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On Direct Adaptive Control for Uncertain Dynamical
Systems - Synthesis and Applications

Simon Hsu-Sheng Fu and Chi-Cheng Cheng

1. Introduction

In the rapidly growing research on nonlinear control theory, much work has
been focused on the problems of uncertainties exist in the system model or sys-
tems with unknown disturbances and nonlinearities. A direct adaptive control
framework for adaptive stabilization, disturbance rejection, and command fol-
lowing of multivariable nonlinear uncertain systems with exogenous distur-
bances, where the bounded disturbances were assumed to be a known vector,
has developed in (Haddad & Hayakawa, 2002) and guarantees partial stability
of the closed-loop system. However, it is worth to note that the disturbances
may be the result of unmodeled dynamics, noisy measurements, parameter
uncertainty, or non dissipative forces affecting the plant, and most of time not
available for the control design.
There are considerable amount of literatures published the area of adaptive
control synthesis for uncertain systems. However, the application of Lyapunov
stability theory along this track still shown relative limited results, especially
E for discrete-time systems. The major difficulty encountered concerns the proof
g of the global stability of the overall adaptive control loop. The main reason is
% that the Lyapunov candidate cannot easily be constructed, such that the nega-
s tive definiteness of the Lyapunov difference could not easily shown (Zhao &
T Kanellakopoulos, 1997).
2 For direct adaptive control gains are adjusted without explicit parameter iden-
o tification. In this Chapter, we are investigating the problem of direct adaptive
control of uncertain systems, where both discrete-time and continuous-time
systems are considered. For continuous time case, motivated by the result of
robust stabilization of nonlinear systems affected by time-varying uniformly
bounded affine disturbances (Loria et al., 1998), where a passive-based control
g framework has formulated and achieved global uniform convergence. Facili-
) tating the direct adaptive scheme, our framework guarantees that the closed-
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loop system is Lyapunov stable under the assumption of matched distur-
bances. In addition, the asymptotic stable of solution x with respect to origin
can be proved.

There were considerable amount of discrete-time adaptive results have been
published. For example, discrete-time neural net adaptive controller was de-
picted in (Levin & Narendra, 1996), the MIT rule for adaptive control refers to
the combination of model reference control together with a gradient type pa-
rameter update law (Mareels & Polderman, 1996), and a stable and convergent
direct adaptive control has been developed in (Johansson, 1989). An
ARMARKOV model for MIMO uncertain systems achieved adaptive distur-
bance rejection and traction (Venugopal & Bernstein, 1999). In addition, Shi-
bata et al. proposed a simplified adaptive control scheme based on Lyapunov
analysis while the system satisfies the so called almost strictly positive real
(ASPR) condition (Shibata et al., 1996). Bar-Kana (Bar-Kana, 1989) also used
ASPR assumption and presented a robust discrete-time adaptive algorithm
subjected to the condition of BIBO and the boundedness of the residual term.
Guo (Guo, 1997) examined the global stability for a class of discrete-time adap-
tive nonlinear control systems and proved critical stability for least square-
based adaptive control systems.

Furthermore, several most recent works were published and the results were
close to our results presented in this Chapter. A direct adaptive control for
reachable linear discrete-time systems with exogenous disturbances (Fu &
Cheng, 2003, a) and /¢, disturbances (Fu & Cheng, 2003, b), direct adaptive

control application to a class of linear discrete-time systems, where the nomi-

nal system A is known and the deviation of |A—A |= |BK g| is bounded, were

investigated by (Fu & Cheng, 2004, a); (Fu & Cheng, 2004, b), and direct adap-
tive control for a class of nonlinear normal discrete-time systems were pre-
sented in (Fu & Cheng, 2004, c), all results above satisfied Lyapunov stability
theory. In addition, robust direct adaptive control of nonlinear uncertain sys-
tems with unknown disturbances were proposed in (Fu & Cheng, 2005, a); (Fu
& Cheng, 2005, b). However, these solutions were limited by the hypothesis of
trajectory dependence. In this paper we successfully release this limitation and
obtain stability results, such that the discrete-time system stability theory (Hitz
& Anderson, 1969) can be applied.

The contents of this paper are as follows. In Section 2, we present the adaptive
control framework for uncertain continuous-time nonlinear systems with
matched disturbances and discrete-time systems with exogenous and /¢, dis-
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turbances. Next, several numerical examples are presented in Section 3, which
include van der Pol oscillator, one linked rigid robot, and active suspension
systems, to demonstrate the efficacy of the proposed frameworks. Finally, we
illustrate the results of this paper and future research in Section 4.

2. Adaptive Control for Uncertain Continuous-Time Nonlinear Systems
with Matched Disturbances

Our main concern in this paper is to deal with uncertain nonlinear systems
perturbed by affine disturbances. We begin by considering the problem of
characterizing adaptive feedback control laws for nonlinear uncertain MIMO
systems G given by

x = f(x() + G(x(@)u(x(1) + J (x(®))w(t, x(1)) (1

where x(t)e R" is the state vector, x(0) =x,, u(t): R" — R" is the control vec-
tor, f:R" — R" characterize system dynamics with uncertain entries, and
f(0)=0. G:R" - R™ and J:R" — R™ are the input and disturbance
weighting matrix functions, respectively, with unknown entries. In addition,
the disturbance vector w:RXR" — R”’ satisfies Assumption 2.1 illustrated
next.

Assumption 2.1 (Loria et al., 1998)
The vector function w(z, x(¢)) is bounded, and can be characterized by

w(t, x(1)) < w(t, x(1))6, + 6, 2)

where 6, € R and 6, € R’ are unknown constants, and w: RXR" — R* is a

known continuous matrix function.

It is important to note that the disturbance w(z,x(t)) may be the result of un-
modeled dynamics, noisy measurement, parameter uncertainty or exogenous
disturbances. For the nonlinear system G, we assume that the existence and
uniqueness of solutions are satisfied and zero-state observability of (1) while
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w(t,x(t))=0. Furthermore, assume there exits F:R" — R’ with F(0)=0,
K,:R™, and G :R" = R™" such that

fAXUNAS (x(1)) + G (x(1)G (x(1) K, F (x(2)) (3)

is globally asymptotically stable, where a scalar function V, :R" - R is

Lyapunov function, and ¢:R" — R" . Then
V/(x) fo(x) = =" (x(0))£(x(1), Vx:R". (4)

Theorem 2.1 (Fu & Cheng, 2005)

Consider the nonlinear uncertain system G given by (1) is zero state observable
with w(t,x(t)) =0, where the disturbances w(z, x(¢)) satisty Assumption 2.1. In
addition, let that the zero solution of (1) defined in (3) is globally asymptoti-
cally stable. Furthermore, there exists matrix functions ¥:R™ and
J:R" — R™", such that the matching condition G(x)J(x)¥ = J(x) is satisfied.
Then the adaptive feedback control law

u(x) =G (X)K()F (x)+ T (x)® ()W (x,0)0, + 6,), (5)

where K(t):R™", ®(t): R™, éléél ~6,, and 6, ééz —6,. Now, let the design
matrices P, >0, P, >0, Q,>0,Y >0, Q, >0, and Z >0 with the update laws

K =-20G7 (G (V] (IF (0¥, ®

= =207 ()G WV ((w(x.0b, + )z, D
And

6, =5 PO (00T OV (), ®

é=%&Ume7m ®)
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V. (x)

where V/(x)A , guarantees that the closed-loop system, given by (1) and

() to (9), is Lyapunov stable. In addition, if (4) is applied and let the output
y(H)Al(x), then /(x) = 0 as t — oo . Furthermore, the asymptotic stable solution

x with respect to origin will arrive when ¢” (x)/(x) > 0.

Proof
To show Lyapunov stability of the closed-loop system (1) and (5) to (9), we
first consider the Lyapunov function candidate

V(x,K,®,6,,0,) =
V(x)+rQ " (K-K,)Y "(K-K,)' (10)
+10rQ ;' (P -P)Z ' (d-¥) +6,"P6, +6,P,0,

where V (x) satisfies the condition of (4) and tr represents trace operator.
Note that the Lyapunov candidate V (0, K .~ F,00)=0 and V(x,K,®,6,,60,)>0
for all (x,K,K .0,0,)#(0,K,,—¥,0,0). In addition, V(x,K,®,6,,6,) is radially
unbounded. Furthermore, V(e,K,®,6,,6,) and K are continuous in x for r>0.
The corresponding Lyapunov derivative is given by

V = V(L (x)+ G (x)u(t) + J ()W (x,1)6, + 6,)]
+26 P, + 207 P, + 200 (K = K )Y K"
+20Q ;' (@ +¥)Z DT
=V/(x) f(x) + V()G (x)[u(t) - G (x)KF (x)
— T () (W (x,0)6, + 6,)] + 2rQ ;' (® + ¥)Z ' (11)
FV/()G (NG (K = K, )F (x)+26] P,
+20rQ TN(K =K )Y KT +V(0)G ()T (x)® (w(x,0), + 6,)
— V()T ()W (2,08, = V/(x)] (x)T(x.0)8, + 20! P,8,
=V/(x)f.(x)

Next, since the condition (4) is satisfied, the resulting Lyapunov derivative
along the system trajectory is

V(x,K,®,6,,0,)=—("(x)l(x)<0. (12)



862 Manufacturing the Future: Concepts, Technologies & Visions

This completes the proof. Furthermore, if /(x) -0 as t — o, and the asymp-
totic stable solution x with respect to origin will arrive when ¢ (x)¢(x) > 0.

We further extend the above result to the case where the entries of the system
matrix and the input matrix are uncertain. Note that the adaptive control law
(5) does not require explicit knowledge on the desire gain matrix K,, distur-
bances w(z, x(¢)), system dynamics f(x), and matching matrix ®.

Theorem 2.1 also requires that the zero solution to (3) is globally asymptoti-
cally stable. Next, we consider the case where f(x), input weighting matrix
G(x) =B, and disturbance weighting matrix J(x) =D are uncertain. Specifi-
cally, given as the following

x= f(x)+ Bu(t)+ Dw (x,1t), (13)
where w(t,x(t)) satisfies Assumption 2.1, and

fo(x)Af(x)+ BK ,F(x), (14)

is global asymptotically stable. Next, let B, : R™" is the sign definite matrix
with unknown entries; such that (Fu & Cheng, 2004)

B=[0 B B,A

[Omx n—m ’Im]T’Bs > O
mx(n—m)?* ={ ( : (15)

[0 I 1",B. <0

m><(n—m)’_ m K

and

B,|= /B2, (16)

Where U is orthogonal and D, is real diagonal. Similarly, assume that

B,AUD ,U,

D, : R™ is the sign definite matrix with unknown matrix; that is

[de(n—d),Id]T,D‘Y > O

(17)
[de(n—d)’_ld ]T > Ds <0

D= [de(n—d)’Ds]T D, é{

and
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- /p?, (18)

D,AUD U,

DS

Corollary 2.1

Consider the nonlinear uncertain system given by (13) is zero state observable.
Let B and D satisfy (15) and (17), respectively. Then, the adaptive feedback
control law

u(x) = K(1)F (x) + O(0)(w(x,1)6, +6,), (19)

with the update laws

K = —%BOTVS’T(x)FT(x)Y, (20)
P = —%B“T(x)VS'T(x)(W(x,t)QAI +6,)" z, @D
and
6 = ;—Wr(x,t)DoTVS'T(x), (22)
6, = %DOTVS’T(x), (23)

guarantees that the closed-loop system, given by (13), (19), and (20) to (23) is
Lyapunov stable. Furthermore, if (14) is applied and let the output y(r)Al(x),

then /(x) -0 as t — . Furthermore, the asymptotic stable solution x with

respect to origin will arrive when / T(x)0(x)>0.

Proof

The result is a direct extension of Theorem 2.1. Let G(x)=1, and J(x) = I,
and the matching condition be BJ(x)¥ = D. In addition, let P >0, P,>0,
0,>0,0,>0, Y>0, Z>0, and assume that P"'w" (x,t) =w' (x,t)P", and let
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B|"

, where ¢, >0, i=123,4 are arbitrary real.

", 0, be replaced by g,

Q, be replaced by g, , P, be replaced by

q3|Ds
Next, let ¢,Y and g¢,Zbe replaced by Y and Z respectively. Finally, let

BS

,and P, be replaced by ¢,|D,

g5 = q, =1, then the resulting update laws (20) and (21) are obtained.

Note that the frameworks of Theorem 2.1 and Corollary 2.1 can extend to lin-
ear systems such that f(x)=Ax and f (x)=A.x, where A, = A+ BK, is an as-

ymptotically stable matrix. Also, applied to nonlinear time-varying uncertain
systems given by

x = f(x(), 1)+ G(x(@), Hu(x(2)) + J (x(0), Hw(t, x(1))  (24)
and tracking problems given by
e= f(e(®)+G(e(®)u(e(t)) + J(e(t))w(t,e(r)) (25)

where e(t) = x(t)—r,(t) is tracking error, and r,(¢) is reference. Next, we pre-

sent the discrete-time counterpart of direct adaptive control for Uncertain
Nonlinear Systems given as Section 3.

3. Adaptive Control Designs for Nonlinear Uncertain Discrete-Time
Systems

3.1 Discrete-Time Systems with Disturbance Measurement

In this section, we extend the results of Theorem 2.1 to nonlinear uncertain
discrete time MIMO systems with disturbances measurement given by

x(k+1) = f(x(k) + G(x(k)u(x(k)) +J(x(k)w(k), (26)

which is zero state observable when w(k) =0, where x(k)€ R" is the state vec-
tor, u(k):R" — R™ is the control vector, f:R" — R" characterize system dy-
namics with uncertain entries, and f(0)=0. G:R" = R™ and J:R" — R™
are the input and disturbance weighting matrix functions, respectively. In ad-
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dition, let the disturbance vector w:RXxR" — R"“ is measurable, then the
feedback law given by

u(x(k)) = G (x(k)K (k) F (x(k)) + J (x(k)D (k)w(k), 27)
where K(k):R™", ®(k):R™,and F:R" - R".

Theorem 3.1 (Fu & Cheng, 2005)

Consider the nonlinear discrete time MIMO systems with exogenous distur-
bances given by (26). Next, assume there exist J:R" — R™ and ¥:R™ ,
such that the matching condition G(x)J(x)¥ = J(x) is satisfied. Furthermore,
le¢ P, :R"—>R", P,:R"—>R"™, P,:R"—>R"™, P, :R"—>R", and

P,,:R" — R™, the Lyapunov function V, is defined as

V, (x(k + DDAV, (f () + P, (x)u(x) +u" (x) Py, (x)u(x)
+u’ ()P, (x)w(k)+ P, (x)w(k)+ w’ (k)P,, (x)w(k),

(28)

In addition, let T:R"xR? — R is a positive scalar function, ¢/:R" — R” is out-
put vector, then

0=V, (f.(x) =V, (x)+ " (x)l(k)+T(x,w). (29)

The adaptive feedback control law (27), with the measurable disturbances, and
the update laws

K (k+1)=K(k)=Q,G" (x(k)NG" (x(k)) PG (x(k) 30)
[2K (K)F (x(k) F" (x(k)) +J (x(k)® (k)w(k)F " (x(k)]Y
Dk +1)=D(k) - 0,G" (x(k)G (x(k)) PG (x(k)G" (x(k))P

. (D
[J (x(k)) = 2G (x(k))J (x(k) D (x(kNIw(k)w" (k)Z,

where 0, >0, Y >0, Q, >0, and Z >0, guarantees that the closed-loop sys-
tem given by (26), (27), (30) and (31) is Lyapunov stable.
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Proof
To show Lyapunov stability of the closed-loop system, given by (26), (27), (30)
and (31). We first consider the Lyapunov function candidate

V(x(k), K(k), ®(k)) =
V,(x(k)) +1rQ (K (k)—K )Y " (K(k)-K,)" (32)
+1trQ ,(®(k)-¥)Z ' (D(k)-¥)",

Note that the Lyapunov candidate V(0,K . ¥)=0, and V(x,K,®)>0 for all
(x,K,®) # (0,K,,¥). In addition, V(e,K,®) and K are continuous with respect
to x, V(x,K,») and ® are continuous with respect to w for k >1. Let x(k),

k>0, denotes the solution of the closed-loop system (26) and (27), and is
global asymptotic stability when w(k)=0. The corresponding Lyapunov dif-

ference is given by

AV (k)=AV(x(k),K(k), D (k)) =

Vx(k+1). Kk +1). @k +1) =V (x(k), K(k), @ k),

and follow the similar proof of Theorem 2.1 with the following adaptive laws

K(k+1)=K (k)= QF(x(k),wk)F" (x(k)Y, (34)
@k +1)=D(k)-Q,R, (wk)w' (k)Z, (35)
where

R 1 ~p , N
F(x,w)= EG ()P, (x)+ P, (x)G(x)K (k)F (x) (36)

+ Py, (x)J (x)® (k)w(k)],

R, (w(k)) =—15fT(X(k))[PMW(X(k)) 37)

+ G (x(k)PT (x(k)]w(k),
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Next, let P=N"N, N:R™, and chose the following

P, (x(k))=-4P,, (x(k) J (x(k))D (k), (38)

uw

P, (x(k) = 2F " (x(kDK " (k)G (x(k) Py, (x(K)),  (39)
P, (x(k)) = G" (x(k)) PG (x(k)), (49)

P, (x(k)) = (41)
2w’ (kK)®" (k)J " (x(k)) Py, (x(k)J (x(k) D (k),

P, (x(k)) = [G" (k)J " (x(k)D (k)= J (x(k))]"

R (42)
PIG" (k)J " (x(k)® (k) — J (x(k))],

by substituting (34) and (35) into (33), after some manipulations yields

AV (k) =[w" (k)Zw (K)IR] (x)Q,R,, (x) +

[F" (x)YF ()IF " (0)Q,F (x)+V,(f.(x)) =V, (x)

—w (K)®" (k)T (x)P,, (x)J ()@ (k)w(k) (43)
2w (k)@ (k)J " (x)P,, (x)J ()@ (k)F (x)

~T} (x)G" (x)PG ()T, (x),

T, (x(k) = G (x(k)[K (k) = K ,1F (x(k)), (44)

Since (29) is satisfied, and let

AV (k) = =|[NG ()G (LK (k) = K, F (x) + NG (x)f(x)cb(k)w(k)\z “3)
=0T () 0(x) S =07 (x)L(x).
where x(k) denotes the solution to the closed-loop dynamical system (26) and

(27). Then the resulting Lyapunov difference becomes
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This completes the proof. If /(x) #0, k20, then x — 0 as kK — oo. Furthermore,
if /(x) >0 as k — o, and the asymptotic stable solution x with respect to ori-
gin will arrive when T (x)0(x)>0.

Note that the adaptive control laws (30) and (31) do not require explicit
knowledge of the matrix K,, the disturbance matching matrix ¥ and system

dynamics f(x(k)). Next, we extend the solution of Theorem 3.1 to the follow-
ing dynamic system

x(k+1)= f(x(k))+ Bu(x(k)) + Dw (k), (44)

where the entries of B and D are unknown and satisfy the conditions given in
(15) and (17), respectively.

Corollary 3.1
Consider the nonlinear discrete time system given by (44). Next, let
F:R" — R’ and there exists K, : R™ such that f.(x)Af(x)+ BK ,F(x) is

exponentially stable. In addition, let ¥:R™“ and the matching condition
BY = D is satisfied. Then the feedback law

u(x(k)) = K(k)F(x(k)) + @(k)w(k), “3)
with the adaptive gain matrices

K(k+1)=K (k)= q*BIPB [2K (k)F (x(k)) U
+ @ (k)w(k)IF" (x(k))Y,

®(k+1)=®(k)-q*B] P[2B,® (k) - D, 1w(k)w' (k),  (47)

where K(k)=|B,|K(k), ®(k)=|B,|®Kk)D,|", wk)=|D,|wk), and ¢ >0, guar-

antees that the closed-loop system given by (44), (45), (46), and (47) is
Lyapunov stable, and equivalent to the following

x(k+1) = f(x(k)) + BoK(k)F (x(k)) + (B,®@ (k) + Dy)w(k),  (48)
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Proof

The proof is a direct extension of Theorem 3.1. First, we consider the
Lyapunov candidate given by (32), the feedback law (45), with the assump-
tions that (15), (17), (28) and (29) are satisfied. Next, consider the following
adaptive laws

|B,|K(k+1)=|B |K(k)+|B,|0,|B,|B; PBOcI>(k)|DS|’1 D |w(k)F" (x(k))Y “9)
—2|B,|0\|B,|B) PB,K (k)F (x(k))F" (x(k))Y,
[B.[@k+1\D[" =[B|0,[B |8 DD, |D,[ @, (kID[ " ZD,[" 50)
+|B [@(k)\D," ~2|B |0.|B,|B] PB,OW)|D,[ '@, (kD" ZD),
Where
@, (k)= |D,|wk)w" (k)|D,],
0,=0,=4"|B,|"|B,|",
Z =|D,||D,].
The resulting Lyapunov difference becomes
AV (k)< =0T (x)0(x). (51)

Then (49) and (50) reduce to (46) and (47), respectively. This complete the
proof. Finally, since the adaptive gains we obtained are actually |B,|K (k) and
BS
tem given by (44), (45), (46) and (47) can be rewritten as (48).

®(k)|D,|", and the measured disturbance is |D,|w(k). The closed-loop sys-

Lastly, we propose a robust adaptive solution to the linear uncertain systems
given as following

x(k+1)=Ax(k)+ Bu (x(k)) + Dw (k), (52)
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where B and D matrices satisfy the conditions given by (15) and (17), pair
(A,B) is controllable, and there exists a gain matrix K, :R™", such that

A. = A+ BK , is exponentially stable. In addition, let AA = A, - A is
bounded, and the norm |AA| indicates the system dynamics A deviates from
the stable solution A, (Fu & Cheng, 2004).

Corollary 3.2

Consider the nonlinear discrete time system given by (52). Assume that B and
D satisfy (15) and (17), respectively. Next, let ¥ : R™“ and the matching con-
dition BY =-D is satisfied. The feedback law given by

u(x(k)) = K(k)x(k)+ ®k)w(k), (53)

where K(k)=|B|K(k), ®(k)=|B,|D(k)

thermore, the adaptive gain matrices

", wk)=|D |w(k), and ¢>0. Fur-

D N

K(k+1)=K(k)=q Bg PI(B K (k) + A)x(k) (54)
+ (B,®(k)+ D,)w(k)]x" (k)Y,
®(k+1)=®(k)+q’B. P[(B,® (k)

(55)
— Dy)w(k) = A x(k)w’ (k),

guarantees that the closed-loop system given by (52), (53), (54), and (55) is
Lyapunov stable, and equivalent to the following form

x(k+1)=(A+ B,K(k)x(k)+ (B,®(k)+ D,)w(k). (56

Proof
The proof is a direct extension of Corollary 3.1. First, we consider the
Lyapunov function candidate

V(x(k), K (k),@(k)) = x" (k) Px(k) +1rQ (K(k) = K )Y " (K(k) ~ K )"

_1 r (57)
+1rQ,(P(k) =) Z™ (D(k) —¥)",
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Next, consider the Lyapunov difference (33), and assume that (15), (17), (28)
and (29) are satisfied. Then the feedback control (53) with the adaptive laws
given by

BS

K(k+1)= B! P[B,

BS

K (k) -
+ A Ix(k)x" (k)Y -
+ Dy 1D, |w(k)x" (k)Y

Bs
o

Q,
Bs

BS

B.|K (k)
D (k)|D,

f a68)

s

B! P[B,

BS

Ok +DD[" =

0,
(k)

-1 Z|DX|—I

BS

B, BT PA x(k)w" (k)

_]]

0,
B'PID, +B,|B,

-1
’

BS
(k)

D,

DS

wkw” (k) “zpf O

N

BS

BS

DS

DS

DS

DS

+|B,

D,\'

After some manipulations, the Lyapunov difference AV reduced to

AV (k)= x"(k)[A] PA,—P+ K B"PBK ,
Ry (x(k), w(k)Q,R,, (x(K), w(k)Z +

- : (60)
F (x(k), w(k)Q,F (x(k), w(k)]x(k)
—x" (k)K" (k)B" PBK (k)x(k) - |NB®(k)w(k)+ NDw (k)|.,
where
F (x(k), w(k)) = B" P[(BK (k)+ 1)
A)x(k)+ (B (k) + D)w(k)],
R, (x(k),w(k)) = B"P[A,x(k) (62)

+ (BD(k)+ D)w(k)],

Since x(k) be the solution of the closed-loop system, and the following condi-
tions are satisfied

A" P> AA"PAA = KT B" PBK, (63)

R > F(x(0), MY + R (x(0), 1)Q, R, (x(0), W)Z +|AA|" P (64)
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The resulting Lyapunov difference becomes

AV (k)< =07 (x)0(x). (65)

-1

B

Next, let Q, =0, =¢°|B,| |B, “and Z= D.|D,|, then (58) and (59) reduce to
(54) and (55), respectively. In addition, since a normalized adaptive gains
|B,|K(k) and |B,|®(k)|D,
disturbance w(k) . The closed-loop system given by (52), (53), (54) and (55) can

be rewritten as (48). This completes the proof.
Note that, the framework of of Corollary 3.1 and Corollary 3.2 do not require
the knowledge of |B,| and |D,|.

" are obtained through this design, with measured

3.2 Discrete-Time Systems with ¢/, Disturbances

In this section we propose an adaptive feedback control solution for nonlinear
uncertain discrete time MIMO systems with bounded 7, disturbances given

by

x(k+1) = f(x(k))
+ G (x(k)u(x(k)) + J(x(k)w(k),

(66)

where w: R, k >1, is the unknown bounded energy /, disturbance, x(k)e R"

m

is the state vector, u(k):R" — R" is the control vector, f:R" — R" character-
ize system dynamics with uncertain entries, and f(0)=0. G:R" - R™ and

J:R" — R™ are the input and disturbance weighting matrix functions, re-
spectively. and the feedback law

u(x(k)) = Gx(k) K (k)F (x(k)). (67)
guarantees nonexpansivity condition given as Theorem 4.1.

Theorem 4.1
A nonlinear discrete-time system (66) is nonexpansive when x(0) = x,, if the

solution x(k), k =0, satisfies the following
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D2 )z < P Y. wh (w(i) +V (x(0), K (0)), (68)

where z(k) is output signal, and the Lyapunov candidate

V(x(k), K (k) =V (x(k)) +
rQ (K (k) K )Y " (K(k)-K )",

(69)

forall k:N, w(e)e ¢,, D: R™, 7 and y be positive reals such that
7°1,>y*1,+2D"PD.

Next, we state and prove the discrete-time adaptive result for nonlinear system
with bounded energy ¢, disturbances.

Theorem 4.2
Consider the nonlinear discrete time system G given by (66), where the system
dynamics f is uncertain. Next, We assume that there exists a gain matrix

K,eR™, G:R" — R™", and vector F:R" — R*, such that

fo(x(k)) = f(x(k) + Gx(k))G(x(k)K F (x(k)), (0

Furthermore, there exist P, :R" —R™, P, :R"—R™, P, :R"—R™,

lu uw

P, :R"— R, and P,,:R" — R™, the Lyapunov function V, is defined as

V, ok + D)AV, (f (x(k))+ B, (x(k)u(x(k)) +u” (k)P (x(k))ua(x(k)) 1)
+u" ()P, (x(k)Wk) + B, (x(k)wk) +w' (k) B, (x(k)w(k),

Let I': R" — R be a positive scalar function and ¢: R" — R” is output vector,
the following is assumed to be true

0=V, (f(x(k)) =V, (x(k)) + £ (x(k)L(x(k) + T (x(k)),  (72)
Then the adaptive feedback control law

u(x(k)) = G(x(k) K (k) F (x(k)), (72)
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with the update law

1~
K(k+1)=K(k)-—0G(x(k)) P, (x(k))F(x(k)Y
2 (74)

~ QG (x(k) Py, (x(k)G (x(k) K (k)F (x(k) F" (x(k)Y,

where Q >0 and Y >0, guarantees that the closed-loop system, given by (66),
(73), and (74), satisfies the nonexpansivity constraint given in Theorem 4.1.

Proof
The proof is a direct extension of Theorem 2.1 and Theorem 4.1. We first
consider the Lyapunov function candidate (69), such that V(0,K,)=0, and

V(x(k),K(k)) >0 for all (x(k),K(k))#(0,K,), then V(x(k),K(k)) is radially un-
bounded. Furthermore, assume that V(e,K(k)) and K(k) are continuous in
x(k) for k =1. The corresponding Lyapunov difference is given by

AV (k)=V (x(k +1),K(k +1)) =V (x(k), K (k)). (75)
Next, consider the update law

K(k+1)=K(k)-QF (x(k)) F" (x(k))Y, (76)

5 1 AT AT
F(x(k)):EG (x(k)) Py, (x(k)) + G (x(k)) a7

P,, (x(k)G (x(k)) K (k) F (x(k)),

we then add and subtract y’w’ (k)w(k) to and from (75), and apply the fact
trxy’ =y"x, Vx,ye R", then (75) becomes

AV (k) =V, (f.(x(k) =V, (x(k))— F" (K. G" (x)P,, ()G(x)K, F (x)
—F' ()K" ()G (%P, ()GOK(X)F(x)+w' (k)P (x)
+2F" (DK G (x)P, ()G®K(X)F(x)+ B, (x)w(k)
+FT (K" (x)GT ()P, ()wk). +[F" ()YF)ET (x)OF (x)

uw

(78)
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Furthermore, let

C(x(k) =[F" (x)YF (x)F" (x)QF (x)
+ F' ()K" (k)G (x)P,, (x)G (x)K (x)F (),
P, (x)=G" (x)PG (x),
P, (x)=J"(x)PJ (x),
P, (x)=2G" (x)PJ (x),
P, (x)=y*w'(k), y*1,~P,, (x)=0,

and P=N"N. After some manipulations, the resulting Lyapunov difference
becomes

AV (k) S~ (xtk)YxR))+ 7w (Ryw(k)

—V(x(k),K(k))-V(x(0),K(0)) S—ZET(x(i)V(X(i)H Y va (i)

K K (79)
—>—Z€T(X(i))€(X(i))S Y Z\V W) +V(x(0),K(0))-V(x(k),K(k))

<7 W (W) +V(x(0),K(0))
i=0

This proves that the closed-loop trajectory satisfies the nonexpansivity cons-
traint given in Theorem 4.1. In addition, if /(x(k)) #0, k 20, then x(k) — 0 as
k — oo, Vx(0)e R". Finally, combining (78) and (76), (74) can therefor be obtai-
ned.

Next, let G(x(k)) = B is sign definiteness matrix and satisfies (15). Specifically,
the nonlinear system given by

x(k+1)= f(x(k)) + Bu(x(k)) + J(x(k)w(k).  (80)

We state without proof the following Corollary, since this is a direct extension
of Theorem 4.2.

Corollary 4.1

Consider the nonlinear discrete time system given by (80). Assume that

F:R" >R’ and T:R" xR’ — R, such that (72) is applied, and V, is defined as
(71). The feedback law
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u(x(k)) = K(k)F (x(k)), (81)
with the normalized adaptive gain matrices

K(k+1)=K(k)—2q’B! PB,K(k)F(x(k))F" (x(k))Y, (82)

where K(k)=|B,|K(k), and g >0, guarantees that the closed-loop system gi-
ven by (80), (81), and (82), equivalent to

x(k+1)= f(x(k)) + ByK(k)F (x(k)) + J(x(k))w(k), (83)

satisfies the nonexpansivity constraint given in Theorem 4.1.
Note that the solution of adaptive gain matrix (82) is given by the selection of

P, (x(k)) = 2B"PBK (k)F (x(k)). (84)

Specifically, if P, (x(k)) = 2B" PBx(k), then the adaptive gain matrix can be gi-

u

ven by

K(k+1)=K(k)—q’B] P(B,K (k)

(85)
F(x(k)) + x(k)F" (x(k)Y,

Finally, we consider the linear discrete-time system G, where J(x(k))=D is a
sign definiteness matrix and f(x(k)) = Ax(k) . Specifically, given by

x(k +1) = Ax (k) + Bu (x(k)) + Dw (k), (86)

where Ae R™ is the time-invariant uncertain system matrix, Be R™ is the
input matrix, and De R™ is the disturbance weighting matrix. Let (A,B) be
controllable pair, and B and D satisfy (15) and (17), respectively. We then
state and prove the robust adaptive control design for linear uncertain systems
as following.

Corollary 4.2
Consider the reachable linear discrete time system G given by (86). Assume
there exists a gain matrix K, : R™", such that A, = A + BK , is exponentially

stable, and let AA = A, — A is bounded, and the norm |AA| indicates the sys-

tem dynamics A deviates from the stable solution A, . Next, let ¥ be a posi-
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tive real, Le R™, We R”™, R>0, R>0, T >0,and Pe R™ be the posi-
tive definite solution to the discrete-time Lyapunov equation given as

A"PA. - P =-T -RR, &7)
AlPD = LW , (83)
y’l,-2D"PD =W'W, (89)

Then the adaptive feedback control as (81), with the update law

K(k+1)=K(k)—q’B.P(B,K (k)+ A )x(k)x" (k)Y, (90)

guarantees that the closed-loop system, given by (86), (81), and (90), satisfies
the nonexpansivity constraint given in Theorem 4.1.

Proof
We first consider the Lyapunov function candidate given by

V(x(k), K (k) = x" (k)Px (k)

1)
+rQ (K (k)- K )Y (K(K)-K )",

The corresponding Lyapunov difference is given by
AV (k)=V (x(k +1), K(k +1)) =V (x(k), K (k)). (92)
During the manipulations, we let

K(k+1)=K(k)-QF (x(k))x" (b)Y,

A (93)
F(x(k))=B"P(BK (k)+ A,)x(k),

Next, add and subtract y’w’ (k)w(k) and x' (k)K]B' PBK ,x(k) to and from

(92), apply the conditions (87) to (89), and the fact trxy’ =y'x, Vx,ye R". In
addition, assume that
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R2FT(x(k)QF (x(k)Y - 2|AA[ P, (94)

where is a symmetric positive definite matrix. The resulting Lyapunov diffe-
rence then becomes

AV (k)< —x" (K)Rx (k) + 7*w” (k)w(k). (95)

Now, by summing (92) over k =0 meets the nonexpansivity constraint given
in Theorem 4.1. This completes the proof. Next, (93) could be rewritten as

K(k+1)=K(k)-QB"P(BK (k)+ A )x(k)x" (k)Y, (96)

B|"|B,|", K(k)=|B,|K(k), and apply (15), (17). By si-
milar procedure as in Corollary 3.2, (96) becomes (90). The closed-loop system,
given by (86), (81), and (90), equivalent to

Furthermore, let Q = q2

x(k+1)=(A+ B,K(k))x(k)+ Dw (k), 97)

3.3 Adaptive Stabilization for Nonlinear Discrete-time Uncertain Systems

The Lyapunov direct method gives sufficient conditions for Lyapunov stability
of discrete-time dynamical systems. In this section, we begin by characterizing
the problem of adaptive feedback control laws for nonlinear uncertain discrete
time MIMO systems given by (Fu & Cheng, 2004)

x(k+1) = f(x(k)) + G (x(k)u(x(k)), (98)

where we RY, k>1, is the unknown exogenous disturbance, x(k)e R" is the
state vector, u(k): R" — R™ is the control vector, f:R" — R" characterize sys-
tem dynamics with uncertain entries, and f(0)=0. G:R" — R™ is the input
weighting matrix function. We assume that there exists a gain matrix
K,eR™, G:R" — R™", and vector F:R" — R*, such that

fo(x(k)) = f(x(k) + G (x(k)G (x(k) K F (x(k)), (99)
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is exponentially stable. We hereby state the main results of adaptive stabiliza-
tion for nonlinear discrete-time uncertain systems.

Theorem 5.1
Consider the nonlinear discrete time system G given by (98), where the system
dynamics f is uncertain, such that there exists a gain matrix K, and (99) is

applied. Next, let P, :R" — R™™, P,, : R" — R™", and the Lyapunov function
V., is given by

Vi(x(k +1) =V (f(x(k)) + P, (x(k))u(x(k))

T (100)
+u’ (x(k))P,, (x(k))u(x(k)),

In addition, let I': R" — R is a positive scalar function, /: R" — R" is output
vector, then

0=V, (f(x(k)) =V, (x(k) + L7 (x(k)(x(k) + T (x(k), (101)
The adaptive feedback control law

u(x(k)) = G(x(k)K (k) F (x(k)), (102)
with the update law

K(k+1) = K(k)—%QGAT(X(k))PI (x(k)F " (x(k)Y

u

) ) (103)
~ QG (x(k) P, (x(k) G (x(k) K (K)F (x(k) FT (x(k)Y .,

where 0 >0 and Y >0, guarantees that the closed-loop system, given by (98),
(102), and (103), is globally asymptotically stable.

Proof
We first consider the Lyapunov function candidate

V(x(k), K(k)) =V, (x(k))

. » , (104)
+1rQ " (K(k)-K )Y (K(k)-K,)",
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such that V(0,K,)=0, and V(x(k),K(k))>0 for all (x(k),K(k))#(0,K,). In
addition, V(x(k),K(k)) is radially unbounded. Furthermore, assume that
V(e,K(k)) and K(k) are continuous in x(k) for k=>1. The corresponding
Lyapunov difference is given by

AV(k)y=V(x(k+1),K(k+1)—V(x(k), K(k)). (105)
Next, consider the update law

K(k+1)=K(k)—QF (x(k)) F" (x(k))Y,
F (x(k)) = %éw(k»P]Z(x(k» (106)
+ G (x(k)) Py, (x(k)G (x(k) K (k)F (x(k)),

and apply the fact trxy” = y'x, Vx,ye R", then the Lyapunov difference be
comes

AV (k) =V (f(x) =V, (x)= F'(x)K[G(x)P,, (x)G(x)K F (x)
— FT ()K" ()G (x)P,, ()G (x)K (x)F (x)

+2F" (x)K! G (x)P,, (x)G(x)K (x)F (x)

+[F" (x)YF (X)]F (x)QF ().

(107)

Furthermore, we select

T(x(k)) =[F" (x(k)YF (x(k)]F" (x(k))QF (x(k)),
P, (x(k)) =G" (x(k))P/P,G(x(k)), P,e R™.

After some manipulations, the resulting Lyapunov difference becomes

AV (k) = =17 (x (k) (k) -
P,G (x(k)G (x)(K (k) — K )F ()] (108)
< =07 (x(k))0(x(k)).
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where |o’ is Euclidean norm. This proves that the closed loop system is as-
ymptotically stable, if /(x(k))#0, k>0, then x(k) >0 as k — o, Vx(0)e R".
Finally, combining (106), (103) can therefore be obtained.

Specifically, if P, (x(k))=2P, (x(k))é(x(k))K (k)F(x(k)) then (103) can be

otained
K(k+1)=K(k)=20G" (x(k)) P,, (x(k))

A (109)
G (x(k)K (k)F (x(k) F" (x(k)Y,

Note that the adaptive control law (103) or (109) do not require explicit knowl-
edge of the matrix K, and the system dynamics. Next, we extend the above

result to the uncertain system given by
x(k+1)= f(x(k)) + Bu (x(k)), (110)

where B satisfies (15) is the sign definite matrix with unknown entries. We
state without proof the following results.

Corollary 5.1
Consider the nonlinear discrete-time uncertain system G given by (110). As-
., such  that

f.(x(k)) = f(x(k))+ BK ,F(x(k)) is exponentially stable. Next, P, :R" — R™™

and P,, : R" — R™", such that Lyapunov function V, is given by

sume that there exists a gain matrix K

Vo (x(k+1)) =V (x(k)) + P, (x(k))u(x(k))

r (111)
+u’ (x(k)) Py, (x(k))u(x(k)),

Furthermore, let I': R" — R is a positive scalar function, /: R" — R” is output
vector, and (101) is satisfied. The adaptive feedback control law

u(x(k)) = K (k)F(x(k)), (112)
with the normalized update law

K(k+1)=K(k)—q’B, P[x(k)

. (113)
+ B K (k)F (x(k)IF " (x(k)Y,
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where K(k)=|B,
tem, given by (110), (112), and (113), can be rewritten as

K(k), ¢>0 and Y >0, guarantees that the closed-loop sys-

x(k+1)= f(x(k)) + B,K(k)x(k), (114)

is Lyapunov stable.
Note that Corollary 5.1 implies we may have different update law by different
choice of P, . By the end of this section, we can further extend the results from

above to linear uncertain systems given as following
x(k +1) = Ax (k) + Bu (x(k)), (115)

where (A,B) be controllable pair. Next, assume there exists a gain matrix
K,:R™, such that A, = A+ BK , is exponentially stable, and Ilet

AA = A, — A isbounded, and the norm |AA| indicates the system dynamics

A deviates from the stable solution A, .

Corollary 5.2

Consider the linear discrete-time uncertain system given by (115). Further-
more, let Re R™ and Pe R™ are positive definite matrices, I': R" - R is a
positive scalar function, such that the Lyapunov function

P =A_PA, +R-T(x(k)), (116)

with the assumption that R > |AA|2 +T'(x(k)), where x(k) is the solution. Then

the adaptive feedback control law u(x(k)) = K(k)x(k) with the normalized up-
date law

K(k+1)=K(k)—q*Bl P[A, + B,K (k)]x(k)x" (k)Y (117)

where K(k)= |BX|K (k), >0 and Y >0 guarantees that the closed-loop sys-
tem, given by (115), (117), can be rewritten as

x(k+1)=Ax(k)+ B,K (k)x(k), (118)

is Lyapunov stable.
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Proof
The result is a direct extension of Theorem 5.1 and Cororllary 5.1. Specifically,
we consider the Lyapunov candidate

V(x(k), K (k) = x" (k)Px (k)

(119)
+rQ (K (k) - K )Y (K(k)-K )",

Next, let R> |AA|2 +T(x(k)), normalized adaptive law K(k)=
Q=g 7, T(x(k)) = FT (x(k))QF (x(k)), and

B N

K(k),

-1

B,

BS

F(x(k)) = B"PA x(k)+ B" PBK (k)x(k). (120)

Furthermore, we can substitute (117) into (115), the closed-loop form can be
rewritten as (118).

4. Numerical Examples

In this section we illustrate the utility of the proposed direct adaptive control
frameworks, both discrete-time and continuous-time, in the control problems
of chaotic oscillator (Loria et al. 1998), one-link rigid robotic manipulator given
by (Zhihong et al., 1998), and flexible joint robot manipulator (de Leon-
Morales et al., 2001), (Haddad & Hayakawa, 2002).

4.1 The van der Pol oscillator

The first example is a well known perturbed van der Pol equation used to
model electrical circuit with triode valve (Loria et al. 1998), and given as fol-
lowing

V+ u(l=v>)v+v=u+qcos( wt), (121)
where the parameters specifically chosen as ¢ =5, ¢ =5, and @w=2.463, which

exhibits chaotic behaviour, and u is control input. Next, let state space form
with x=[v,v]" =[x,,x,]", (121) be rewritten as
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fx) = 2 s, G)y=| |, J(x)=1,6,=| | w(x,1)=cos(wr).
H - X 1 q

Next, let
e 0 1
Y B —H -1 -p

Specifically, we chose

100 O
0 25

0.005
12.5

and P is the solution of Lyapunov equation

}, Z=05 =08 Y=I, Pl={

}, x(%zm, k©0)=[0 o]

A’P+PA_+R=0, (121)

By Corollary 2.1, the closed-loop system guarantees x =0 as t— oo, if
w(x,t)=0. Figure 1 shows the phase portrait of the controlled system. The

adaptive controller regulate the perturbed system to the origin under no
knowledge of system dynamics, matrix K,, and disturbance, while the distur-

bance exist. Figures 2 illustrates the time response of the feedback gain K and
the control inputs.

Phase ortrait of controlled Van der Pol oscillator

0.8

0.6

5N 04 i Time(sec)

Adaptive Gain
T

0.2

ok

-0.2F g x

—0.4f

_06 L L 12 L L L L L
0 0.5 1 15 0 10 20 30 40 50 60
X Time(sec)

Figure 1 Phase Plot of perturbed van der Figure 2 Control Signal and Adaptive
pol equation gains

4.2 One-Link Rigid Robot under Gravitation Field

The dynamic equation of the one-link rigid robot placed on a tilted surface
with an fixed angle @ is given by (Zhihong et al, 1998)
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a1 [0 1 7y 0 0
H= g -4 H+ I |u—| 8 |cos(q+0), (122)
4 mi? L9 | mi? I

and the reference model is defined as

IR S A

Next, since the tracking error is defined as

HRHE S

the tracking model can be formulated as

MRl A

.
. (125)
0 0 0 0 0 g ml
+[16 11 1}W — s,
Ssin(9)
L l -
where
g, 0 0 0 0]
0 4 0 0 0
w=|0 0 cos(q) 0 0. (126)
0 0 0  sin(g) O
0 0 0 0 r]

Specifically, we chose
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10 O 0 0 0
0 0.1 0 0 0
100 0
= , Z=8000, Y =6000, P=|0 0 0.02 0 0 |,
0 500
0 0 0 0.05 0
| 0 0 0 0 0.02 |
r =sin( 20¢)

and P is the solution of Lyapunov equation (121). In addition, let m=1=d =1
and g =9.8. Since (125) fits (13), and Corollary 2.1 can be directly applied. The
initial conditions given e(0) = [0 0] and K(0)=[0 0]. To demonstrate the ro-
bustness of the controller handle the uncertainty of the system dynamics, we
introduce a changed to m =0.8 at time ¢ =0.5 second. The simulation results,
Figure 3 shows the states for each time step. The adaptive controller regulate
the perturbed system to the origin under no knowledge of system dynamics,
matrix K,, and disturbance, while the disturbance exist. Figures 4 illustrates

the time response of the control input, a constant force is applied to compen-
sate the gravitation field. It shows that the controller can readapt the sudden
change and stabilize the system.

Position
0.02 T

— Actual
Reference

0.015 B
>~ 0.01F 4

0.005 -

1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time(sec)
Velocity
T
-0.1r 8
-0.15F | — Actual N
Reference
~0.2 L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time(sec)

Figure 3. The states of one-link Rigid Robot
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Control
60 T

50 3

40 1

20+ 3

_40 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(sec)

Figures 4. Control input

4.3 Continuous-time Active Suspension System

The dynamic equation for this quarter-car suspension is (Chantranuwathana &
Peng, 1999)

1 0o 0 1
0 0 -1 1
K. C C
i=| 0 A\ [/~ x
m.Y m\ m.\'
K, K, C  C.+C
m § m s mu.\' mu.Y
L _u.\ s B (127)
0
0 0 01T Kk,
I 0ol |
— — F 327 us
m | lo ol ¢ |
—L 1 1 m”.\'
L ml\' _

where
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xW
i <
Al x 0 0.01sin(10¢), t < 0.8
X = B , W= 0 i » X, =9 0.07sin( 5¢), 2<t< 2.2
{ g 0, 0.8 <t <2.
L xW -
x,, x., and x, are displacements of wheel, vehicle, and road, x, —x, is hy-

draulic piston displacement, m =253kg is sprung mass, m, =26kg is un-

sprung mass, C, =348.5 is suspension damping, C, =10 is tire

m-SeC m-Se€C

damping, K,

A

= 12()OOE is suspension stiffness, K, = 9()00()ﬁ is tire stiffness,
m m

and F, is force of suspension actuator. Next, let A, is asymptotically stable.

1
0
0
- 0.1

0

0
0.05
-5

0
-1
-1

1

1
1
-0.05
-5

B,

First, we apply the framework of Corollary 2.1 and choosing the design matri-

ces

, R=0.01-

hnh 3 D =—

0.1 0
0 0.001
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Displacement of wheel
0.01 T T T

Il
0 0.5 1 15 2 25 3 3.5 4 45
Time(sec)

Hydraulic Piston Displacement
0.015 T T T

— Actual
‘ ‘ Reference

Il
0 0.5 1 15 2 2.5 3 3.5 4 45
Time(sec)

Figure 5 Displacement of wheel and Hydraulic pistion displacement

Velocity of the Vehicle

0.15 T T T

0.5 1 15 2 25 3 3.5 4 45
Time(sec)

Velocity of the Wheel

0.6 T T T

0.5 1 1.5 2 25 3 35 4 4.5
Time(sec)

Figure 6 Velocity of vehicle and wheelhydraulic piston

where P satisfies the lyapunov condition (121). The simulation start with

x0)=[0 0 0.1 02]. At time t=2sec, the states are

perturbed

x(2)=[0 0 -0.03 -0.05], and the system parameters are changed to

N N

m, =213kg, m, =20kg, C,=320——, C, =9———, K, =11500—, and

m:-SecC m-SecC
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K, :85000£. The controller can re-adapt and stabilize the system in

m

5sec under no information of the system parameters, either the perturbation of
the states. Figure 5 depicts displacement of wheel and hydraulic piston dis-
placement versus the time, Figure 6 shows the velocity of vehicle and wheel
versus time, Figure 7 and Figure 8 illustrate the control inputs and adaptive

gains at each time step.

x107* Control
1.5 T
1k
0.5
> 0
-0.5
Ak
_1 5 Il Il Il Il Il Il Il
0 0.5 1.5 2 25 3 35 4.5
Time(sec)
Figure 7 Control Input
x 107 Adaptive Gain

2

L
25
Time(sec)

Adaptive Gain

3.5

0

0

0.5

Figure 8 Adaptive Gains

2

I
25
Time(sec)

3.5

4.5
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4.4 Discrete-time Active Suspension System

We use the quarter car model as the mathematical description of the suspen-
sion system, given by (Laila, 2003)

1 T 0 0
Tw® Tpw*
o1 ! (p+1)° 0
] o
xk+D=( * 0 LT
Tw?® o -1P®
I p+1 | (128)
T 0 |
0 0
+ A(k))x(k) - d(k) - u(x(k)),
0 0
0 T+ p)]
where
—10 0 0 O]
0, k<0 0O 00 O@(k) K =800
d(k)=1 107sinQ0mk), 0<k<100 AK)=3 0 0 0 o]
) 0, , k#800

O(k) =0.01sin(.3k)|

x(k):[xl(k) x,(k)  x;(k) x4(k)]T, and x, is tire defection, x, is unsprung

mass velocity, x, is suspension deflection, x, is sprung mass velocity,

W= 2071'ﬂ and p =10 are unknown parameters, T =0.001is sampling time,
sec

d(k) is disturbance modeling the isolate bump with the bump height
A=0.0lm, and A(k) is the perturbation on system dynamics. Next, let A, is
asymptotically stable

1 -1 0.75 1 0
0.7 03 -1 -0.1 0
AC = 9 BO = 9
0 0 -0.1 -0.5 0
-0.1 O 0 0.1 1

We apply the framework from Corollary 4.2 and choosing the design matrices
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Y =0.03 -

S O = O

S ~ O O

- o O O

10 0 0
0 4 0 0

R = . q=0.05,
0 0 9
0 0 0 0.82]

Tire Deflection

0.5

1 1.5 2
Unspru-rl;bn]\efllgass%cilelocity

0.5

1 1.5 2
Time(sec)

Figure 9 Tire defection and unsprung mass Velocity

Suspension Deflection

0.4

0.5

1 15 2
Sprunglmggsse%locity

0.5

1.5 2

Time(sec)

Figure 10 Suspension deflection and mass velocity
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P satisfies the Lyapunov equation (121). The simulation start with
x(0)=[0.05 0 0.01 O]T. To demonstrate the efficacy of the controller, the
states are perturbed to x(800)=[0 0 0.02 0.5] at k=800, and the system
parameters are changed to p =4 . The controller stabilizes the system in 2 sec
under no information of the system changes, either the perturbation of the
states. Figure 9 depicts tire defection and unsprung mass velocity versus the
time steps, Figure 10 shows the suspension deflection and sprung mass veloc-

ity versus the time step, Figure 11 and Figure 12 illustrate the control inputs
and adaptive gains at each time step.

Control Input U
25 T T T

Time(sec) x 107

Figure 11 Control Input
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Feedback Gain
40 T T T T

30 « o

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(sec) x 107

Figure 12 Adaptive Gains

4.4 Nonlinear Discrete-time Uncertain System

We consider the uncertain nonlinear discrete-time system in normal form
given by (Fu & Cheng, 2004); (Fu & Cheng, 2005)

x, (k) 00
x(k +1) = (| ax; (k) +bx,(k)cos(x,(k)) [=| 1 0 |u(x(k)), (129)
cx, (k) + dx; (k) 0 1

where a, b, ¢, and d are unknown parameters. Next, let f,(x(k)) to be

0
fo(x(k)) = Ayx(k)+ axl2 (k) + bx, (k) cos(x,(k))
cxy (k) + dxf(k) (130)
H
+
BS

(@, £, (x(k)) - Of, (x(k)) + D, £, (x(k))),

BS
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x12
x,(k)cos( x, (k)| = x, (k)
k = , K = )
fu (x(k)) x, (k) f. (x(K)) Lz(k)}
x; (k)
OO
x,(k)cos( x,(k))
x5 (k)
F(x(k)) = )
(x(k)) k)
x, (k)
L x, (k)
and ©, and @, are chosen such that
0, f, (x(k) + @, f (x(k)) = Ax(k). (131)
where Ae R*® is arbitrary, such that
A,
fe(x(k)) = i x(k) = A x(k), (132)

and A, is asymptotically stable, specifically, chose

0 1 0 0 0
A =|-05 04 0.1|, B,=|1 0],
03 -0.5 09 0 1

First, we apply the update law (113) and choosing the design matrices
Y=0.1/;, R=0.2I,, and ¢ =0.005, where P satisfies the Lyapunov condition

P=A"PA_+R. The simulation start with x(0)=[1 0.5 -1]", and let a=0.5,
b=0.1, ¢=03, and d=0.5. At time k=19, the states are perturbed
x(19)=[1 -0.5 0.5}, and the system parameters are changed to a =0.65,
b=0.25, ¢c=0.45, and d =0.55. The controller does not have the information
of the system parameters, either the perturbation of the states. Figure 13 — Fig-
ure 15 show the states versus the time step, Figures 16 shows the control in-
puts at each time step, and Figure 17 shows the update gains. The results indi-
cate that the proposed controller can stabilize the system with uncertainty in
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the system parameters and input matrix. In addition, re-adapt system while
perturbation occurs. The only assumption required is sign definiteness of the
input matrix and disturbance weighting matrix.

0.5- _

_0'50 10 20 30 40 50

Time step

Figure 13 x,

0.7

st | | ]

0.4 1

0.2 4

00 10 20 30 40 50

Time step

Figure 14. x,
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5. Conclusion

In this Chapter, both discrete-time and continuous-time uncertain systems are
investigated for the problem of direct adaptive control. Noted that our work
were all Lyapunov-based schemes, which not only on-line adaptive the feed-
back gains without the knowledge of system dynamics, but also achieve stabil-
ity of the closed-loop systems. We found that these approaches have following
advantages and contributions:

1. We have successfully introduced proper Lyapunov candidates for both dis-
crete-time and continuous-time systems, and to prove the stability of the
resulting adaptive controllers.

2. A series of simple direct adaptive controllers were introduced to handle
uncertain systems, and readapt to achieve stable when system states and
parameters were perturbed.

3. Based on our research, we claim that a discrete-time counterpart of con-
tinuous-time direct adaptive control is made possible.

However, there are draw backs and require further investigation:

1. The nonlinear system is confined to normal form, which restrict the results
of the proposed frameworks.
2. The assumptions of (63), (64), and (72) still limit our results.

Our future research directions along this field are as following;:

1. Further investigate the optimal control application, i.e. to seek the adaptive
control input u€ L, or ue l,, minimize certain cost function f(u), such that

not only a constraint is satisfied, but also satisties Lyapunov hypothesis.

2. Stochastic control application, which require observer design under the ex-
tension of direct adaptive scheme.

3. Investigate alternative Lyapunov candidates such that the assumptions of
(63), (64), and (72) could be released.

4. Application to ship dynamic control problems.

5. Direct adaptive control for output feedback problems, such as
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x(k+1)= f(x(k))+G(x(k)u(x(k)) + J(x(k)w(k),

y(k) = H (x(k))x(k) + I (x(k))u(x(k)),
u(k) = K(k)y(k)

or

X = f(x(1)) +G(x@)u(x(®) + J(x(1)) w(t),
y=H (x(@))x (1) + I(x(2))u(x(1)),
u(t) = K(1)y(1)
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