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1. Introduction

1.1. Semiclassical electron transport

Semiclassical Boltzmann transport has been the principal theory in the field of modeling and
simulation of semiconductor technology since its early development. To date, most commer‐
cial device simulations including the full-band Monte Carlo (FBMC) method are based on
the solution of the Boltzmann transport equation (BTE) and its simplified derivatives such
as the hydrodynamic (HD) equations and the drift-diffusion (DD) model. The Boltzmann
transport equation expresses the global variation of the non-equilibrium distribution func‐
tion, f (r , k , t) , under the influence of various applied and built-in forces. In its most gener‐
al form and for non-parabolic bands the BTE reads:
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where v is the carrier group velocity. The terms on the left-hand side describe the change in
the distribution function with respect to time, spatial gradients, and applied fields. The
right-hand side represents the dissipation terms in the system, which account for the change
of the distribution function due to various scattering mechanisms that balance the driving
terms on the left. The Boltzmann equation is valid under the assumptions of semiclassical
transport as follows [1]: (1) effective mass approximation; (2) First Born approximation for the
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collisions in the limit of small perturbation for the electron-phonon interaction and instanta‐
neous collisions; (3) Scattering probability is independent of external forces; (4) Particle in‐
teractions are uncorrelated and forces are constant over distances comparable to the electron
wave function; and (4) The phonons are usually treated as being in equilibrium, although the
condition of non-equilibrium phonons may be included through an additional phonon
transport equation.

Full analytical solutions of the BTE are possible only under very restrictive assumptions.
The two classes of computational/numerical techniques that are used to solve the BTE are as
follow [2][3][4][5]: (1) First, in deterministic methods, the BTE is discretized using a variety of
methods (such as discrete ordinates, spherical harmonics, collision probabilities, nodal
methods) and then solved numerically. However, direct numerical methods are limited by
the complexity of the equation, which in the complete three-dimensional (3D) time-depend‐
ent form requires seven independent variables for time, space and momentum; (2) The sec‐
ond class of techniques, named Monte Carlo methods, construct a stochastic model in which
the expected value of a certain random variable is equivalent to the value of a physical
quantity to be determined [6][7][8][9]. The expected value is estimated by the average of
many independent samples representing the random variable. Random numbers, following
the distributions of the variable to be estimated, are used to construct these independent
samples. There are two different ways to construct a stochastic model for Monte Carlo calcu‐
lations. In the first case, the physical process is stochastic and the Monte Carlo calculation
involves a computational simulation of the real physical process. This is achieved by tracing
the trajectories of individual carriers as they are accelerated by the electric field and experi‐
ence random scattering events. The particle movements between scattering events are usual‐
ly described by the laws of classical mechanics, while the probabilities of the various
scattering processes and the associated transition rates are derived from quantum mechani‐
cal calculations. The randomness of the events is treated in terms of computer generated
random numbers, distributed in such a way as to reflect these probabilities. In the other
case, a stochastic model is constructed artificially, such as the solution of deterministic equa‐
tions by Monte Carlo [10]. Both the deterministic and the Monte Carlo stochastic methods
have computational errors. Deterministic methods are computationally fast but less accu‐
rate; whereas Monte Carlo methods are computationally slow yet arbitrarily accurate. A
great advantage of particle-based Monte Carlo methods is that it provides a unique and thorough in‐
sight into the underlying device physics and carrier transport phenomena [11]. This insight origi‐
nates from the very nature of the method employed that relies on a detailed simulation of a
large ensemble of discrete charge carriers in the device active region. Therefore, the full time-
dependent distribution function and related macroscopic quantities of interest can be extract‐
ed directly from the simulation.

In the last decade, with the continued downsizing of device dimensions into the nanoscale
regime, many new and challenging questions have emerged concerning the physics and
characterization of these small devices. However, contrary to the technological advances,
present state-of-the-art in device simulation is lacking in the ability to treat the new chal‐
lenges pertaining to device scaling [12]. First, for devices where gradual channel approximation
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(analytical modeling) cannot be used due to the two-dimensional nature of the electrostatic
potential and the electric fields driving the carriers from source to drain, drift-diffusion mod‐
els have been exploited. These models are valid, in general, for large devices in which the
fields are not that high so that there is no degradation of the mobility due to the electric
field. The validity of the drift-diffusion models can be extended to take into account the ve‐
locity saturation effect with the introduction of field-dependent mobility and diffusion coef‐
ficients. When velocity overshoot becomes important, drift diffusion model is no longer
valid and hydrodynamic model may be considered. The hydrodynamic model has been the
workhorse for technology development and several high-end commercial device simulators
have appeared including Silvaco, Synopsys, Crosslight, etc. The advantage of the hydrody‐
namic model is that it allows quick simulation runs. However, standard hydrodynamic
models do not provide a sufficiently accurate description since they neglect significant con‐
tributions from the tail of the phase space distribution function in the active region of the
device. Also, the velocity overshoot in hydrodynamic models depends upon the choice of
the energy relaxation time. The smaller is the device, the larger is the deviation when using
the same set of energy relaxation times. In addition, the energy relaxation times are material,
device geometry and doping dependent parameters, so their determination ahead of time is
not possible. To avoid the problem of the proper choice of the energy relaxation times, a di‐
rect solution of the Boltzmann Transport Equation using the Monte Carlo method is the best
method of choice. To-date, most semiclassical device simulations have been based on sto‐
chastic Monte Carlo solution methods, which involve the simulation of particle trajectories
rather than the direct solution of partial differential equations. An additional problem arises
in small structures, where one must begin to worry about the effective size of the carriers
themselves. In the nanoscale regime, the charge transport is expected to be dominated by
quantum effects throughout the active region. Quantum effects in the surface potential will
have a profound impact on both the amount of charge, which can be induced by the gate
electrode through the gate oxide, and the profile of the channel charge in the direction per‐
pendicular to the surface (the transverse direction). Also, because of the two-dimensional
confinement of carriers in the channel region, the mobility (or microscopically speaking, the
carrier scattering) will be different from the three-dimensional (bulk) case. A well-known
approach to study the impact of spatial confinement on mobility behavior is based on the
self-consistent solution of the 3D Poisson–1D Schrödinger–3D Monte Carlo, which demands
enormous computational resources as it requires storage of position dependent scattering ta‐
bles that describe carrier transition between various subbands. In the smallest size devices,
for a full quantum mechanical description, various quantum formalisms based on density
matrices [13], Wigner functions [14], Feynman path integrals [15], and non-equilibrium
Green’s functions (NEGF) [16] have been developed and proposed with varying success to
address these issues. The Green’s functions approach is the most exact, but at the same time
appears, from the historical literature perspective, as the most difficult of all. In contrast to,
for example, the Wigner function approach (which is Markovian in time), the Green's func‐
tions method allows one to consider simultaneously correlations in space and time or space
and energy, both of which are expected to be important in nanoscale devices. However, to‐
day, although the NEGF transport formalism has been well-established, accurate and full
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three-dimensional modeling of scattering-dominated transport in realistically-sized semi‐
conductor devices using the NEGF approach is prohibitively expensive and the computa‐
tional burden needed for its actual implementation are perceived as a great challenge. A
successful utilization of the Green's function approach available commercially is the NEMO
(Nano-Electronics Modeling) simulator [17], which is effectively 1-D and is primarily appli‐
cable to resonant tunneling diodes. On the other hand, within the semiclassical Boltzmann
transport formalism, for modeling quantum effects in nanostructures, recently, different
forms of quantum effective potentials have been proposed [18][19][20][21][22], and when used
in conjunction with the BTE, provide satisfactory level of accuracy. The idea of quantum po‐
tentials is quite old and originates from the hydrodynamic formulation of quantum mechan‐
ics, first introduced by de Broglie and Madelung [23][24], and later developed by Bohm [25].
The work presented here focuses mainly on the modeling and simulations of nanoscale
MOSFET structures within a quantum-corrected Monte Carlo transport framework.

2. The Monte Carlo method

Monte Carlo (MC) method was originally used and devised by Fermi, Von Neumann and
Stanislaw Ulam to solve the BTE for transport of neutrons in the fissile material of the atom‐
ic bomb during the Manhattan Project of World War II [26]. Since these pioneering times in
the mid 1940's, the popularity and use of the MC method has grown with the increasing
availability of faster and cheaper digital computers. Its application to the specific problems
of high-field electron transport in semiconductors is first due to Kurosawa [27] in 1966.
Shortly afterwards the Malvern, UK, group [28] provided the first wide application of the
method to the problem of the Gunn effect in GaAs. Applications to Si and Ge flourished in
the 1970s, with an extensive work performed at the University of Modena, Italy. In the
mid-1970s, a physical model of silicon was developed, capable of explaining major macro‐
scopic transport characteristics. The band structure models were represented by simple ana‐
lytic expressions accounting for nonparabolicity and anisotropy. The review articles by C.
Jacoboni and L. Reggiani [29] and by Peter J. Price [30] provide a comprehensive and deep
historical and technical perspective.

The Monte Carlo method is the most popular method used to solve the Boltzmann transport
equation without any approximation made to the distribution function. In the Monte Carlo
method, particles are used to represent electrons (holes) within the device. For bulk simula‐
tions, the momentum and energy of the particles (electrons and/or holes) are continuously
updated. For actual device simulations, the real space position of the particle is updated as
well. As time evolves, the updated momentum (and corresponding energy) is calculated
from the various forces applied on the particle for that time step. The general concept of a
Monte Carlo simulation is that the electrons (holes) are accelerated by an electric field until
they cover a predetermined free-flight time. At the end of this, a scattering mechanism (due
to impurities, lattice vibrations, etc.) is randomly chosen based on its relative frequency of
occurrence, which randomize the momentum and energy of charge particles in time. The ba‐
sic steps in a typical Monte-Carlo device simulation scheme include (see Refs. [31][32][33]):
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1. Initialization.

2. Solution of the field (Poisson) equation: determine forces on electrons.

3. Simulate the electron dynamics (free-flight and scattering):

a. Accelerate the electrons.

b. Determine whether the electron experiences a scattering/collision.

c. If electron scatters, select the scattering mechanism.

d. Update the electron position, energy and wavevector.

4. Charge assignment to the numerical nodes/grids.

5. Compute measurable quantities such as average energy, average velocity, and mobility
of the particle ensemble.

6. Repeat steps 2-5 for each iteration.

The initialization includes the calculation/setting of various material parameters such as the
electronic band structure, scattering rates and (particularly for device simulation) the defini‐
tion of the computational domain and initial electron distributions. In order to determine
device characteristics, such as drain current in a MOSFET, it is necessary to solve the carrier
transport equations using the device parameters (including doping concentration and type,
channel length, channel width, and oxide thickness) and boundary conditions (such as ter‐
minal voltages) for the particular device being simulated. The device is divided into grids/
cells by a numerical discretization technique (usually finite difference method). In the actual
implementation, for each dimension, maximum number of node points is set as a program
parameter and the relevant array sizes are optimally (often dynamically) allocated. Provi‐
sion may be kept for using nonuniform mesh spacing along different axial dimensions of the
device. The source and drain contact charges are then calculated by multiplying the doping
density with the volume of a single cell. Then, the Poisson equation is solved for the applied
gate bias only (keeping source/drain/substrate bias equal to zero) and the resulting potential
distribution is used to populate/generate carriers in each of the cells in the active region
through the use of appropriate equilibrium distribution function (usually Fermi-Dirac). It is
always convenient to begin the simulation in thermodynamic equilibrium where the solu‐
tion is known. When an electron is introduced in the device active region, the real space co‐
ordinates of the electron are determined based upon the position of the node where it is
being added. Under the assumption of charge-neutrality, the total number of free carriers
within the device must equal the total number of ionized dopants. In the non-equilibrium
simulation, the remaining boundary biases are applied at different contacts/terminals
(source/drain/substrate). The program control is then transferred to the Monte Carlo itera‐
tive transport/dynamics kernel. Here, for each pre-selected time step (typically fractions of
femtosecond) the carriers undergo the free-flight-scatter sequence. During a time interval,
Δt, each electron is accelerated according to Newton’s second law of motion. For a semicon‐
ductor with ellipsoidal constant energy surfaces, such as silicon, the effective mass is a tensor
quantity. Using Hering-Vogt transformation [31]
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where mi is the effective mass of the particle in the ith (x, y, or z) direction, one can make a
transformation from k-space to k*-space in which the constant energy surfaces are spherical.
In the original k-space, due to the mass anisotropy, the constant energy surfaces are ellipsoi‐
dal. To determine the time between scattering events (free-flight time), the electron energy
at the time of scattering must be known, since the scattering rate is a function of the electron
energy. The rates for various scattering mechanisms included into the Monte Carlo model
are pre-tabulated (in number of collisions per second) as a function of energy, which are
usually calculated quantum mechanically using perturbation theory. Once the type of scat‐
tering terminating the free flight is selected, the final energy and momentum (as well as
band or subband) of the particle due to this type of scattering must be selected. For elastic
scattering processes such as ionized impurity scattering, the energy before and after scatter‐
ing is the same. In contrast, for the interaction between electrons and the vibrational modes
of the lattice described as quasi-particles known as phonons, electrons exchange finite
amounts of energy with the lattice in terms of emission and absorption of phonons. The final
k-vector is then chosen randomly. After a new k-vector is chosen, a new free-flight time is
determined. The electron is then accelerated for the remainder of the time interval or until it
encounters another scattering event.

To simulate an actual device such as a MOSFET, the device boundaries must be treated prop‐
erly. The Ohmic contacts are often assumed to be perfect absorbers, so carriers that reach
them simply exit the device. At the end of each time step, thermal electrons are injected from
the contacts to maintain space-charge neutrality therein. The noncontacted free surfaces are
treated as reflecting boundaries. For field-effect transistors, roughness at the surface of the
channel can cause scattering. A simple approach is to treat some fraction of the encounters
with the surface as specular scattering events and the remainder as diffusive scattering
events. The specific fraction is usually selected to match transport measurements, such as
the low-field mobility as a function of the transverse electric field. A carrier deletion scheme
is also implemented at this stage. When completed, randomly distributed charges from the
Monte Carlo simulations are assigned to the nearest node points using an appropriate
charge-assignment method. A proper charge assignment scheme must ensure proper cou‐
pling (match) between the charged particles and the actual Coulomb forces acting on the
particles, and thereby maintain zero self-force and a good spatial accuracy of the forces.
Once the updated grid charge distribution is known, Poisson equation is then solved to de‐
termine the resulting potential distribution within the device. It is important to note that the
electron concentration (in an n-MOSFET simulation) is not updated based upon the potential
at the node point. In contrary, the hole concentration at each node point is calculated using
the updated node potential with the assumption that the hole quasi-Fermi level is equal to
that of the electrons (quasi-static approximation). The error introduced with the assumption
that the quasi-Fermi levels for electrons and holes are equal is small since the hole concen‐
tration is negligible in the active region of the (n-MOSFET) device. The force on each elec‐
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tron is then interpolated from the nearest node points. The resultant electric field is then
used to drive the carriers during the free-flight in the next time step. The whole process is
repeated for several thousand iterations until the steady state is achieved. In summary, the
Monte Carlo algorithm consists of generating random free-flight times for each particle,
choosing the type of scattering occurring at the end of the free-flight, changing the final en‐
ergy and momentum of the particle after scattering, and then repeating the procedure for
the next free flight. At any time, sampling the particle motion throughout the simulation al‐
lows for the statistical estimation (by averaging over the particles within each slab of the ac‐
tive region) of physically interesting and key device quantities such as the single particle
distribution function, average carrier density, velocity, mobility, and energy versus position.
Lundstrom [32], Tomizawa [33], and Kunikiyo et al. [34] discuss the application of this ap‐
proach to the simulation of two-dimensional transistors. A detailed description of a 3D
Monte Carlo device simulator can be found in Refs. [31] and [35].

3. Description of the Monte Carlo device simulator

The major computational components of the 3-D Monte Carlo device simulator (MCDS 3-D)
used in this work are shown in Figure 1. Regarding the Monte Carlo transport kernel, intra‐
valley scattering is limited to acoustic phonons. For the intervalley scattering, both g- and f-
phonon processes have been included. It is important to note that, by group symmetry
considerations, the zeroth-order low-energy f- and g-phonon processes are forbidden. Nev‐
ertheless, three zeroth-order f-phonons and three zeroth-order g-phonons with various ener‐
gies are usually assumed [28]. This selection rule has been taken into account and two high-
energy f- and g-phonons and two low-energy f- and g-phonons have been considered. The
high-energy phonon scattering processes are included via the usual zeroth-order interaction
term, and the two low-energy phonons are treated via a first-order process [36]. The first-
order process is not really important for low-energy electrons but has a significant contribu‐
tion for high-energy electrons. The low-energy phonons are important in achieving a
smooth velocity saturation curve, especially at low temperatures. The phonon energies and
coupling constants in this model are determined so that the experimental temperature-de‐
pendent mobility and velocity-field characteristics are consistently recovered [37].

Figure 2 shows the rates for various scattering mechanisms as a function of electron energy
used in the MCDS 3-D simulator. At present, impact ionization and surface-roughness scat‐
tering are not included in the model. Impact ionization is neglected, as, for the drain biases
used in the simulation, electron energy is typically insufficient to create electron-hole pairs.
Also, since it is not quite clear how surface roughness scattering can be modeled when carri‐
ers are displaced from the interface due to the quantum confinement effects, it is believed
that its inclusion is most likely to obscure the quantum confinement effects. Also, band-to-
band tunneling and generation and recombination mechanisms have not been included in
the simulations.
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Figure 1. Three-dimensional Monte Carlo device simulator (MCDS 3-D) and the associated models/kernels used in this
work.

Figure 2. Rates for various scattering mechanisms as a function of electron energy used in the MCDS 3-D simulator.

The Incomplete Lower-Upper (ILU) decomposition method has been employed for the solu‐
tion of the 3D Poisson equation. To treat full Coulomb (electron-ion and electron-electron)
interactions properly, the simulator implements two real-space molecular dynamics (MD)
schemes: the particle-particle-particle-mesh (P3M) method and the corrected Coulomb ap‐
proach. The effective force on an electron is computed as a combination of the short-range
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molecular dynamics force and the long-range Poisson force. The implementation details of
these models and methodologies have been discussed in Ref. [35].

Figure 3. Variation of the quantum barrier field (QBF) as a function of distance from the Si/SiO2 interface and wave‐
vector ky along the depth (left panel: low energy electrons, right panel: high energy electrons).

Quantum mechanical size-quantization effects have been accounted for via a parameter-free ef‐
fective potential scheme [38]. The approach is based on a perturbation theory around thermody‐
namic equilibrium and derived from the idea that the semiclassical Boltzmann equation with the
quantum corrected potential and the Wigner equation should possess the same steady state. It
leads to an effective potential/field, which takes into account the discontinuity at the Si/SiO2 bar‐
rier interface due to the difference in the semiconductor and the oxide affinities. It possesses no
fitting parameters, as the size of the electron (wavepacket) is determined from its energy. The re‐
sultant quantum potential is, in general, two-degrees smoother than the original Coulomb and
barrier potentials of the device, i.e. possesses two more classical derivatives, which essentially
eliminates the problem of the statistical noise. The calculated quantum barrier field (QBF) for
low-energy (left column) and high-energy (right column) electrons are shown in Figure 3 hav‐
ing the following salient features: (1) QBF decays almost exponentially with distance from the Si/
SiO2 interface proper; (2) QBF increases with increasing the wavevector of the carriers along the
normal direction; (3) The contour plots clearly reveal the fact that the electrons with lower mo‐
mentum feel the quantum field far from the interface proper, and (4) A similar trend is also ob‐
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served with the variation in electron energy—electrons with higher energy can reach the vicinity
on the interface, thus, behaving as classical point-like particles.

The device output current is determined using two different yet consistent methods [31]: (1) In the
first approach, the charges (electrons) entering and exiting each terminal/contact are tracked
with time. The net number of charges over a period of the simulation experiment is then used to
calculate the terminal current. The net charge crossing a terminal boundary is determined by

( ) ( ) ( )( ) ( ), ,absorbed injected yQ t q n t n t E x t dye= - + ò (3)

where q is the electronic charge, nabsorbed is the number of particles that are absorbed by the
contact, ninjected is the number of particles that have been injected at the contact, Ey is the verti‐
cal field at the contact. The second term in (3) on the right-hand-side accounts for the dis‐
placement current due to the changing field at the contact. Eq. (3) assumes that the contact is
at the top of the device and that the fields in the x and z direction are negligible. The net
charge calculations are made for both the source and the drain contacts. Figure 4 shows a
typical plot of net terminal charges for a 2 ps simulation run. The terminal current is meas‐
ured from the slope of Q(t)versus time plot. In steady state, the current can be calculated by

( ) ( )
,netdQ t q n

I
dt t

= =
D

(4)

where nnet is the net number of particles (electrons) exiting the contact over a fixed period of
time, Δt. It is important to note that in steady state the source current must be equal to the
drain current. Therefore, for proper current measurements only those portions of the curves
where the two slopes are equal, is considered. Note that the method is quite noisy, due to
the discrete nature of the electrons; (2) In the second method, the channel current is calculated
from the sum of the electron velocities in a portion of the channel region of the device. The
electron (channel) current density through a cross-section of the device is given by

,dJ qnv= (5)

where vd is the average electron drift velocity and n is the carrier concentration. If there are a
total of N particles in a differential volume, dV =dL ⋅dA, the current found by integrating
(5) over the cross-sectional area, dA, is

,dqNv
I

dL
= (6)

or,
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where vx(n) is the velocity along the channel of the nth electron. The device is divided into
several sections along the x-axis, and the number of electrons and their corresponding veloc‐
ity is added for each section after each free-flight. The total x-velocity in each section is then
averaged over several time-steps to determine the current for that section. Total device cur‐
rent can be determined from the average of several sections, which gives a much smoother
and noise-free result compared to counting terminal charges. By breaking the device into
sections, individual section currents can be compared to verify that there is conservation of
particles (constant current) throughout the device. Note that the sections in the vicinity of
the source and drain regions may have a large y-component in their velocity and should be
excluded from the current calculations. Finally, by using several sections in the channel, the
average energy and velocity of electrons along the channel can be observed to ensure proper
physical characteristics.

Figure 4. Typical plot of cumulative net charge at the source and the drain contacts.

4. Statistical enhancement: The self-consistent event biasing scheme

Statistical enhancement in Monte Carlo simulations aims at reduction of the time necessary
for computation of the desired device characteristics. Enhancement algorithms are especially
useful when the device behavior is governed by rare events in the transport process. Such
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events are inherent for sub-threshold regime of device operation, simulations of effects due
to discrete dopant distribution as well as tunneling phenomena. Virtually all Monte Carlo
device simulators with statistical enhancement use population control techniques [39]. They
are based on the heuristic idea for splitting of the particles entering a given phase space re‐
gion Ω of interest. The alternative idea―to enrich the statistics in Ω by biasing the probabili‐
ties associated with the transport of classical carriers―gives rise to the event-biasing
approach. The approach, first proposed for the Ensemble Monte Carlo technique (time-de‐
pendent problem) [40], has been recently extended for the Single Particle Monte Carlo tech‐
nique (stationary problem) [41]. In the next section, the basic steps of derivation of the
approach in presence of both initial and boundary conditions has been discussed. Utilized is
the linearity of the transport problem, where Coulomb forces between the carriers are initial‐
ly neglected. The generalization of the approach for Hartree carriers has been established in
the iterative procedure of coupling with the Poisson equation. Self-consistent simulation re‐
sults are presented and discussed in the last section.

4.1. Theory of Event Biasing

The Ensemble Monte Carlo (EMC) technique is designed to evaluate averaged values A  of
generic physical quantities a such as carrier density and velocity given by

( ) ( ) ( ) ( ) ( )0 .A dQA Q f Q dQf Q g Qt = =ò ò (8)

Where Q =(k , r , t)and Equation (8) denotes the integration over the phase space and time
t∈ (0, ∞), and A=aθΩδ(t −τ) introduces the indicator θΩ of the phase space domain, where
the mean value is evaluated at time τ. Equation (8) is the usual expression for a statistical
mean value, augmented by a time integral with the purpose to conveniently approach the
formal theory of integral equations. It has been shown that the Boltzmann equation can be
formulated as a Fredholm integral equation of a second kind with a free term f 0. The latter
is determined by the initial condition in evolution problems [38][42] or, in the case of sta‐
tionary transport, by the boundary conditions [42]. The second equality in (8) follows from
the relationship between an integral equation and its adjoint equation. It shows that the
mean value A  is determined by f 0 and by the solution of the adjoint Boltzmann equation

( ) ( ) ( ) ( ),g Q dQK Q Q g Q A Q¢ ¢ ¢= +ò (9)

( )
( ) ( )( )

( ) ( ) ( )
K ,R

r r r

t

t
y y dy

DK S e t t
l

q d q¢

-ò
¢ ¢ ¢= - -k,k ,r (10)

where S is the usual scattering rate from lattice imperfections, λ is the total out-scattering
rate, θD is the device domain indicator, which is discussed later, θ is the Heaviside function
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and the trajectories, initialized by (k , r , t ′), are formulated with the help of the electrical
force F and the velocity v as

( ) ( )( )K F R ,
t

t
t k y dy

¢

= + ò (11)

and

( ) ( )( )R r v K .
t

t
t y dy

¢

= + ò (12)

If both, initial f i and boundary f b conditions are taken into account, it can be shown that f 0

becomes

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )( )

0

K ,RK ,R

0
0

k,r v k k,r, .

tt

tb

y y dyty y dy

i b b bf Q f e f t e dt
ll --

^

òò
= + ò (13)

While f i is defined only at the initial time t =0, the function f b is defined only at the device
boundary Γ and for values of k such that the corresponding velocity inwards the domain, D.
v⊥ is the velocity component normal to Γ so that a velocity-weighted distribution drives the
particle flux, injected into the device at times tb≤ t . f 0 in (13) governs both the transient and
the stationary behavior of a device. The latter is established in the long time limit, provided
that f b is time independent. Usually f b is assumed to be the equilibrium distribution func‐
tion.

A recursive replacement of equation (9) into itself gives rise to the von-Neumann expansion,
where the solution g is presented as a sum of the consecutive iterations of the kernel on A. If
replaced in (8), the expansion gives rise to the following series for A :

( ) ( )i
i

A At t=å (14)

Consider the second term in (14) augmented with the help of two probabilities P0 and P  to
become expectation [41] value of a random variable (r.v.):
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It takes values determined by the second half with a probability given by the product in the
first half in equation (15). A 2 is evaluated according to the numerical Monte Carlo theory
as follows. P0 and P are used to construct numerical trajectories: (i) P0(Q ′) selects the initial
point Q ′ of the trajectory. (ii) P(Q ′, Q) selects the next trajectory point Q provided that Q ′ is

given. The fraction W2 in front of A, called weight, is a product of weight factors 
f 0
P0

, and 
K
P

evaluated at the corresponding points Q0 →Q1 →Q2, selected by application of P0 → P → P .
The sample mean of N realizations of the r.v., calculated over N trajectories
(Q ′ →Q1 →Q2)n, n =1...N , estimates the mean value A 2:
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The iterative character of the multiple integral (15) has been used to introduce a consecutive
procedure for construction of the trajectories. It can be shown that a single trajectory, ob‐
tained by successive applications of P, contributes to the estimators of all terms in (14) si‐
multaneously i.e. the procedure is generalized in (16) for a direct evaluation of A . Next,
one establishes the link between (16) and the EMC technique, which is due to particular
choice of the initial, P0

B, and transition, P B, densities. P B, which can be deduced from (10),
is a product of the conditional probabilities for free-flight and scattering, associated with the
evolution of the real carriers. The ratio K / P B is then the domain indicator θD which takes
values 1 (one) if the trajectory belongs to D and 0 (zero) otherwise. The choice of P0

B is com‐
plicated by the presence of both initial and boundary terms in (13). They decompose (16) in‐
to two terms which are evaluated separately as

( ) ( )
1 2

1 11 2

1 1 .
N N

n n
n n

A WA WA
N N= =

= +å å (17)

The initial probability P0
B for each estimator is obtained from f i and v⊥ f b respectively, with

the help of two normalization factors: the number of initial carriers Ni and the total number
NJ of the injected particles into the device. The ratio f 0 / P0

B for each of the estimators be‐
comes Ni and NJ respectively, and can be eliminated by the choice N1 = N i and N2 = N J . The
two sums can be merged back to give

( ) ( )
1 1

.
i JN N N

nn
n n

A WA n a
t

q
+

W
= =

= =å å (18)
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Equation (18) accounts that only trajectories which belong to D give contributions. As only the
endpoint of such trajectories matters for the estimator, we speak about particles inside the de‐
vice. Nτ is the number of such particles at time τ, and θΩ(n) is 1 or 0 if the n-th particle is inside
or outside Ω. All particles have weight unity and evolve as real Boltzmann carriers and the
EMC technique for transport problems posed by initial and boundary conditions is recovered.
A choice of alternative probabilities is called event biasing. Biased can be the probabilities for in‐
itial and/or boundary distributions, free-flight duration, type of scattering and the selection of
the  after-scattering  state  direction.  It  can  be  shown  that  (18)  is  generalized  to

A =∑
n=1

Nτ
b

WnθΩ(n)an where the position of the Nτ
b biased particles is accounted in θΩ.

The Boltzmann equation for Coulomb carriers becomes nonlinear via the interaction compo‐
nent F( f )(r, t) of the electric force. As the results of the previous section are based on the
linearity of the integral equations involved, it is no more possible to apply the steps used to
derive the event biasing. The solution is sought in the iterative procedure of coupling of the
EMC technique with the Poisson equation. The latter is discretized, as stated earlier, by a de‐
composition of the device region into mesh cells, ψl . The particle system is evolved in time
intervals Δt≃0.1 fs. At the end of each time step, at say time τ, the charge density eC(rl , τ)
is calculated and assigned to the corresponding grid points. One uses the relation between
Cl and the distribution function f l ,m = f (rl , km, τ), which is estimated with the help of (18) by
introducing a mesh ϕm in the wavevector space, (Ωl ,m =ψlϕm), as
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The charge density Cl is used to find the solution of the Poisson equation, which provides an
update for the electric force F(r, t). The latter governs the trajectories evolving the particles
in the next time interval (τ, τ + Δt). Between the steps of solving the Poisson equation the
electric field is frozen so that event biasing can be applied. Assume that at time τ the parti‐
cles emerge with weights Wn. Due to the event biasing the behavior of the biased particles
differs from that of the EMC particles. The distribution function of the biased particles f l .m

num

obtained from the above formula is entirely different from f l ,m. Nevertheless, as seen from
(15), any biasing does not change the values of the physical averages. The Boltzmann distri‐
bution function is recovered by using the weights Wn as

( ),

, .
l

l m

n m
n

l m

W n
f

V Vf

qW

W

=
å

(20)

Accordingly, the correct F is provided by the Poisson equation. As the evolution is Markovi‐
an, f l ,m presents the initial condition for the next time step. Numerical particles, having dis‐
tribution f l .m

num and weights Wn present a biased initial condition for this step. The initial
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weight will be updated in the time interval (τ, τ + Δt) by the weight factors according to the
chosen biased evolution. It follows that the particle weights survive between the successive
iteration steps, which completes the proof of the self-consistent biasing scheme.

4.2. Event biasing methods employed

Three different event-biasing techniques have been employed in this work. The chosen bias‐
ing techniques aim at increasing the number of numerical particles in the channel, but keep
the total particle number in the device constant (for example, equal to 105). Particles, which
enrich the high energy domain of the distribution on the expense of obtaining weights less
than unity readily overcome the source potential barrier. Particle number in the low energy
domain is less than the conventional ones, with higher weights and remain longer in the S/D
regions. The methods are discussed in the following.

 

Figure 5. Weighting scheme used in the temperature-biasing method.
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Figure 6. a) Weight distribution for T = 450K, and (b) Biasing decreases numerical particle number in the source/drain
regions while increases the number in the channel region. Here 3n stands for numerical particles under bias = 3.
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4.2.1. Biasing the initial/boundary temperature

Denoting the equilibrium distribution,

( ) 1, ,eqf T e
e
ee

e

-
= (21)

where, ε is the individual carrier energy and ε̄ =1.5kBT , one chooses a biased distribution

( )0
1, ,bb

b
b

f T e
e
ee

e

-
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which corresponds to higher temperature Tb =bias ×T  (bias > 1). Having higher kinetic ener‐
gy, the numerical particles readily overcome the source potential barrier and enrich the sta‐
tistics in the channel. The weight distribution is governed by the formula
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= ×

æ ö-ç ÷
è ø
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The biasing scheme is illustrated in Figure 5. Increasing Tb increases the spread of the
weight (and hence the distribution function) further away from unity which may lead to an
increased variance of the physical averages, obtained by the mean of heavy and light parti‐
cles. Thus finding the appropriate bias is a matter of compromise between the need for more
particles in the channel (high temperature) and keeping the spread of the weight low (low
temperature). The particle weight distribution for a particular choice of bias = 1.5 (corre‐
sponding to a temperature of 450K) is shown in Figure 6(a). That biasing increases the nu‐
merical particle number in the channel region by decreasing the same in the S/D regions in
illustrated in Figure 6(b) with bias =3. Also noticeable is the fact that different values of bias
do not change the actual number of physical electrons throughout the device region.

4.2.2. Particle Split

Particle weight is controlled by choosing a desired weight w1 of the numerical particles with
kinetic energy below given level ε1 and weight w2 with kinetic energy above ε1. fb is ob‐
tained from feq as follows:
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w2 is obtained as a function of w1 and ε1 from the condition for normalization of fb:
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A choice of w1 > 1 effectively reduces the number of particles below ε1 as compared to the
unbiased case. In both the above cases of biasing heavy particles which enter the channel
perturb the statistics accumulated by a set of light weight particles (Figure 7). It is thus desir‐
able to apply the technique of particle splitting in parallel to the temperature biasing in or‐
der to minimize the spread of the weight.

Figure 7. Particle split method and the distribution of particles in the device active region.

4.2.3. Biasing Phonon Scattering (e-a)

Artificial carrier heating can be achieved by biasing the phonon scattering rates. For a given
scattering mechanism, the probability for phonon absorption is increased at the expense of
phonon emission, controlled by a parameter w1,
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If in the course of the simulation, a phonon absorption is selected, the particle weight is up‐
dated by a multiplication with λabs / λabs

b , otherwise with λem / λem
b . The distribution of the

flight time is not affected, because the sum of emission and absorption rate is not changed.
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4.3. Results from biasing experiments

The MOSFET chosen for the simulation experiments has gate length of 15 nm, channel dop‐
ing of 2×1019cm-3, and oxide thickness of 0.8 nm. Similar device has already been fabricated
by Intel [43]. The applied potential VG = 0.375V, VD = 0.1V correspond to a subthreshold re‐
gime at lattice temperature T = 300 K.

Figure 8 shows the standard deviation in electron number as a function of evolution time in
a certain cell within the channel region. One can clearly see the improvement achieved from
the use of event biasing techniques in the simulation. The standard deviation is least for
method (a) where the initial/boundary temperature of the electrons is biased (at T = 450 K).

Figure 8. Enhancement of channel statistics: reduction of standard deviation in number of electrons in a particular cell
in the channel region.

 

Figure 9. Biasing recovers precisely the self-consistent (a) average sheet density and (b) average kinetic energy of the
electrons.
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Regarding the validation of the biasing techniques, first, the consistency of the biasing tech‐
niques in the thermodynamic limit of a very large number (105) of simulated particles is in‐
vestigated. Both Boltzmann (conventional) and biased stochastic processes must give the
same evolution of the physical averages. Figure 9 shows that the biased experiments recover
precisely the physical averages of electron sheet density and electron energy along the chan‐
nel of the device.

Secondly, the convergence of the cumulative averages for the channel and terminal currents
obtained from the velocity and particle counting, respectively, is investigated. Biasing the
phonon scattering rates (e-a) is applied in the half of the source region near the barrier in a 4
nm depth. Figure 10 (top panel) shows the biased channel current as compared to the EMC
(conventional) result for 30 ps evolution time. The 5% error region (straight lines) around
the mean value is entered 2.5 ps earlier and the convergence is better. The channel current
from the boundary temperature biasing (T = 450K) is shown in the bottom panel of Figure
10. The temperature-biased curve shows a superior behavior.

Figure 10. Comparison of channel currents obtained from (1) biased e-a rates (top panel), and (2) biased boundary
distribution (bottom panel) methods from velocity consideration.

The corresponding terminal currents (shown in Figure 11) are much noisier and show long-
time correlations due to the inter-particle interactions. The e-a biased curve is very unstable
and enters the 5% error region in Figure 11 (top panel), after 15 ps evolution. One can asso‐
ciate this behavior with numerical error. The poor statistics is due to the appearance of very
heavy (W >2) particles in the source as can be seen in Figure 12(a). To check this, it is suffi‐
cient to apply the conventional particle splitting coupled with the e-a biasing. The result is
presented by the dotted curve in Figure 11. The behavior is significantly improved with the
expense of a 30% increase of the simulated particles (the corresponding weight distribution
is shown in Figure 12(b)). The terminal current corresponding to the biasing of the tempera‐
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ture of the injected particles again shows a superior behavior. This is due to an improved
weight control. The weight, determined during the injection remains constant in the evolu‐
tion. Its maximal value for T = 450 K is exactly 1.5 as depicted in Figure 6(a). Furthermore
the probability for interaction with the impurities, which dominates the source/drain re‐
gions, drops for the majority of the particles due to their high energies. The conventional
splitting technique cannot achieve such superiority. The terminal current from particle split
technique is shown by the dotted curve on Figure 11 (bottom panel). The behavior of the
curve resembles the EMC counterpart. An improvement is expected if the w2 particles are
additionally split, which recovers the conventional split technique.

Figure 11. Terminal currents obtained from various methods by particle counting.

 

Figure 12. Numerical particle weight distribution in (a) e-a biasing, and (b) e-a/split biasing.
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5. Conclusion

In conclusion, three event biasing techniques for particle-based Monte Carlo simulations of
semiconductor devices have been derived in presence of both initial and boundary condi‐
tions and generalized for self-consistent simulations. All these approaches are confirmed
and validated by simulations of a MOSFET with a channel length of 15 nm in the subthres‐
hold regime of operation. A bias technique, particularly useful for small devices, is obtained
by injection of hot carriers from the boundaries. The coupling with the Poisson equation re‐
quires a precise statistics in the source/drain regions. It is shown that a combination of event
biasing and population control approaches is advantageous for this purpose.
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