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1. Introduction

Sarcoidosis is an immune mediated disease thought to be caused by complex interaction
between genetic and environmental factors. Involvement of genetic factors in sarcoidosis is
supported by familial clustering, increased concordance in monozygotic twins and varying
incidence and disease presentation among different ethnic groups. Studies have revealed
several human leukocyte antigen (HLA) and non-HLA alleles consistently associated with
sarcoidosis susceptibility. Two genome scans have been reported in sarcoidosis: one in African
Americans reporting linkage to chromosome 5 and the other in German families reporting
linkage to chromosome 6. Follow-up studies on chromosome 6 identified the BTNL2 gene, a
B7 family costimulatory molecule to be associated with sarcoidosis. Recent genome-wide
association studies have found annexin A11 and RAB23 genes associated with sarcoidosis. The
ongoing refinement of genetic marker maps, genotyping technology, and statistical analyses
makes genomic exploration for sarcoidosis genes appealing.

2. Evidence for genetic predisposition to sarcoidosis

Familial sarcoidosis was first noted in Germany in 1923 by Martenstein, who reported two
affected sisters [1]. After that several familial cases were reported across Europe and USA.
Worldwide surveys revealed that familial sarcoidosis occurred in 10.3% cases from the
Netherlands [2], 7.5% from Germany [3], 5.9% from the United Kingdom [4], 4.7% from Finland
[5], 4.3% from Japan [5], 9.6% from Ireland[6] and 6.9 % from Sweden[7]. A family history
survey of Detroit clinic–based population in USA showed that 17% of African Americans and
3.8% of white American reported a family history in first- and second degree relatives[8]. In
African Americans, the sibling recurrence risk ratio, which compares disease risk among
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siblings with the disease prevalence in the general population, is about 2.2 (95% confidence
interval [CI], 1.03–3.68) [9].

The main limitation of these familial reports is the lack of a comparison group, and therefore
it was unclear whether variation in familial sarcoidosis is due to variation in familial aggre‐
gation of disease risk, disease prevalence, or both. This question was addressed in the
multicenter Case-Control Etiologic Study of Sarcoidosis (ACCESS) which evaluated 706 cases
and matched controls [10]. It showed that the siblings of the affected patients had the highest
relative risk (odds ratio =5.8 and 95% confidence interval=2.1–15.9). The odds ratio for the
parents was 3.8 (95% CI=1.2–11.3) [10]. White cases had a markedly higher familial relative
risk compared with African-American cases (18.0 versus 2.8; p=0.098).

A registry-based twin study in the Danish and the Finnish population showed an 80-fold
increased risk of developing sarcoidosis in monozygotic co-twins and 7-fold increased risk in
dizygotic twins [11].

Differences in disease incidence among different ethnic and racial groups exist worldwide. In
the United States, African Americans have about a threefold higher age-adjusted annual
incidence; 35.5 per 100,000 compared with Caucasians, 10.9 per 100,000. African American
females aged 30 to 39 years were found at greatest risk at 107/100,000.The lifetime risk was
calculated to be 2.4% for African Americans and 0.85% for Caucasian Americans [12]. In the
United Kingdom, prevalence of sarcoidosis was found to be three times higher in the Irish
living in London than in native Londoners [14]. It was eight time more common in natives of
Martinique living in France than in the indigenous French populations [14]. In London the
annual incidence of sarcoidosis has been reported as 1.5 per 100, 000 for Caucasians, 16.8 per
100, 000 for Asians and 19.8 per 100, 000 for Africans [15]. A study of a Swedish urban
population reported a lifetime risk of 1.0% and 1.3% for men and women, respectively [16]. In
addition to differences in the incidence, the clinical presentation of sarcoidosis also shows
characteristic variability between ethnic groups. In both Blacks and Asians the disease has been
reported to be more common, more severe and more extensive than in Caucasians [13, 15].

3. Genetics of other granulomatous disease

Blau syndrome and Crohn’s disease

Among the granulomatous diseases with a putative genetic component, perhaps the most
intriguing are Blau syndrome and Crohn’s disease. Blau syndrome is an autosomal dominant
granulomatous disease which is characterized by an early onset (before age 20) and involve‐
ment of skin, eye, and joints, similar to sarcoidosis. The factors that distinguish Blau syndrome
from sarcoidosis are a lack of pulmonary involvement and absence of Kveim reactivity [17].
Crohn’s disease is a familial granulomatous inflammatory bowel disease which, like sarcoi‐
dosis, may present with uveitis, arthritis and skin rash. Crohn’s disease may involve the lung
however the pattern of lung involvement differs from sarcoidosis.
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Mutation in CARD (caspase activating recruitment domain) 15 gene, located on chromosome
16, is responsible for Blau syndrome [17, 18] and Crohn’s disease [19]. Nucleotide oligomeri‐
zation domain protein-2 (NOD2), encoded by CARD15, recognizes peptidoglycan, a compo‐
nent of bacterial cell walls, and is expressed mainly by antigen-presenting cells and epithelial
cells [20]. Activation of NOD2 leads to nuclear factor (NF)-кB activation [20]. Rybicki and
colleagues tested 35 African American affected sib pairs by using exclusion mapping and
showed that the Blau syndrome/IBD1 locus did not confer risk for sarcoidosis [21]. Schurmann
and coworkers [22] evaluated four main coding CARD15 polymorphisms associated with
increased risk of Crohn’s disease in both case–control and family-based sarcoidosis samples
and concluded that CARD15 mutations play no role in sarcoidosis. Kanazawa and colleagues
using a small sample analyzed 10 patients with early-onset sarcoidosis who had disease onset
ranging from 6 months to 4 year of age and found that 9 of the 10 cases had heterozygous
missense mutations in the CARD15 gene [23]. In conclusion, while an attractive candidate, no
firm evidence exists to support a role for CARD 15 in sarcoidosis risk.

Chronic beryllium disease

Chronic beryllium disease (CBD), a chronic granulomatous lung disease caused by exposure
to beryllium, shares similar histological and clinical findings with sarcoidsois. Glu69, carried
by allele HLADPB1* 0201, was found not to be associated with sarcoidosis [24, 25]. In a study
of 33 cases and 44 exposed persons without CBD (controls), Richeldi and colleagues found
Glu69 in 97% of cases and in 30% of control subjects [26]. This HLA-DPB1 Glu69 association
in beryllium disease has been widely supported [27] but is not associated with sarcoidosis.

Tuberculosis and leprosy

Polymorphic variants of the natural resistance–associated macrophage protein-1 gene
(NRAMP1), now named SLC11A1, have been found to be associated with tuberculosis and
leprosy susceptibility in endemic areas of disease [28, 29]. SLC11A1 is expressed primarily in
macrophages and polymorphonuclear leukocytes and immunolocalization studies demon‐
strate the presence of NRAMP1 in lysosomes [30]. SLC11A1, an attractive candidate, was found
not to increase the risk of sarcoidosis among African Americans [31], although a more recent
article has noted an association in Polish patients (OR, 1.68; 95% CI, 1.01–2.81) [32].

4. Genetic associatiation studies in sarcoidosis

Genetic studies in sarcoidosis have gone through three phases – candidate gene studies,
genome scanning using affected sib pair (ASP) linkage analysis and most recently, genome
wide association studies (GWAS).

4.1. Candidate gene approach

The search for sarcoidosis susceptibility genes has generally relied on the candidate gene
approach [33]. Investigators have selected genes for study that fit into the prevailing disease
model. Sarcoidosis is thought to be a dysregulated response to an inhaled antigen that involves
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antigen-presenting cells, T cells (primarily a helper T-cell type 1 polar response), and cytokine
and chemokine release resulting in cell recruitment and the formation of granulomas in
involved organs.

4.1.1. Association with Human Leukocyte Antigens (HLA)

HLA genes have been the best studied candidate genes in sarcoidosis. HLA genes are involved
in presenting antigen to T cells and are grouped into three classes: class I, II and III. HLA
association studies in sarcoidosis began over thirty years ago. A summary of the most
consistent HLA associations in sarcoidosis is shown in Table 1. In 1977 Brewerton and
colleague [34] first revealed an association of acute sarcoidosis with the HLA class I antigen
HLA-B8 which was later confirmed by other groups [35, 36]. Hedfors and co-workers [35] also
noted that HLA-B8/DR3 genes were inherited as a sarcoidosis risk haplotype in whites. In
white HLA-B8/DR3 haplotype is associated with wide variety of autoimmune diseases [37].
These earlier studies of class I HLA antigens directed to the studies focused on HLA class II.
A recent report by Grunewald and colleagues [38] suggests that HLA class I and II genes work
together in sarcoidosis pathophysiology.

HLA gene HLA class Chromosome

location

Risk Alleles Putative Functional Significance

HLA-A Class I 30,018, 309-

30, 021, 041 bp

A*1 Susceptibility

HLA-B Class I 31, 431, 922-

31, 432, 914 bp

B*8 Susceptibility in several populations

HLA-DQB1 Class II 32, 735, 918-

32, 742, 420 bp

*0201

*0602

Protection, Lofgren’s syndrome, mild disease in

several populations

Susceptibility/disease progression in several

groups

HLA-DRB1 Class II 32, 654, 526-

32, 665, 559 bp

*0301

*01, *04

*1101

Acute onset/good prognosis in several groups

Protection in several populations

Susceptibility in whites and African Americans.

Stage II/III chest X-ray

HLA-DRB3 Class II 32, 654, 526-

32, 665, 540 bp

*1501

*0101

Associated with Lofgren’s syndrome

Susceptibility/disease progression in whites

BTNL2 Class II 32, 470, 490-

32, 482, 878 bp

rs2076530 BTNL2 rs2076530 G → A is associated with

sarcoidosis risk in white patients but not in

black patients.

Table 1. Summary of the most consistent HLA association studies in Sarcoidosis.
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Among  the  HLA  class  II  antigens,  HLA-DRB1  have  been  the  most  studied  antigen
associated with sarcoidosis. The variation in the HLA-DRB1 gene affects both susceptibili‐
ty and prognosis in sarcoidosis [39, 40]. In the ACCESS study, the HLA-DRB1* 1101 allele
was associated with sarcoidosis both in blacks and whites (p<0.01) and had a population
attributable risk of 16% in blacks and 9% in whites [41]. In addition susceptibility mark‐
ers,  the ACCESS study also found that HLA class II alleles might be markers for differ‐
ent phenotypes of sarcoidosis such as RB1*0401 for eye involvement in blacks and whites,
DRB3 for bone marrow involvement in blacks, and DPB1*0101 for hypercalcemia in whites
[41].  Another  consistent  finding across  populations  has  been the  HLA-DQB1*0201 allele
association with decreased risk and lack of disease progression [42]. Other reports strongly
support  the  notion  that  several  different  HLA class  II  genes  acting  either  in  concert  or
independently predispose to sarcoidosis  [42-44].  Linkage disequilibrium (LD) within the
major histocompatibility complex (MHC) region limits the ability to precisely identify the
involved HLA genes. LD exists when alleles at two distinctive loci occur in gametes more
frequently  than  expected.  Grunewald  and  colleagues  showed  that  the  HLA-DRB1*03
associated with resolved disease and HLA-DRB1*15 with persistent disease were synony‐
mous with HLA-DQB1*0201 with resolved disease and HLA DQB1*0602 with persistent
disease [38]. Consequently, determining the effects of HLA-DQB1 on sarcoidosis risk apart
from DRB1 or dissecting out other gene effects from closely linked haplotypes in the MHC
region may be an intractable problem in whites. In African Americans, HLA-DRB1/DQB1
LD may not be as strong as in Caucasians [45].

HLA alleles have been consistently associated with disease course which suggests that HLA
may play greater role in determining phenotype. Furthermore, the discrepant findings in HLA
association among susceptibility studies could be explained by the phenotype variation in
composition of the sarcoidosis patient groups studied.

4.1.2. Association with Non-HLA candidate genes

Genes that influence antigen processing, antigen presentation, macrophage and T-cell
activation, and cell recruitment and injury repair may be considered sarcoidosis candidate
genes. A summary of non-HLA candidate genes reported to date is shown in Table 2.

Angiotensin-Converting Enzyme

Angiotensin-converting enzyme (ACE) is produced by sarcoidal granulomas and its serum
level can be elevated in sarcoidosis.  Serum ACE levels are thought to reflect granuloma
burden. The ACE gene insertion (I)/deletion (D) polymorphism partially accounts for the
serum ACE level variation, and investigators have proposed that this genotype should be
used to adjust serum ACE reference values [46]. Studies to support a role for ACE gene
polymorphisms in susceptibility or severity have been inconsistent. While only a few case
control studies have suggested that ACE gene polymorphism is associated with sarcoido‐
sis susceptibility and disease severity [47, 48],  most of the studies does not support that
findings [50-53].
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Candidate Gene
Chromosome

Location
Association*† Putative Functional Significance

Angiotensin-converting

enzyme (ACE) 17q23 C

Increased risk for ID and DD genotypes.

Moderate association between II genotype and radiographic

progression.

C-C chemokine receptor 2 3p21.3 C+/- Protection/Lofgren’s syndrome association

C-C chemokine receptor 5

3p21.3 C-

Association of CCR5Delta32 allele more common in patients

needing corticosteroid therapy.

Refuted with haplotype analysis and larger sample.

Clara cell 10 kD protein
11q 12-13 C

An allele associated with sarcoidosis and with progressive

disease at 3 year follow-up.

Complement receptor 1

1q32 A

The GG genotype for the Pro1827Arg

(C (5,507) G) polymorphism was significantly associated with

sarcoidosis.

Cystic fibrosis trans-

membrane regulator
7q31.2 A+/-

R75Q increases risk.

HSPA1L heat shock protein

70 1 like
6p21.3 c

HSP(+2437)CC associated with susceptibility and LS

Inhibitor kβ-α
14q13 C

Association with -297T allele. Association of haplotype GTT at

-881, -826, and -297, respectively. Allele -827T in Stage II.

Interleukin -1α 2q14 A The IL-1α -889 1.1 genotype increased risk.

Interleukin -4 receptor 16p11.2 No association detected in 241 members of 62 families

Interleukin -18
11q22 A+/-

Genotype -607CA increased risk over AA.

No association with organ involvement.

Interferon-γ
9p22 A

IFNA17 polymorphism (551T→G) and IFNA10

(60A) IFN-α 17 (551G) haplotype increased risk.

Toll-like receptor (TLR) 4

TLR10-TLR1-TLR6 cluster 9q32

4
B

Asp299Gly and Thre399Ile mutations associated with chronic

disease

Genetic variation in this cluster is associated with increased risk

of chronic disease

Transforming growth factor

(TGF)
19q13.2 B

TGF-β2 59941 allele, TGF-β3 4875 A and 17369 C alleles were

associated with chest X-ray detection of fibrosis.

Tumor necrosis factor

(TNF-α) 6p21.3 C+/-

Genotype -307A allele associated with Lofgren’s syndrome and

erythema nodosum and -857T allele with sarcoidosis. -307A not

associated in African Americans.

Vascular endothelial

growth factor(VEGF)
6p12 C

Protective effect of +813 CT and TT genotypes.

Lower FEV1/FVC ratio observed with -627 GG genotype.

Vitamin D receptor 12q12-14 A- B allele elevated in sarcoidosis patients

* Type of association: A = susceptibility; B = disease course; C = both.

† Association replicated (+); association refuted (-)

Table 2. A summary of Non-HLA candidate gene associated with Sarcoidosis
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CC-Chemokine Receptor 2 (CCR2]

CCR 2, a receptor for monocyte chemoattractant protein, plays an important role in recruiting
monocytes, T-cells, natural killer cells and dendritic cells [54]. CCR2 knockout mice die rapidly
when challenged with mycobacteria [55] and display decreased IFN-γ production when
challenged with Leishmania donovani or Cryptococcus neoformans [56, 57]. A single nucleotide
polymorphism (SNP) in CCR2 gene (G190A, Val64Ile) is associated with protection in Japanese
patients [58]. Evaluation of eight SNPs in the CCR2 gene in 304 Dutch patients showed that
haplotype 2 was associated with Lofgren’s syndrome [59]. Underrepresentation of the Val64Ile
variant was observed in 65 Czech patients and in 80 control subjects but did not achieve
statistical significance [60]. Despite using case control–based and family-based study designs
and a sample much larger than the previous three studies, Valentonyte and colleagues could
not replicate the CCR2 association [61].

C-C chemokine Receptor 5 (CCR5)

CCR5 serves as a receptor for CCL3 (macrophage inflammatory protein 1-α), CCL4 (macro‐
phage inflammatory protein 1-β), CCL5 (RANTES [regulated upon activation, T-cell expressed
and secreted]), and CCL8 (monocyte chemotactic protein 2) [62, 63]. A 32 bp deletion in the
CCR5 gene results in a non-functional receptor unable to bind its ligands [64]. Petrek and
colleagues reported that 32-bp deletion in CCR5 gene was significantly increased in Czech
patients [60], whereas Spagnolo and colleagues, using haplotype analysis, found no association
in evaluating 106 white British patients and 142 control subjects and 112 Dutch patients and
169 control subjects [65].

Clara cell 10 kD protein gene

Clara cells act as stem cells in bronchial epithelial repair, provides xenobiotic metabolism, and
counter regulates inflammation [66]. Clara cell 10-kD protein (CC10) has been shown to inhibit
IFN-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. Murine and human CC10 gene
promoter regions contain sites where inflammatory mediators, such as TNF-αand INF-α, -β,
and –γ, alter transcriptional activity [67]. Increased level of CC10 in serum and BAL has been
found in sarcoidosis patients whose disease had resolved compared with those whose disease
had progressed [68]. The CC10 gene consists of three short exons separated by a long first and
short second intron. An adenine to guanine substitution at position 38 (A38G) downstream
from the transcription initiation site within the noncoding region of exon 1 has been the most
studied CC10 polymorphism. The A/A genotype is believed to result in decreased CC10 levels
[69]. The CC10A allele was found to be associated with sarcoidosis by Ohchi and colleague
[70]. However association with the CC10 A38G polymorphism was not replicated in Dutch
population or in Japanese subjects by Janssen and colleagues [71].

Complement receptor 1

Complement receptor 1 (CR1; CD35) is present on polymorphonuclear leukocytes, macro‐
phages, B lymphocytes, some T lymphocytes, dendritic cells, and erythrocytes [71]. Immune
complexes bound to CR1 are transferred to phagocytes as erythrocytes traverse the liver and
spleen [72]. Immune complex clearance rates correlate with CR1 density. Low expression of
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erythrocyte  CR1 is  associated with impaired immune complex clearance and deposition
outside  the  reticuloendothelial  system [73].  These  extrareticuloendothelial  immune com‐
plex deposits incite local inflammatory responses and presumably granuloma formation.
That immune complexes may be involved in sarcoidosis was suggested in the early 1970s.
In a series involving 3,676 patients from 11 cities around the world, James and coworkers
[74] reported elevated serum γ-globulin levels above 3.5 g/100 ml in 23 to 96% of patients,
with IgG being the most consistently and persistently elevated [75]. The different sensitivi‐
ties of the techniques used explain in part the wide range in γ-globulin levels. It is general‐
ly accepted that immune complexes are always present in sarcoidosis depending on when
and how they are detected. Zorzetto and colleagues have been the only group to report a
CR1 gene association with sarcoidosis [76]. The GG genotype for the Pro1827Arg (C507G)
polymorphism was associated with sarcoidosis versus healthy control subjects (odds ratio
[OR), 3.13; 95% CI, 1.49–6.69) and versus control subjects with chronic obstructive pulmona‐
ry disease (OR, 2.82; 95% CI, 1.27–6.39).  The GG genotype was most strongly associated
with disease in female patients (OR, 7.05; 95% CI, 3.10–1.61) versus healthy control sub‐
jects. No relationship with clinical variables was found.

Cystic fibrosis transmembrane conductance regulator

The R75Q mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) occurs
in high frequency in patients with atypical mild cystic fibrosis [77], bronchiectasis, and allergic
bronchopulmonary aspergillosis [78]. Bombieri and colleagues reported a R75Q association
with sarcoidosis [79], but in followup using complete cystic fibrosis gene mutation screening
they could not replicate their findings [80]. Schurmann and colleagues could not demonstrate
a CFTR association with sarcoidosis [81].

Heat shock protein A1L

Heat shock proteins (HSPs) comprise a conserved group of proteins with an average weight
of 70 kD. Intracellular HSPs serve as molecular chaperones [82], whereas extracellular HSPs
induce  cellular  immune responses  [83].  HSPs  may also  act  as  carrier  molecules  for  the
immunogenic peptides presented on antigen-presenting cells  [84].  Polymorphisms in the
HSPA1L (alias HSP70-hom) have been associated with susceptibility to rheumatoid arthritis
[85]. Antibodies to HSP70 in sarcoidosis have been reported [86, 87]. To further evaluate the
role  of  HSPs  in  sarcoidosis,  the  HSP70  +2437  C  allele  was  evaluated  and  found  to  be
associated with sarcoidosis  and Lo°  fgren’s  syndrome in  Polish patients  [88]  but  not  in
Japanese patients [89].

Inhibitor κB-α

Inhibitor κB (IκB) masks the nuclear factor (NF)- κB nuclear localization sequence, thus
retaining NF-κB in the cytoplasm and preventing DNA binding. On phosphorylation, IκB
degrades, allowing NF-kB’s nuclear localization and initiation of transcription [90]. Terminat‐
ing the NF-κB response requires IκB-α. IκB-α knockout mice die 7 to 10 days after birth with
increased levels of TNF-α mRNA in the skin and severe dermatitis [91]. NF-κB–dependent
signaling in alveolar macrophage makes NF-κB and thus IκB central to sarcoid pathophysiol‐
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ogy [92]. Abdallah and colleagues found the promoter -297T allele associated with sarcoidosis
[93]. No other IκB studies in sarcoidosis have been reported.

Interlukin-1(IL-1)

IL-1β produced mainly by macrophages maintains T-cell alveolitis and granuloma formation.
Hunninghake and colleagues also demonstrated higher IL-1β activity in the BALF of patients
with sarcoidosis compared with normal subjects [94]. Mikuniya and colleagues suggested that
the ratio of IL-1 receptor antagonist to IL-1β in sarcoidal alveolar macrophage culture super‐
natants could predict disease chronicity [95]. The IL-1α 5’ flanking –889 C allele was found
nearly two times more commonly among Czech patients with sarcoidosis compared with
control subjects [96].

Interleukin Receptor- 4 (IL-4R)

The inflammatory response in sarcoidosis is primarily Th1 mediated. IL-4 drives Th2 differ‐
entiation [97]. To test whether variation in the IL-4R gene confers susceptibility to sarcoidosis,
Bohnert and colleagues typed 241 members of 62 families with 136 affected siblings and 304
healthy control subjects for three functional SNPs within the IL-4R gene and found no evidence
for linkage or association, thus excluding a significant role for IL-4R [98].

Interlukin-18 (IL-18)

IL-18 produced by monocytes/macrophages induces IFN-γ and drives the Th1 response. BALF
and serum IL-18 levels are increased in sarcoidosis [99]. An association between IL-18607 (A/
C) polymorphism and sarcoidosis has been reported and refuted in Japanese [100, 101] and
white subjects [102, 103].

Interferon–α (IFN-α)

The increasing number of reported cases of IFN-α–induced sarcoidosis supports that IFN-α is
important in sarcoidosis [104]. Akahoshi and colleagues found an IFN-α T551G (Ile184Arg)
polymorphism associated with sarcoidosis susceptibility (OR, 3.27; 95% CI, 1.44–7.46; p=0.004)
[105]. This allele is also associated with high IFN-α production and subsequent strong Th1
polarization.

Transforming Growth Factor-β (TGF-β)

Polymorphisms for all three isoforms of transforming growth factor (TGF) – β (TGF- β1, TGF-
β2, and TGF-β3) have been associated with protein expression variation or functionality
changes [106]. TGF-β1 levels are increased in patients with sarcoidosis who have impaired
pulmonary function [107]. Kruit and colleagues reported that the TGF-β2 59941Gallele and the
TGF-β3 4875 A and 17369 C alleles were associated with chest X-ray evidence of pulmonary
fibrosis [85]. The TFG-β3 15101 G allele was lower in patients with fibrosis [108].

Toll-like receptor 4 (TLR4) and TLR10-TLR1-TLR6 cluster

Toll-like receptor 4 (TLR4), the first and best described of the many TLRs, plays a crucial role
in detecting infection and inducing inflammatory and adaptive immune responses [109]. Pabst
and colleagues examined 141 white German patients and control subjects for the TLR4
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polymorphisms Asp299Gly and Thre399Ile and found no association with disease presence
but did find a significant correlation with chronic disease [110].

Recently Veltcamp and colleague found that genetic variation in TLR10-TLR1-TLR6 cluster is
associated with increased risk of chronic disease [111].

Tumor Necrosis Factor–α (TNF-α)

TNF-α has a broad range of inflammatory and immunostimulatory actions, including
orchestrating granuloma formation. TNF-α stimulates cytokine production, enhances expres‐
sion of adhesion molecules, and acts as a costimulator of T-cell activation. Alveolar macro‐
phages from patients with active sarcoidosis secrete more TNF-α than those with inactive
disease [112]. TNF-α has been considered a target for therapy in sarcoidosis [113].

Although it  is  unclear whether TNF-α promoter polymorphisms are functionally signifi‐
cant,  studies suggest that a small  but significant effect of the TNF-α promoter -307 A/G
polymorphism may exist, with the A allele being associated with slightly greater levels of
TNF-α transcription [114, 115]. A higher frequency of TNF-307A allele has been found in
patients presenting with Lofgren’s syndrome and erythema nodosum [116–118]. In evaluat‐
ing five promoter polymorphisms, Grutters and colleagues found a significant increase in
TNF -857T allele in white British and Dutch patients and confirmed the TNF -307A allele
association  with  Lo°  fgren’s  syndrome  [119].  In  these  studies,  it  is  not  clear  whether
TNF-307A confers independent risk from HLA-DRB1 because TNF is in tight LD with HLA-
DRBI  [120].  Using  a  family-based  approach,  TNF-α  was  not  found  to  be  significantly
associated with sarcoidosis [49].

Vascular endothelial growth factor

Dysregulated vascular endothelial growth factor (VEGF) expression has been implicated in
several inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel diseases
[121, 122]. VEGF modulates angiogenesis, enhances monocyte migration, a key event in
granuloma formation [123]. Tolnay and colleagues reported increased VEGF transcription and
protein production in activated alveolar macrophages in epithelioid cells and multinuclear
giant cells of pulmonary sarcoidal granulomas [124]. Several polymorphisms have been
associated with VEGF protein production [125, 126]. Morohashi and colleagues found that the
VEGF+813T allele was underrepresented (associated with decreased risk) in patients with
sarcoidosis. The +813 site is predicted to lie within a potential transcription factor binding site
and could potentially reduce VEGF expression [126].

Vitamin D receptors

The active form of vitamin D, 1,25-dihydroxy vitamin D3, modulates the immune response
through control of cytokine expression, including IFN-γ and IL-2 [127]. Increased expression
of vitamin D receptors (VDRs) on sarcoidal BAL T cells and alveolar macrophage production
of 1,25-dihydroxy vitamin D3 have been reported [128, 129]. Niimi and colleagues reported a
VDR Bsm1 restriction site polymorphism in intron 8 to be associated with sarcoidosis [130].
Guleva and Seitzer examined a VDR Taq1 polymorphism in linkage disequilibrium with the
BsmI polymorphism in 85 patients and 80 control subjects and could not confirm Niimi and
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colleagues’ findings [131]. Rybicki and colleagues also could not confirm VDRs as candidate
genes in sarcoidosis [49].

CD80 and CD86

The B7 family of costimulatory molecules (CD80 and CD86) regulate T-cell activation. T-cell
activation requires two signals: one mediated by T-cell receptor interaction with specific
antigen in association with HLA molecules and an antigen-independent costimulatory signal
provided by interaction between CD28 on T-cell surface and its ligands CD80 (B7-1) and CD86
(B7-2) on the antigen-presenting cells [146]. Handa and colleagues investigated CD80 and
CD86 SNPs for sarcoidosis susceptibility in 146 Japanese patients and found no significant
difference compared with 157 control subjects [147].

Unfortunately none of candidate gene chosen based on its likely function in sarcoidosis
pathophysiology has been confirmed using the family-based study design. Limitation to many
of these studies likely resides in the case-control study design’s susceptibility to a form of
confounding known as population stratification which can be overcome by using a family-
based design that involves recruiting patients ‘siblings and parents if available. In this design,
parental alleles not transmitted to affected offspring are used as the control alleles and thus
control for genetic background. The transmission disequilibrium test, one of the statistical
methods used, counts the number of parental gene variants transmitted to affected offspring.
Deviation from expected transmission supports a predisposing effect of the more frequently
transmitted allele.

4.2. Genome scanning: Affected sib pair linkage analysis

Sarcoidosis genome scan in Germans

The first genome scan study related to sarcoidosis was conducted by Schurmann and collea‐
gues, in which they used 225 microsatellite markers spanning the genome in 63 German
families to identify a linkage signal (D6S1666) on chromosome 6p21 [132]. This group then
used a three-stage single-nucleotide polymorphism (SNP) scan of the 16-MB region surround‐
ing D6S1666 [133] and identified a single SNP, rs2076530, in the BTNL2 gene associated with
sarcoidosis. This SNP (G/A) was found at the 3’ boundary of the exon 5 coding region. The A
allele at this position has been proposed to introduce an alternative splice site at the exon 5–3’
intron boundary of the BTNL2 transcript that results in a premature truncation of the protein.

BTNL2, also known as “butyrophilin-like 2” and “BTL-2,” is a butyrophilin gene that belongs
to the immunoglobulin gene superfamily related to the B7 family [134, 135]. Butyrophilin was
initially cloned from cattle mammary epithelial cells [136]. This gene was localized to the MHC
class II region in humans. To determine the consistency of the BTNL2 gene as a sarcoidosis
risk factor across different populations, Rybicki and colleagues characterized variation in the
BTNL2 exon/intron 5 region in an African-American family sample that consisted of 219
nuclear families (686 individuals) and in 2 case–control samples (295 African-American
matched pairs and 366 white American matched pairs) [137].They confirmed that BTNL2
somewhat was less associated with sarcoidosis in African Americans compared with whites.
BTNL2 appears to have moderate influence on individual disease risk (odds ratio of 1.6 in
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heterozygotes and 2.8 in homozygotes). The population attributable risk of 23% for heterozy‐
gotes and homozygotes indicates a significant contribution at the population level.

Whether BTNL2 as a sarcoidosis risk factor is independent of HLA-DRB risk alleles or not,
still  remains  a  question.  HLADRB  and  BTNL2  are  in  linkage  disequilibrium.  Linkage
disequilibrium is the nonrandom association of alleles physically closes on a chromosome.
HLA-DRB lies  about  180  kb  centromeric  to  BTNL2.  On the  basis  of  regression  models,
BTNL2 appears to be an independent risk factor [133, 137]. In the case of blacks, in whom
the BTNL2-conferred sarcoidosis risk is less significant than for whites, a negative interac‐
tion  with  HLA-DR  appears  to  exist  [137].  In  one  study,  BTNL2  was  found  not  to  be
associated with Wegener’s granulomatosis [138].

Most recently Hofmann and colleagues [139] conducted a Genome-Wide Linkage Analysis in
181 German sarcoidosis families using clustered biallelic markers. This study revealed one
region of suggestive linkage on chromosome 12p13.31 at 20 cM (LOD= 2.53; local P value =.
0003) and another linkage on 9q33.1 at 134 cM (LOD =2.12; local P value =.0009). It is proposed
that these regions might harbor yet-unidentified, possibly subphenotype-specific risk factors
for the disease (e.g. immune-related functions like the tumor necrosis factor receptor 1).

Sarcoidosis genome scan in African Americans

Eleven centers joined together in an NHLBI-sponsored effort (Sarcoidosis Genetic Analy‐
sis Consortium [SAGA]) to perform a genome scan in African American siblings. This group
performed  a  380-microsatellite  genomewide  scan  across  22  autosomes  in  519  African
American sib pairs. The significant findings included 15 markers with p values < 0.05 with
the  strongest  linkage  signal  on  chromosome  5  [140].  Fine  mapping  studies  indicated  a
sarcoidosis  susceptibility  gene  on  chromosome  5q11.2  and  a  gene  protective  effect  for
sarcoidosis on 5p15.2 [141].

The reason why African Americans were chosen to uncover sarcoidosis susceptibility genes
was that African Americans are more commonly and severely affected and have affected
family members more often than whites. But the disadvantage of doing so is that African
Americans are admixed with white and other populations to varying degrees with possible
admixture among their participating centers ranging from 12% in South Carolina to 20% in
New York [142]. To address the possibility that admixed subpopulations existed in the SAGA
sample and affected the power to detect linkage, the sample was stratified by genetically
determined ancestry using the data from the 380 microsatellite markers genotyped in the
genome scan. The African-American families were clustered into subpopulations based on
ancestry similarity. Evidence of two genetically distinct groups was found: Stratified linkage
results suggest that one subpopulation of families contributed to previously identified linkage
signals at 1p22, 3p21-14, 11p15, and 17q21 and that a second subpopulation of families
contributed to those found at 5p15-13 and 20q13 [143]. These findings support the presence of
sarcoidosis susceptibility genes in regions previously identified but indicate that these genes
are likely to be specific to ancestral groups that have combined to form modern-day African
Americans.
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4.3. Genome-Wide Association Studies (GWAS)

In  genome-wide  association  study  high  throughput  genotyping  methods  are  used  to
genotype a dense set of SNPs across the genome. A significant advantage of this approach
is  that  association studies  are  more  powerful  than affected sib  pair  methods of  linkage
analysis. Hofmann and colleagues [144] conducted a genomewide association study of 499
German patients with sarcoidosis and 490 control subjects. The strongest signal mapped to
the  annexin  A11  gene  on  chromosome  10q22.3.  Validation  in  an  independent  sample
confirmed the association. Annexin A11 has regulatory functions in calcium signaling, cell
division, vesicle trafficking, and apoptosis. Depletion or dysfunction of annexin A11 may
affect the apoptosis pathway in sarcoidosis. Later the same group [145] reported another
associated locus 6p12.1 that comprises several genes, a likely candidate being RAB23. RAB23
is proposed to be involved in antibacterial defense processes and regulation of the sonic
hedgehog signaling pathway.

5. Counseling and screening

In the context of genetic family counseling, this generally is perceived as a small risk by the
clients and should lead to enhanced awareness but does not justify specific medical investi‐
gations in the absence of complaints.

6. Genetic testing

Genetic testing at present does not play a role in the diagnosis and treatment of sarcoidosis.

7. Future directions

The cause of sarcoidosis remains unknown. It is thought to be caused by interaction between
environmental and genetic factors. Genetic studies have revealed the HLA and other candidate
genes associated with sarcoidosis susceptibility. Association studies have been motivated by
the hopes that identifying alleles that affect risk and phenotype will help in understanding
disease etiology. Unfortunately, many of the reported associations have not been replicated.
Two genome scans have been reported and one has yielded a likely candidate gene, BTNL2
that has been replicated in large studies. Emerging technologies and advances in genomics
and proteomics will help find the causes sarcoidosis, better understanding of pathogenesis of
sarcoidosis and to test new therapy. Gene expression profiling in BALF and blood carried out
at the time of presentation will likely help to better predict disease resolution or progression.
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