of Egyptian gulf close to Sultan Bebris Al-Bondoqdary mosque, a place also called “Prince
Qraja al-Turkumany pond”. That pond had been filled down by Habib Sakakini at 1892 to
construct his famous palace in 1897.

Various survey campaigns have been performed comprising geotechnical and geophysical
field and laboratory tests, aiming to define the physical, mechanical and dynamic properties
of the building and the soil materials of the site where the palace is founded. All these results
together with the seismic hazard analysis will be used for the seismic analysis of the palace
response in the framework of the rehabilitation and strengthening works foreseen in a second
stage. We present herein the most important results of the field campaign and the definition
of the design input motion.

The seismic hazard analysis for El Sakakini Palace has been performed based on historical
earthquakes, and maximum intensity.PGA with 10% probability of exceedance in 50 and 100
years is found equal to 0.15g and 0.19g respectively. P-wave and S-wave seismic refraction
indicated a rather low velocity soil above the seismic bedrock found at depths higher than
20m. Ambient noise measurements have been used to determine the natural vibration
frequency of soil and structure of El-Sakakini Palace. The fundamental frequency of El-
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Sakakini palace is 3.0Hz very close to the fundamental frequency of the underlying soil, which
makes the resonance effect highly prominent.

Some floors are considered dangerous since it show several resonance peaks and high
amplification factors (4th and 5th floors) these floors are made of wood so, warnings to decision
makers are given for the importance of such valuable structures.

The seismic design and risk assessment of El Sakakini palace is performed in two steps. In the
first one we perform all necessary geotechnical and geophysical investigation together with
seismic surveys and seismic hazard analysis in order to evaluate the foundation soil properties,
the fundamental frequency of the site and the structure, and to determine the design input
motion according to Egyptian regulations. The second phase comprises the detailed analysis
of the palace and the design of the necessary remediation measures. IN the present pare we
present the results of the first phase.

2. Seismic hazard

2.1. Historical seismicity

Egypt possesses a rich earthquake catalogue that goes back to the ancient Egyptian times. Some
earthquakes are reported almost 4000 years ago. Figure 1 shows the most important historical
events affecting ElSakakini palace. We can see that the Faiyum area as well as the Gulf of Suez
is the most important earthquake zones affecting the place.

2.2. Maximum intensity

Historical seismicity and maximum reported intensity is a good preliminary index of the
expected severity of a damaging earthquake. Available isoseismal maps in the time period
2200 B.C. to 1995 were digitized and re-contoured to determine the maximum intensity
affecting the place. This was done using a cells value of equal area 0.1 lat. × 0.1 long. Figure 2
present the produced IMM intensity showing that a maximum IMM of VII is good design
value.

2.3. Probabilistic hazard assessment

An improved earthquake catalogue for Egypt and surrounding areas affecting El Sakakini
Palace has been prepared for the purposed of this study partially based on recent work of
Gamal and Noufal, 2006. The catalogue is using the following sources:

• For the period 2200 B.C to1900: Maamoun,1979; Maamoun et al., 1984 ; Ben-Menahem
1979 and Woodward-Clyde consultants, 1985.

• For the period 1900 to 2006: Makropoulos and Burton, 1981; Maamoun et al., 1984 ; Ben-
Menahem 1979; Woodward-Clyde consultants, 1985; Riad and Meyers, 1985; Shapira,
1994 and NEIC, 2006; Jordan seismological observatory 1998-2000.
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to1995.
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Figure 2. Maximum intensity zonation map based on the historical seismicity reported in the time period 2200 BC
to1995

The horizontal peak ground acceleration over the bedrock of El Sakakini area was estimated
using Mcguire program 1993. 37 seismic source zones were used to determine the horizontal
PGA over the bedrock (Figure 3), while PGA attenuation formula of Joyner and Boore, 1981
was used because of its good fitting to real earthquake data in Egypt. A complete analysis for
the input parameters to estimate the PGA values over the bedrock can be found in Gamal and
Noufal, 2006.

( ) ( )0.5M -1 -0.00590 2 2PGA = 2.14 e1.13 D e  D= R + 4.0 (1)

The probabilistic analysis provided the following results: The peak horizontal acceleration in
gals with 10 % probability of exceedance over 50 years is 144cm/sec2(or 0.147g) For 10%
probability in 100 years the estimated PGA for rock conditions is 186 (cm/sec2) (or 0.19g)
(Figures 3 and 4). These values are quite high and considering the local amplification they may
affect seriously the seismic design and stability of El. Sakakini Palace.
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Figure 4. a: Peak Horizontal Acceleration in gals (cm/sec2) for the seismic bedrock with10 % probability of exceedance
in 50 years. b: Peak Horizontal Acceleration in gals (cm/sec2) for the seismic bedrock with 10 % probability of exceed‐
ance over 100years

3. Geotechnical investigation

Core drilling is among the routine methods for subsurface exploration. Most commonly, NX-
size core drill is used, representing a hole diameter of 76 mm (3”) and a core diameter of 54

Engineering Seismology, Geotechnical and Structural Earthquake Engineering8



mm (2 1/8”). The drilling often has multiplier purposes, of which the following are in most
cases the most important:

Verification of the geological interpretation. Detailed engineering geological description of
rock strata. To obtain more information on rock type boundaries and degree of weathering.
To supplement information on orientation and character of weakness zones. To provide
samples for laboratory analyses. Hydro geological and geophysical testing. Input data for
engineering classification of rock masses.

The geotechnical investigation, six geotechnical boreholes with Standard Penetration Test
(SPT) measurements have been carried out in the archaeological site included the drilling of
three geotechnical boreholes with integral sampling to a depth 20 meters, one borehole to depth
15 meters and two boreholes to depth 10 meters at six locations in the site. The geotechnical
data also indicated the ground water level at the archaeological site. We did all the boreholes
inside the site with hand boring machine.

The results of laboratory tests which have been carried out on the extracted soil samples from
the boreholes, which include specific gravity (Gs), water content (Wn), saturated unit weight
(γsat), unsaturated unit weight (γunsat), Atterberg limits and uniaxial compressive strength
(UCS), in addition to the ground water table (GWT), are shown in the figures (7a,7b).

The shear wave profile obtained by using ReMi compared very well to geotechnical boreholes
and geophysical survey data. In addition, the shear wave profile obtained by using ReMi
Performed much better than commonly used surface shear-wave velocity measurements.

Geotechnical boreholes (1) through (3) indicated that:

Filling of Fill (silty clay and limestone fragments, calc, dark brown) From ground surface 0.00m
to 3.50m depth. Sand Fill (silty clay, medium, traces of limestone& red brick fragments, calc,
dark brown) From 3.50m to 5.00m depth. Silty clay, stiff, calc, dark brown From 5.00m to 6.50m
depth. Clayey silt, traces of fine sand & mica, yellowish dark brown From 6.50m to 8.50m
depth. Silty sand, fine, traces of clay & mica. Dark brown. From 8.50m to 11.00m depth. Sand,
fine, some silt, traces of mica, yellowish dark brown. From 11.00m to 14.00m depth. Sand, fine
to medium, traces of silt& mica, tracesof fine to medium gravel, traces of marine shells,
yellowish dark brown. From 14.00m to 16.00m depth. Sand, fine, traces of silt & mica, yellowish
dark brown. From 16.00m to 18.00m depth. Sand & Gravel, medium sand, graded gravel, traces
of silt, yellow darkbrown. From 18.00m to 20.00m depth. End of drilling at 20.00m.

Geotechnical boreholes (4) through (6) indicated that:

Fill (silt, clay and fragments of limestone and crushed brick, from ground surface 0.00m to 4m
depth. Fill (silty cal with medium pottery and brick fragments, calc dark brown) from 4 to 5
m depth. Brown stiff silty clay and traces of limestone gravels, from 5.00m to 7.50m depth. silt,
traces of brown fine sand & traces of clay from 12.00m to 14.00m depth. Dark brown clay silt
with traces of fine sand. from 14.00m to 15.00m depth.

Seismic Hazard Analysis for Archaeological Structures — A Case Study for EL Sakakini Palace Cairo, Egypt
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Figure 5. El- Sakakini palace and the Geotechnical investigations.
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4. Geophysical campaign

4.1. P-wave refraction

A total of 10 seismic profiles are conducted at El Sakakini palace area (Figure 8). All profiles
are carried out using 12 receivers, P-type geophones with 5m intervals and 2 shots. The forward
and reverse shots were carried at a distance of 1 m at both ends. The seismic shots layouts are
described in Table 1.

P4P4
P5

P5

P1

P1

P3

P3

P2

P2

R eM i-2

R eM i-1

R eM i-3

R eM i-5

R eM i-4

P-w ave seism ic 
Refraction profiles

S-w ave Refraction
M icrotrem ors profiles

Figure 8. Location of the P-wave seismic refraction, S-wave refraction and ReMiprofiles conducted at ElSakakini Palace.

Shot # Name
Offset X (m)

(relative to R1)

S2 Forward -1

S4 Reverse 56

Table 1. Seismic shots.
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Figure 9. P-wave travel time distance curve and its corresponding geoseismic model for profiles # P1-P5 (Figure 8).

The conducted profiles are interpreted using time-term inversion method; an example of the
conducted profiles and corresponding geoseismic model is shown in Figure 9. Table 2
summarizes the measured Vs values and the corresponding soil thicknesses. The soil stratifi‐
cation is not uniform and horizontal, as it should be expected for a filled area. However it is
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possible to distinguish the following three main layers: the soil layering can be summarized
in the following (table 2).

Soil A- Fill (<300 m/s): A surface highly heterogeneous material (mainly man-made fill) with
an average thickness of 10 m and an average velocity Vs lower than 300m/s. It is composed of
very loose and low strength sediments such as silt, clay and limestone fragments. It is not found
in all locations.

Soil B-Clayey soil (400-600 m/s): Below the surface layer (soil A) there is a clayey or silty clay
layer with an average thickness of 10 m meters and Vs velocity 400-600 m/s.

Soil C-Saturated Sand & Gravel (700-1300 m/s): Below soil B there is a stiff soil layer with
various thicknesses. it shows a considerable increase of Vs seismic velocity reaching sometimes
values as high as 1300m/s. The soil is composed of compacted stiff saturated sand and gravel
with an average Vs velocity equal or higher than 700m/s. It may be considered as the “seismic
bedrock” for the local site amplification analyses.

Layer A Layer B Layer C

Profile N° Velocity in m/s Velocity in m/s Depth (m) Velocity in m/s
Depth in

(m)

1 300 10 1300 25

2 600 16 900 32

3 400 9 700 20

4 400 14 1200 30

5 < 300 300 5 500 10

Table 2. P-wave refraction geophysical campaign conducted at El-Sakakini palace area.

4.2. Refraction- microtremor (ReMi method)

We have used the ReMi (refraction microtremors) method to determine the S-wave seismic
velocity with depth. The method is based on two fundamental ideas. The first is that common
seismic-refraction recording equipment, set out in a way almost identical to shallow P-wave
refraction surveys, can effectively record surface waves at frequencies as low as 2 Hz (even
lower if low frequency phones are used). The second idea is that a simple, two-dimensional
slowness-frequency (P-f) transform of a microtremors record can separate Rayleigh waves
from other seismic arrivals, and allow recognition of true phase velocity against apparent
velocities. Two essential factors that allow exploration equipment to record surface-wave
velocity dispersion, with a minimum of field effort, are the use of a single geophone sensor at
each channel, rather than a geophone “group array”, and the use of a linear spread of 12 or
more geophone sensor channels. Single geophones are the most commonly available type, and
are typically used for refraction rather than reflection surveying. There are certain advantages
of ReMi method: it requires only standard refraction equipment, widely available, there is no
need for a triggering source of energy and it works well in a seismically noisy urban setting.
(Louie, 2001, Pullammanappallil et al. 2003).
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A 12 channel ES-3000 seismograph was used to measure background ‘noise’ enhanced at quiet
sites by inducing background noise with 14Hz geophones in a straight line spacing 5m Figure
5 shows the map were ReMi measurements were made. Almost all the sites were noisy. In
particular big hammer used to break some rocks generated noisy background at El Sakakini
Palace.30 files of 30sec records (unfiltered) of ‘noise’ were collected at each site. Five profiles
were taken inside the Palace (Figure 8). Figure 10-11 shows an example of the dispersion curves
and its P-F image (Remi Spectral ratio of surface waves) for refraction microtremors profile
ReMi-1. The estimated average Vs for all profiles are shown in Figure 12.

Figure 10. Dispersion curve showing picks and fit for Profile ReMi-1

Figure 11. P-F image with dispersion modeling picks for Profile ReMi-1

Engineering Seismology, Geotechnical and Structural Earthquake Engineering16



 

 

Figure 12. Shear wave velocity model calculated for refraction microtremors profiles ReMi-1 To ReMi-5 (Figure 9).

5. Frequency charactersitics of the soil and the building using microtremrs

Microtremors are omnipresent low amplitude oscillations (1-10 microns) that arise predomi‐
nantly from oceanic, atmospheric, and urban or anthropogenic actions and disturbances. The
implicit assumption of early studies was that microtremors spectra are flat and broadband
before they enter the region of interest (soil or building). When microtremors enter preferable
body it changes and resonate depending on the nature of the material, shape, and any other
characteristics of this body.

It may be considered to compose of any of seismic wave types. We have two main types of
microtremors, Local ambient noise coming from urban actions and disturbances and long
period microtremors originated from distances (e.g. oceanic disturbances). There is still a
debateongoing on the characteristics of the ambient noise that should be used for site charac‐
terization and ground response. While some are using only the longer period microtremors
originated from farther distances (e.g. Field et al, 1990), others considered that traffic and other
urban noise sources are producing equally reliable results. In general low amplitude noise
measurements comparable results give with strong motion data (Raptakis et al, 2005., Pitilakis,
2011., Apostolidis et al., 2004., Manakou et al, 2010., Mucciarelli, 1998).

Kanai 1957, first introduced the use of microtremors, or ambient seismic noise, to estimate the
earthquake site response (soil amplification). After that lots of people followed this work but
from the point of soil amplification of earthquake energy for different frequencies (e.g. Kanai
and Tanaka 1961 and Kanai 1962, Kagami et al, 1982 and 1986; Rogers et al., 1984; Lermo et al.,
1988; Celebi et al. 1987).

Seismic Hazard Analysis for Archaeological Structures — A Case Study for EL Sakakini Palace Cairo, Egypt
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5.1. Instrumentation and data acquisition

A high dynamic range Seismograph (Geometrics ES-3000 see Figure 13) mobile station with
triaxial force balance accelerometer (3 channels), orthogonally oriented was used. The station
was used with 4Hz sensors to record the horizontal components in longitudinal and transverse
directions in addition to the vertical components. For the data acquisition and processing we
followed the following steps:

• Recording 10-min of ambient noise data using a mobile station moving among variable soil
stations or El Sakakini building floors/

• Zero correction to the total 10-minnoise at time domain

• Subdivision of each 10-minsignal into fifteen 1-min sub-windows,

Figure 13. High dynamic range ES-3000 Geometrics mobile station and triaxial geophone used 4 Hz to drive soil re‐
sponse of El-Sakakini Palace.

Each of these series was tapered with a 3-sec hanning taper and converted to the frequency
domain using a Fast Fourier transform,

• Smoothing the amplitude spectrum by convolution with 0.2-Hz boxcar window,

• Site response spectrum for a given soil site (or certain floor) is given by dividing the average
spectrum of this site over the spectrum of the reference site. The reference site is choose
carefully in the site as deepest and calmest station in the basement floor with least soil
response (usually we choose a certain basement floor location with least soil response to be
used as reference site).

Engineering Seismology, Geotechnical and Structural Earthquake Engineering18



• Smoothing the final response curves by running average filter for better viewing. A complete
description of the methodology can be found in Gamal and Ghoneim, (2004).

5.2. Ground response

Figure 14 shows the locations of microtremors stations used to determine the ground response
at EL Sakakini Palace area. The predominant frequency of the ground at EL Sakakini Palace is
about 3 Hz (see Figure 15 & Table 1), a value almost identical to the theoretical estimation
according to Kennett and Kerry (1979) (Figure 16 & Table 4). The amplification factor is about
2, which is relatively low.

Soil Response stations

S1S2

S3

S4

S5

Figure 14. Ambient noise measurement locations
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Figure 15. Microtremors soil response for El Sakakini Palace Sites S1 to S5.
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Site Fundamental frequency (Hz) Amplification Factor

S1 3 2.5

S2 3.2 2

S3 3 1.6

S4 3 1.6

S5 3 2

Table 3. Fundamental frequencies and amplification factors at five locations

Thickness
P-wave velocity

(m/s)

S-wave velocity

(m/s)

Dry Density

(gm/c.c)

Quality factor

Qs

10 1300 315 (350?) 1.6 7

25 1300 500 1.7 15

>10.5 2000 700 2 100

3000 1200 2.5 200

Table 4. Parameters used for the Kennett and Kerry method (1979)
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Figure 16. Theoretical ground response analysis at EL Sakakini Palace using Kennett at al. (1979) method.
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5.3. Building response

The El Sakakini building is composed of a basement and five floors the upper two being
wooden. Figures 17 to 19 show the locations of recording stations used to drive El Sakakini
building response. Figures 21 to 26 and Table 5 show the recorded natural frequency of
vibration for each floor. All floors show nearly the same resonance frequency with the soil (3-4
HZ). The wooden floors (Figure 25 & 26) show very high amplification and multi peak as
fundamental and other harmonics. The fundamental natural frequency of vibration is always
the most important frequency that insert the maximum earthquake vibration energy into
structure. However when we find other mode of vibrations with big amplification factors we
consider this as a warning that this structure may suffer from vibration. This could be very
good warning for its unstable performance during vibration.

Figure 17. Location of stations at the basement of EL-Sakakini Palace.
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Figure 18. Location of stations at 2nd floor of El-Sakakini Palace.

Seismic Hazard Analysis for Archaeological Structures — A Case Study for EL Sakakini Palace Cairo, Egypt
http://dx.doi.org/10.5772/54395

23



F 3-1
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F 3-6

Figure 19. Location of stations at the 3rd floor.
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Figure 20. High dynamic range ES-3000 Geometrics mobile station and triaxial geophone used 4 Hz to drive structure
response of El-Sakakini Palace.
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Figure 21. Natural frequency of vibration for basement floor.
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Figure 22. Natural frequency of vibration for the 1st floor.
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Figure 23. Natural frequency of vibration for the 2nd floor.
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Figure 24. Natural frequency of vibration for the 3rd floor.
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Figure 25. Natural frequency of vibration of the 4thfloor (wooden).
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Figure 26. Natural frequency of vibration of the 5
th

floor (wooden). 
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Figure 26. Natural frequency of vibration of the 5thfloor (wooden).

Floor
Fundamental resonance

frequency (HZ)
Amplification Factor

Basement 3 1.3-2

1st Floor 3-3.5 1.4-2.8

2nd Floor 3-4 3-4.5

3rd Floor 3-4.3 5.5-8

4th wood Floor 3-4.5 7.5-8

5th wood Floor 2.5 12-20

Table 5. Natural frequencies of vibration of El Sakakini Palace.

6. Conclusions

ElSakakini Palace is an important monument in Egypt. We presented the main results of the
seismic hazard analysis and the geophysical campaign to estimate the main characteristics of
the ground response and the structure. Based on the available maximum intensity maps for
historical earthquakes (>2200BC) the maximum Mercalli Intensity expected at ElSakakini
Palace site is VII.

The peak horizontal acceleration at the seismic rock basement found at -35m approximately,
and for 10% probability of exceedance in 50 years is 144 cm/sec2 (0.147g), while for 100 years
is 186 (cm/sec2) (0.19 g). We determined the average soil profile using different geophysical
campaigns. It is found that the upper layer has an average shear wave velocity lower than
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300m/s and a thickness of 5 to 10meters. It is a man made fill material in rather loose conditions.
Below there is a clayey material with average Vs velocity equal to 400-600m/s. At -35m in
average we found saturated compacted sand and gravels with Vs velocity exceeding 700m/s.
It is considered as the seismic bedrock for the foreseen detailed site-specific analysis of the
ground response.

Based on the ambient noise campaign the fundamental frequency of the ground is of the
order of  3.0  to 3.5sec very close to the fundamental  frequency of  the palace.  Resonance
phenomena should be expected and considered seriously in the detailed analysis  of  the
structure.  There  are  strong  evidences  that  the  upper  two  stories  with  wooden  floors,
which  are  presenting  high  amplification  factors,  are  subjected  to  several  damages  and
degradation of their bearing capacity.
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