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1. Introduction

Although the introduction of drug-eluting-stents (DES) has dramatically reduced restenosis
and the need for repeat revascularization compared with bare-metal stents (BMS), percutane‐
ous coronary intervention (PCI) does not always prevent cardiac events, including acute coro‐
nary syndrome (ACS) [1]. Therefore, for all cardiologists, the detection of vulnerable plaques
before they rupture is one of ultimate goals to predict and prevent ACS. Vulnerable plaques are
characterized as thin fibrous cap (<65 µm), large lipid core, and macrophage infiltration within
the cap. Furthermore, plaque neovascularization has been identified recently as a common fea‐
ture of plaque vulnerability. Increased neovascularization in atherosclerotic plaques plays an
important role in plaque progression, plaque instability, and rupture of plaque [2-5]. Until re‐
cently, however, in vivo studies assessing neovascularization in atherosclerotic plaques have
been difficult because of the lack of sufficient resolution that reliably identifies this feature of
vulnerable plaque. The first-generation catheter-based Time-domain optical coherence tomog‐
raphy (TD-OCT) system (M2 and M3 OCT system; LightLab Imaging, Westford, MA, USA),
which offers superior resolution of 10-15 µm, has emerged as an intracoronary imaging modal‐
ity, rendering the detailed micro-structure information of coronary plaques [6-8]. With its ex‐
cellent  resolution,  OCT  may  provide  an  opportunity  to  directly  detect  plaque
neovascularization in vivo. This chapter reviews the evidence of plaque neovascularization ac‐
cumulated so far on OCT and discuss the future perspectives and limitations.

2. Neovascularization in atherosclerosis

Nourishment of normal blood vessels is accomplished by oxygen diffusion from the vessel
lumen or from adventitial vasa vasorum [9]. As atherosclerosis progresses, the intima thick‐
ens, and oxygen diffusion is impaired. As a result, vasa vasorum proliferates in the inner
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layers of the vessel wall, and becomes major source of nutrients. Vasa vasorum neovascula‐
rization in early atherosclerosis is associated with inflammatory cell infiltration and lipid
deposition, leading to plaque progression [10]. Furthermore, intraplaque hemorrhage from
microvessels contributes to expansion of the necrotic core through the accumulation of free
cholesterol from erythrocyte membranes. Several human pathologic studies have demon‐
strated that plaque neovascularization is pronounced among patients with unstable coro‐
nary syndromes and that its presence may be a marker of plaque instability and plaque
rupture [4, 5, 11]. Therefore, investigations of imaging methods with the ability to visualize
neovascularization would appear worthwhile.

3. Potential imaging modalities of neovascularization

Several imaging modalities such as micro-computed tomography (CT), magnetic resonance
imaging (MRI), and ultrasound have emerged as potential techniques for imaging neoves‐
sels in atherosclerotic plaques. Micro-CT provides high-resolution images of coronary vasa
vasorum neovascularization and insight into their structure and function in animal models
[12, 13]. Winter et al have reported that molecular MRI with αvβ3-targeted, paramagnetic
nanoparticles can detect plaque neovessels in atherosclerotic rabbit model [14]. In addition,
more recently, Sirol et al have demonstrated how gadofluorine M-enhanced MRI can accu‐
rately identify plaque neovascularization in an animal model of atherosclerosis with good
histological correlation [15]. Thus, even though the results from these techniques are prom‐
ising, further studies are needed for clinical application in humans. Intravascular ultrasound
(IVUS) has the potential to detect flow within the plaque and subsequently evaluate func‐
tional neovessels. The development of IVUS-based imaging has recently demonstrated the
preliminary data imaging neovascularization in coronary plaques in vivo after intravascular
injection of microbubbles [16,17], but further investigations will be required to show the fea‐
sibility of this method for routine clinical use.

4. Plaque neovascularization by OCT

OCT has been proposed as a high-resolution imaging modality that can identify micro-struc‐
tures in atherosclerotic plaques [8, 18, 19]. The superb high-resolution of OCT may offer an op‐
portunity of studying the spatial distribution of plaque neovascularization in vivo (Figure 1)
[20]. In fact, it has been shown that OCT is able to visualize neovascularization of atherosclerot‐
ic plaques [21-24]. In addition, Vorpahl et al demonstrated that small black holes in atheroma‐
tous plaques observed by OCT were in good agreement with the pathohistological evidence of
intra-plaque neoangiogenesis formation in an autopsy case [25]. We recently assessed the rela‐
tionship between intra-plaque microchannel structures identified by OCT, probably repre‐
senting neovascularization, and plaque vulnerability in patients with coronary artery disease
[21]. In this study, microchannel was defined as a no-signal tubuloluminal structure that was
present on at least 3 consecutive OCT cross-sections in pull-back images. As a result, micro‐
channels were seen in 38% of culprit plaques, and plaques with microchannels displayed the
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characteristics of vulnerability such as positive remodeling and thin fibrous caps compared
with plaques without these structures. Of note, the presence of increased microchannel counts
was correlated with a greater frequency of thin-capped fibroatheroma (TCFA) (Figure 2). More
recently, in larger study population (356 plaques in 117 patients), Tian et al investigated the
clinical significance of intra-plaque neovascularization in culprit lesions and no-culprit le‐
sions of unstable angina pectoris (UAP) and in lesions of stable angina pectoris (SAP) using
OCT [22]. Intra-plaque neovascularization was found in 35% of UAP culprit lesions, in 34% of
UAP non-culprit lesions, and in 28% of SAP lesions, with no significant difference. Among
UAP culprit lesions, plaques with neovessel had thinner fibrous cap thickness (56±20 µm vs.
75±30 µm, p<0.001) and significantly higher incidence of TCFA (81% vs. 47%, p=0.002) com‐
pared with those without neovessel. In addition, plaque burden was significantly bigger in
UAP culprit lesions with neovascularization (79.8±7.9% vs. 72.8±10.7%, p=0.024). In terms of
the non-culprit lesions of UAP patients and lesions of SAP patients, however, no significant
difference in plaque characteristics was observed, regardless of the presence or absence of neo‐
vascularization. Interestingly, Kato et al reported that although the overall prevalence of mi‐
crochannel in non-culprit lesions was not significantly different between ACS and non-ACS
patients (64.7% versus 55.2%, respectively, P=0.647), the closest distance from the lumen to mi‐
crochannel was shorter in ACS subjects than in non-ACS (104.6±67.0 µm versus 198.3±133.0
µm, p=0.027) [23]. The authors speculated that because neovascular networks expand from the
adventitia into the intima as disease progresses [26], plaques with neovascularization located
closer to the lumen might represent an advanced stage of atherosclerosis. Furthermore, Ue‐
mura et al revealed that microchannel structure in non-culprit plaques (defined as percent di‐
ameter stenosis of < 50%) identified by OCT is a predictor of subsequent plaque progression in
patients with coronary artery disease [24].

Figure 1. OCT (M2 system) images of plaque neovessels. Microvessels in the outer plaque (A) near the adventitia and
(B) within the thickened intima can appear as signal-poor voids (white arrows) that are sharply delineated.

Visualization of Plaque Neovascularization by OCT
http://dx.doi.org/10.5772/53051

105



Figure 2. Comparison of frequency of TCFA according to number of microchannels. When categorized into 3 groups
according to number of microchannels, the frequency of TCFA (21% in group with 0, 40% in group with 1, and 64% in
group with ≥ 2; p < 0.003 for all) was significantly different. Reproduced with permission from [21].

5. Neovascularization inside the implanted stent by OCT

Although neovascularization within the neointima after stent implantation has been already
reported in histopathologic studies [27, 28], Regar et al first reported in 2005 that OCT has
an ability to visualize microvessels within the neointima inside the stents in a living human
[29]. Later the presence of neovascularization in the stent restenosis was noted by Gonzalo
et al [30]. However, the role of microvessels in restenotic tissue behavior has been unknown.
More recently, Kim et al evaluated the characteristics of in-stent restenosis (ISR) lesions with
microvessels detected by OCT [31]. Microvessels were detected in 21 (27%) of 78 ISR lesions.
At the minimum lumen area site, the neointimal area (5.4 ± 1.7 mm2 vs. 4.2 ± 2.1 mm2,
p=0.024) and percent neointimal area (79±12% vs. 67±16%, p=0.001) were significantly great‐
er in ISR lesions with microvessels. These results suggest that microvessels within the neoin‐
tima might be associated with restenosis by the excessive neointimal growth following stent
implantation.

Furthermore, it has been shown that neointima in both BMS and DES can transform into
atherosclerotic tissue with time although it occurs earlier in DES than BMS and that neoa‐
throsclerosis progression inside the implanted stents may be associated with very late coro‐
nary events such as very late stent thrombosis after BMS and DES implantation [28, 32-40].
Using OCT, Takano et al examined the differences in neointima between early phase (< 6
months) and late phase (≥ 5 years) [35]. When compared with normal neointima proliferated
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homogeneously in the early phase, neointima inside the BMS ≥ 5 years after implantation
was characterized by marked signal attenuation and a diffuse border, suggesting lipid-laden
intima. Its frequency was 67% and lipid-laden intima was not observed in the early phase.
TCFA-like intima was also found in 29% of the patients in the late phase. Intimal disruption
and thrombus were observed more frequently in the late phase as compared with the early
phase (38% vs. 0% and 52% vs. 5%, respectively; p < 0.05). Notably, although there was no
significant difference in terms of the incidence of peristent neovascularization (Figure 3A)
between the 2 phases (81% vs. 60%, p=0.14), intraintima neovascularization (Figure 3B) was
seen more frequently in the late phase than in the early phase (62% vs. 0%, p < 0.01) and in
segments with lipid-laden intima than those in without lipid-laden intima (79% vs. 29%,
p=0.026). Moreover, Habara et al evaluated the difference of tissue characteristics between
early (within the first year) and very late (> 5 years, without restenosis within the first years)
restenostic lesions after BMS implantation by using OCT [39]. There was a significant differ‐
ence in the morphological characteristics of restenostic tissue between very late ISR (charac‐
terized by heterogeneous intima) and early ISR (characterized by homogeneous intima).
Intraintima microvessels were observed only in the very late ISR group (16.3% vs. 0%,
p=0.01). Thus, expansion of neovascularization from persistent to intraintimal area with time
may contribute to atherosclerosis progression of neointima, as well as intra-plaque neovas‐
cularization of nonstent segments in native coronary arteries.

Figure 3. Neovascularization within neointima inside the implanted stent. (A) OCT (M2 system) image of peristent mi‐
crovessels (arrows) demonstrating no-signal small vesicular and tubular structures locating around the struts. (B) OCT
(M2 system) image of intraintima microvessels (arrows) showing small black holes locating near the vessel lumen with‐
in the neotintimal tissue.
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6. Future perspectives (neovascularization as a therapeutic target for
plaque stabilization)

For all cardiologists, stabilizing vulnerable plaques remains a major concern. Previous clini‐
cal trials have demonstrated that lipid-lowering therapy by statins stabilizes vulnerable pla‐
ques, thereby preventing cardiac events. Experimental studies have also shown that anti-
atherosclerotic therapies can reduce plaque neovascularization [41-43] and that the
inhibition of plaque neovascularization reduces progression of advanced atherosclerosis [41,
42]. Therefore, monitoring treatment effects of anti-atherosclerotic drugs using reliable sur‐
rogate markers may be useful to appropriately manage the patients. The thickness of fibrous
cap in coronary plaque is a major determinant of plaque destabilization [44]. We recently re‐
ported that statins increased the fibrous cap thickness of plaques as assessed by OCT, indi‐
cating plaque stabilization [45, 46]. More recently, Tian et al investigated whether there was
a difference in the effects of statin therapy between lesions with and without neovasculari‐
zation [47]. As a result, despite a comparable reduction in serum cholesterol levels, the fi‐
brous cap thickening was smaller in lesions with neovascularization than those without
neovascularization after 6 and 12 months of statin treatment, which suggests that a more ag‐
gressive anti-atherosclerotic therapy may be required in patients with plaque with neovas‐
cularization. Thus, OCT allows us to monitor the response to anti-atherosclerotic therapies
such as statins, and micro-channels in plaques identified by OCT could become a therapeu‐
tic target for plaque stabilization as important as the thickness of fibrous cap (Figure 4).

Figure 4. Plaque stabilization and elimination of neovascularization by statin treatment. (A) OCT (M2 system) demon‐
strates lipid-rich plaque covered by thin fibrous cap of 60 μm (thin-capped fibroatheroma) and microvessels at the
shoulder region of the plaque (dotted circle). (B) Six months after statin treatment, the minimum fibrous cap thickness
(FCT) increased from 60 μm to 170 μm and microvessels disappeared.
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Moreover, a newer-generation Frequency-domain OCT (FD-OCT; C7 system, LightLab
Imaging) has recently been developed to overcome many of the technical limitations of TD-
OCT system by imaging at much higher frame rates (100 frame/s), a larger scan diameter (10
mm) and a faster image acquisition rate (20 mm/s) without loss of image quality, and unlike
TD-OCT, this technology does not require proximal balloon occlusion [48]. The imaging
catheter of FD-OCT, which is designed for rapid exchange delivery, has a 2.7-Fr crossing
profile and can be delivered over a 0.014-inch guidewire through a 6-Fr or larger guide cath‐
eter. Intracoronary injection of contrast media via the guide catheter (3 to 4 ml/s; 2-3 s) can
achieve effective clearing of blood for the FD-OCT imaging. In combination with a short,
nonocclusive flush and a faster pullback speed, the FD-OCT enables imaging of longer seg‐
ments of coronary arteries without significant ischemia and motion artifact [49]. Thus, we
would be able to more precisely and easily assess not only culprit but also nonculprit lesion
morphologies in coronary artery disease by use of FD-OCT.

7. Limitations

First, because the penetration depth of OCT is relatively shallow (<2 mm), and OCT light
signals are limited behind the lipid component or red thrombus, previous OCT studies may
underestimate the presence of neovascularization. Second, neovessel size has been inconsis‐
tently defined by a wide range because it is unknown whether there is a threshold for the
size of these vessels within the intima [50]. Finally, a direct comparison of OCT-derived mi‐
crochannels with histology has not been done to date. Therefore, histological studies that
properly validate these structures observed with in vivo OCT imaging are mandatory in the
near future.

8. Conclusions

OCT has the potential to directly visualize neovascularization of atherosclerotic plaques in
vivo. Microchannel structure in coronary plaques identified by OCT could be a marker of
plaque vulnerability to improve patient risk stratification and a therapeutic target for plaque
stabilization.
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