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1. Introduction

If the classical behavior of a given quantum system is chaotic, how is it reflected in the
quantum properties of the system? To elucidate this correspondence is the main theme of
the quantum chaos study. With the advent of nanophysics techniques, this has become also
of experimental importance. With the advent of new technology, various quantum systems
are now challenging us. These include nano-scale devices, laser trapping of atoms, the
Bose-Einstein condensate, Rydberg atoms, and even web of chaos is observed in superlattices.

In this note we devote ourselves to the investigation of the quantum scars which occurs in
the Anisotropic Kepler Problem (AKP) – the classical and quantum physics of an electron
trapped around a proton in semiconductors. The merit of AKP is that its chaotic property
can be controlled by changing the anisotropy from integrable Kepler limit down ergodic
limit where the tori are completely collapsed and isolated unstable periodic orbits occupy
the classical phase space. Thus in AKP we are able to investigate the classical quantum
correspondence at varying chaoticity. Furthermore each unstable periodic orbit (PO) can be
coded in a Bernoulli code which is a large merit in the formulation of quantum chaos in term
of the periodic orbit theory (POT) [1, 2, 6].

The AKP is an old home ground of the quantum chaos study. Its low energy levels were used
as a test of the periodic orbit theory in the seminal work of Gutzwiller [3-7]. Then an efficient
matrix diagonalization scheme was devised by Wintgen et al. (WMB method) [8]. With this
method, the statistics of up to nearly 8000 AKP quantum levels were examined and it was
found that the quantum level statistics of AKP change from Poisson to Wigner distribution
with the increase of mass anisotropy [9]. Furthermore, an intriguing classical Poincaré
surface of section (POS) was found at medium anisotropy (γ ≡ m(light)/m(heavy) = 0.8),
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which indicates remnants of tori (cantori) in the classical phase space [9]. Thus, over two
decades from the early 70th, AKP was a good testing ground of theories (along with billiards)
as well as a constant source of important information to quantum chaos studies. However,
there has not been much recent theory investigation on AKP. Especially, to our knowledge,
the quantum scar of the classical periodic orbits in AKP has not been directly examined, even
though intriguing phenomena was discovered by Heller [10] in 1984. On the other hand, for
an analogous system – the hydrogen under a magnetic field (diamagnetic Kepler problem
(DKP)), the scars of periodic orbits were extensively studied using highly efficient tool called
as scar strength functions [11]. We note that AKP is by far simpler; for DKP it is necessary to
code the POs by a sequence of symbols consisting of three letters.

Recently the level statistics of AKP was examined from the random matrix theory view
[12]. It was considered that the AKP level statistic in the transitive region from Poisson to
Wigner distribution correspond to the critical level statistics of an extended GOE random
matrix theory and it was conjectured that the wave functions should exhibit characteristic
multifractality. This aspect has been further developed in [13, 14]; it is considered that
Anderson transition occurs in the quantum physics of a class of physical systems such as
AKP and periodically driven kicked rotator in their critical parameter regions. Further very
recently a well devised new solid state experiment has been conducted for AKP and ADKP
[15, 16]. We also refer [17] for a recent overview including this interesting conjecture.

Such is the case we have recently conducted AKP high accuracy matrix diagonalization
based on the WMB method. This is not a perturbation calculation; the anisotropy term
is not regarded as a perturbation and the full Hamiltonian matrix is diagonalized. Thus
the approximation comes only from the size of the matrix. But, as a trade-off, a scaling
parameter is unavoidably included; it is crucial to choose a correct parameter value at every
anisotropy parameter. We have derived a simple rule of thumb to choose a suitable value
[17]. After comparing with original WMB result in Sturmian basis, we have also worked
with tensored-harmonic-wavefunction basis (THWFB) [11], which is more suitable for the
Husimi function calculation to investigate the quantum scars. Our contribution here is the
calculation of anisotropy term in the AKP Hamiltonian in THWFB [17], which is harder than
the diamagnetic case. Comparing the results from two independent bases we have verified
that both results agree completely thus the choices of scaling parameters (in both bases) are
validated.

Aimed by these numerical data, we report in section 2 salient evidences of quantum scars
in AKP for the first time. We compare the features of various known observables; thus
this section will serve as a comparative test of methods and fulfills the gap in the literature
pointed out above. Most interesting is the test using the scar strength function. We show
that even in the ergodic regime (γ = 0.2), we can quantitatively observe that prominent
periodic orbits systematically contribute to the quantum theory endowed with random
energy spectrum.

In section 3 we investigate that how the scaring phenomena are affected by the variation of
the anisotropy parameter. It is well known that the energy levels show successive avoiding
crossings. On the other hand, in the periodic orbit formula, each term in the series for the
density of states (DOS) consists of a contribution of an unstable PO with a pole (with an
imaginary part given by the Lyapunov exponent of the PO) at the Bohr-Sommerfeld-type
energy; thus each term smoothly varies with the anisotropy. We show that how these two
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seemingly contradicting features intriguingly compromise. The localization patterns in the
wave functions or Husimi functions are swapped between two eigenstates of energy at every
avoiding crossing. Repeating successively this swap process characteristic scarring patterns
follow the POs responsible to them. In this sense the quantum scarring phenomena are
robust. We conclude in section 4.

2. Manifestation of Scars in AKP

We first explain how we have prepared the energy levels and wave functions. Then we
introduce the indispensable ingredients to study the scars in AKP. After briefly explaining
Husimi functions, we explain periodic orbit theory. The quantum scars will be observed
along the classical unstable periodic orbits.

2.1. Matrix diagonalization

2.1.1. AKP Hamiltonian

The AKP Hamiltonian in the dimensionless form is given by

HG =
1

2µ
p2

x +
1

2ν
(p2

y + p2
z)−

1

r
(1)

where r =
√

x2 + y2 + z2 and µ > ν[1,4] with which POT was formulated in the history,

or equivalently it may be also written as [9,11] (Harmonic basis)

H88
W =

1

2
(p2

x + p2
y) +

γ

2
p2

z −
1

r
(2)

with γ = ν/µ = 1/µ2 or

H87
W = p2

x + p2
y + γp2

z −
2

r
(3)

as used in WMB (Sturmian basis) [8]. We recapitulate POT predictions in terms of (1), our
formula for AKP eigenvalue calculation in tensored harmonic wave function basis in terms of
(2), and we discuss quantum scars using energy values in (3) in order to facilitate comparison
with literature.

2.1.2. Matrix diagonalization in Sturmian basis

We here summarize WMB method for efficient matrix diagonalization.

Firstly, in the Sturmian basis
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〈~r|nℓm〉 = 1

r

√

n!

(2ℓ+ n + 1)!
e−

λr
2 (λr)ℓ+1L2ℓ+1

n (λr)Yℓm(θ, ϕ) (4)

with a scaling parameter λ, the Schrödinger equation of the AKP becomes a matrix equation:



−λ
←→
∆
(3) + (1− γ)λ

←→
∂2

∂z2
− 2

←→
1

r



 Ψ =
E

λ

←→
Id Ψ (5)

Dividing the whole equation by λ and packing E/λ2 into a parameter ε, one obtains

←→
M Ψ ≡



−
←→
∆
(3) + (1− γ)

←→
∂2

∂z2
− ǫ
←→
Id



 Ψ =
2

λ
Ψ. (6)

This ǫ is to be fixed at some constant value. In principle any value will do, but for finite size
of Hamiltonian matrix, the best choice is given [17] approximately

ε∗ ≃ −1

4
γ. (7)

With this choice, we can get the largest number of reliable energy levels at a given matrix
size. The ratio of reliable levels to the matrix size can be estimated as

Re f f ≃
√

γ. (8)

After fixing ε, the diagonalization of (6) is performed for 2/λi s and finally we obtain the
energy eigenvalues by

Ei = ελ2
i . (9)

2.1.3. Matrix diagonalization in Sturmian basis

For the (tensored) harmonic wave function basis (THWFB) [11] we convert the Hamiltonian
of AKP into the Hamiltonian of two of two-dimensional harmonic oscillators.

For this purpose semi-parabolic coordinates are introduced

µν = ρ =
√

x2 + y2,
1

2
(µ2 − ν2) = z, φ = tan−1

( y

x

)

(10)
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and the AKP Schrödinger equation becomes

[

−
1

2 (µ2 + ν2)

(

∆
(2)
µ + ∆

(2)
ν

)

+
1 − γ

2

∂2

∂z2
−

2

µ2 + ν2

]

|Ψ〉 = E |Ψ〉. (11)

Multiplying by µ2 + ν2and swapping the Coulombic interaction term and the E term one
obtains

[

−
1

2

(

∆
(2)
µ + ∆

(2)
ν

)

+ |E|
(

µ2 + ν2
)

+
1 − γ

2

(

µ2 + ν2
) ∂2

∂z2

]

|Ψ〉 = 2 |Ψ〉 . (12)

Thanks to the semi-parabolic coordinates, the Coulombic singularity has removed [19] for
γ = 1. Corresponding to the Sturmian basis with a scaling parameter λ in (4), we introduce
the harmonic wave function basis

〈µ, ν | i, j, κ〉 =
κ

π
Li(κµ2)Lj(κν2) exp

(

−
µ2 + ν2

2

)

with a scaling parameter κ and, corresponding to ε in (6), we introduce a parameter

ε̃ = 2
|E|

κ2
(13)

and we solve (12) after transforming it into the matrix equation of WMB form with
eigenvalues Λn = 2/κn. The matrix element calculation of the mass anisotropy term in
(12) is somewhat involved and we refer to [17] for detail. Energy levels are then determined
by

En = −
κ2

n

2
ε̃ = −

2

Λ2
n

ε̃ (14)

The best value of ε̃ is given by

ε̃∗ ≈ γ (15)

which is similar to (7).

We have found precise agreement between our calculations by the Sturmian basis and by the
harmonic oscillator basis which in turn validates our choices of scaling parameter ε and ε̃.

For the calculation of Husimi functions and scar strength function which uses Husimi
functions, we use the THWFB since the projection of the basis functions to the Gaussian
packets are easy to calculate [17].
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2.2. Husimi function

Husimi function is defined via the scalar product of the wave function |ψ〉 with a coherent
state(CHS) |q0, p0〉 of the system [11]:

WHus
ψ (q0, p0) = |〈ψ | q0, p0〉|

2
. (16)

A detailed account is given in [17].

2.3. Periodic orbit theory

2.3.1. Periodic orbit theory and the density of state

Let us recapitulate Gutzwiller’s periodic orbit theory [4,20]. The starting point is Feynman‘s
path integral formula for the propagator of a particle from q′ to q′′ during the time interval
0 to T;

K
(

q′′, q′, T
)

≡
〈

q′′
∣

∣ exp

(

−i
H

h̄
T

)

∣

∣q′
〉

=
∫ q′′

q′
D [q] e

i
h̄

∫ T

0
L(q, q̇, t)dt (17)

The Green function (response function) is given by the Fourier transformation of the
propagator

G
(

q′′, q′, E
)

≡ −
i

h̄

∫ ∞

0
dte

iEt
h̄ K

(

q′′, q′, T
)

where E has infinitesimally small imaginary part for convergence. Thus we have

G
(

q′′, q′, E
)

=
〈

q′′
∣

∣

1

E + iε − Ĥ

∣

∣q′
〉

= −
i

h̄

∫ ∞

0
dte

iEt
h̄

[

∫ q′′

q′
D [q] e

i
h̄

∫ T

0
L(q, q̇, t)dt

]

(18)

By a stationary approximation we obtain a semiclassical formula for the Green function

G̃
(

q′′, q′, E
)

≃ ∑
Γ

AΓ exp(
i

h̄
SΓ − i

νΓ

2
) (19)

where Γ denotes a classically arrowed orbit, νΓ is the number of conjugate points on the
orbit, and the amplitude AΓ accounts for the Van Vleck determinant. Note that the principal

function in (18) is changed into the action S =
∫ q′′

q′ pdq and the phase iπ/4 from the stationary

point approximation is shifted into AΓ.

Now the density of states is given by
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ρ(E) ≡ ∑
n

δ(E − En) = −
1

π
Im

(

Trn

(

1

E + iε − Ĥ

))

(20)

where in the second equality an identity 1/(x + iε) = P(1/x) − iπδ(x) is used and trace
is taken over all energy eigenstates {|n〉}. Trading this tracing with the tracing over the
eigenstates of coordinate operator {|q〉}, we obtain a semiclassical approximation for the
DOS

ρ(E) ≈ −
1

π
Im

∫

dq′ G̃(q′′, q′, E)
∣

∣

q′′=q′ = −
1

π
Im

∫

dq′ ∑
Γ

AΓ exp

(

i

h̄
SΓ − i

νΓ

2

)

.

(21)

The integration over q′ can be again approximated by a stationary phase approximation.
Because

p′′ =
∂S(q′′, q′)

∂q′′
, p′ = −

∂S(q′′, q′)

∂q′
(22)

the stationary phase condition gives

0 =
∂S(q′, q′)

∂q′
= p′′ − p′ (23)

which dictates the periodic orbits. We obtain finally the periodic orbit theory formula for the
DOS

ρ(E) ≃ ρ(E) + Im ∑
r∈PO

Tr

πh̄ ∑
n 6=0

exp
{

in
[

Sr
h̄ − π

2 lr
]}

[det((Mr)n − 1)]
1
2

(24)

Here the first sum runs over all primitive POs and the n sum counts the repetitions of each
peridic orbit; Tr, Sr, and lr denote the period, action, and Maslov index of the primary PO,
and the matrix M stands for the monodromy matrix of the primary PO.

In AKP m = 0 sector, the motion is restricted in a fixed plane which includes the heavy axis,
and the problem essentially reduces to two dimensional one. (Later on the three dimensional
feature is recovered only by the proper choice of the Maslov index [4]). As for AKP unstable
periodic orbits, M has two eigenvalues eu and e−u (hyperbolic case) and the determinant in
(24) is given by

1

2
[det(Mn − 1)]

1
2 = −i sinh (nu/2) (25)
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2.3.2. Naming of a periodic orbit

In AKP every PO can be coded by the sign of the heavy axis coordinate when the heavy axis
is crossed by it. Note that number of the crossings must be even (2nc) for the orbit to close.

In this note we shall denote the PO according to Gutzwiller’s identification number along
with the Bernoulli sequence of POS. (See Table 1 in ref. [3] which gives a complete list1

of POs up to nc = 5 for the anisotropy γ = 0.2. ) For instance, PO36(+ +−++−) is the
identification number 6 among nc = 3 POs.

2.3.3. The contribution of a periodic orbit to the density of state

The contribution of a single periodic orbit r to the DOS is estimated by a resummation of the
sum over the repetition j (after the approximation sinh x ≈ ex/2),

ρ(E)|r ≈ Tr ∑
m

ur h̄/2

(Sr − 2πh̄(m + l/4))2 + (ur h̄/2)2
. (26)

This gives Lorentzian peak at

Sr = 2πh̄(m + l/4) (27)

similar to the Bohr-Sommerfeld formula. In AKP the action S is given as

Sr(E) =
Tr√
−2E

. (28)

Hence the peak position of the Lorentzian form in the energy is given by

Er,m = −1

2

(

Tr

2πh̄(m + 1)

)2

, (29)

where Maslov index l = 4 for three dimensions is taken.

We are aware that it is meant by (24) that the exact DOS with sharp delta function peaks on
the energy axis corresponds to the sum of all PO contributions [20] (assuming convergence).

It is the collective addition of all POs that gives the dos. But, still, it is amusing to observe
that the localization of wave functions occurs around the classical periodic orbits as we will
see below.

1 In [3, 5] an amazing approximation formula that gives a good estimate of the action of each periodic orbit from its
symbolic code is presented. The trace formula has a difficulty coming from the proliferation of POs of long length.
This approximation gives a nice way of estimating the sum. The table is created to fix the two parameters involved
in the approximation. We thank Professor Gutzwiller for informing us of this formula a few years ago.
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2.4. Scars as observed in the probability distributions and Husimi functions

2.4.1. The manifestation of the fundamental FPO(+−)

Let us start exploring the scars in AKP first by investigating the case of the fundamental
periodic orbit FPO (+−) which reduces the Kepler ellipse orbit in the limit γ = 1.

In Figure 1, we show the wave function squared in the µν plane and the Husimi distribution
in the µ pµ plane. The FPO is shown by red line and compared with the probability
distributions in the in the µν plane. At high anisotropy the orbit is largely distorted. Still
at chosen energy levels (upper row) we find clear localization around the FPO for both
anisotropies. In the lower row we have displayed other energy eigenstates. For these energy
levels we see also characteristic probability distribution patterns but not around FPO. Now
let us look at the Husimi distributions. In case of energies in the upper diagrams we see very
clearly that around the Poincaré section of the FPO (the fixed points) the Husimi functions
show clear scars, while in the lower we see anti-scars, the Husimi density is very low at the
fixed points. It is clear that Husimi functions are superior observables. In this demonstration
of scars we have scanned thousands of energy eigenstates and picked examples. Next task is
to use the ability of POT predictions (24) to locate the scaring levels.

Figure 1. Scar and anti-scar phenomena with respect to the fundamental periodic orbit. The left set is for the anisotropy

γ = 0.2 and right for γ = 0.6. In each set, the upper and lower row display prominent scar and anti-scar respectively, while the
left and right columns exhibit the probability distribution on the µν plane and Husimi distribution on the µ pµ plane (ν = 0).
The fundamental orbit is drawn by a red line on the µν plane and its Poincaré section on the µ pµ plane by red points. The

respective eigenvalues are E786, E787, E438, E459 in the m = 0, ℓ =even sector. Classical kinematical boundaries are shown by

yellow circles.
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2.4.2. PO prediction and AKP Scars

As for the FPO the POT works quite well. Thus for this test we have selected more
complicated PO PO22 (+ + +−) and PO36 (+ +−++−). These orbits wind around the
heavy axis forth and back and presumably correspond to the bounce orbit in the billiard.2

The top row in Fig.2 shows the prediction from POT – the contribution of the single orbit to
the DOS (26). We observe clearly the peak regions of POT prediction contains at least one
energy eigenstate which shows the scar of the orbit. On the other hand we have checked that
the relevant orbit pattern does not appear in the non-peak region of the POT prediction.

In this analysis the Husimi function again yields unmistakable information on the scaring.

Figure 2. γ = 0.6, l = even, m = 0. The upper diagrams: The red and green curves are contributions to the density of states
ρ(E) from bouncing-type periodic orbits PO22 (+ + +−) and PO36 (+ +−++−) respectively and the peak positions are
compared with the l even m = 0 energy levels from matrix diagonalization (WMB with tensored harmonic oscillator basis). The
lower: The quantum scars of these periodic orbits are exhibited on the probability distributions and the Husimi functions. (cf.

Fig. 1).

2 We thank Professor Toshiya Takami for explaining his articles [21,22] and pointing us this point.
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2.5. Scars as analyzed by the scar strength function

2.5.1. Scar strength functions

In an extensive analysis of scars in the diamagnetic hydrogen, a tool called as scar strength
function (SSF) is presented [11]. It is defined as

IPO
n =

∮

PO
d4s WHus

ψn

(

µ, ν, pµ, pν

)

(

∮

PO
d4s

)

−1

where the integral is to be performed along the PO with d4s =
√

dµ2 + dν2 + dp2
µ + dp2

ν..

This quantity is exploiting to what extent a given PO is inducing localization along it in
the Husimi function of a given energy eigenstate. Then spectral scar strength function is
introduced as

IPO (E) = ∑
n

IPO
n δ (E − En)

This shows how the given PO affects each energy eigenstate in one function.

2.5.2. The use of SSF IPO(E)

Let explore the region of high anisotropy (γ = 0.2) where the classical phase space is
occupied by the unstable periodic orbits and chaoticity is rather high. We explore this region
by the ability of IPO(E).

We start from FPO (+−) in Fig. 3. The upper is the POT prediction curve, the middle is
the SSF along with real eigenvalues and the bottom is as usual a direct comparison of FPO
with wavefunctions squared as well as Husimi functions. The SSF is the quantum measure
of scaring of a particular PO in consideration, while the FPO prediction is composed from
purely classical information for the PO. When the curve of the contribution from a PO peaks,
the SSF either peaks or reaches its minimum (10−10). The agreement in the energy values of
the peaks (or dips) is quite remarkable. But we do not know why anti-scar occurs here. This
anti-scar is interesting in that it produces a bright hallow just of the same size and position
of the scar but the central core is missing.

2.5.3. IPO(E) for various POs and their Fourier transform

Let us now examine the case of several POs simultaneously in Fig. 4. The profiles, the SSF,
and the Fourier transforms to the action space are listed in three columns. As Wintgen et
al. write as ‘the scars are the rules rather than exception’ [11] we find that particular energy
eigenstates give salient high scar function value while the other states give very low value
of order even 10−10. Further more the Fourier transform IPO(S) of IPO(E)shows sequential

peaks at equal ∆S. We compare in Fig. 5 ∆SQM
r and SCl

r (the measured spacing of the orbit
and the action of the PO). They agree excellently; the POs live in quantum theory.
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γ=0.2   FPO(＋－)  210-302th

E     = - 0.002398239 E     = - 0.002226257 E     = - 0.002073 275 E     = - 0.001958 291E     = - 0.002567223

Figure 3. Contribution of FPO (+−) to AKP. Upper two diagrams: The (+−) contribution as a function of energy predicted
by POT compared with the scar strength extraction from each of the energy eigenstates. Lower two diagrams: the scaring

status of (+−) at levels indicated by arrows are exhibited with respect to wave functions squared and Husimi functions. (cf.
Fig. 1 and Fig. 2). Scar and anti-scar appear alternatively.

2.6. Direct phase space observation of Scaring orbit

The scar strength function is a useful tool which gives a list of numerical values which shows
succinctly to which eigenstates the periodic orbit exerts its effect strongly. But we certainly
want also visualized picture how the PO turns up in the 4 dimensional phase space. (Because
H = const., the actual independent variables are three, and we choose µ, ν, pµ.) The sample
pictures are shown in Fig.6.

3. Robustness of Scaring under the Variation of Anisotropy Parameter

3.1. Swap of the patterns under avoiding crossings

It is well known that the patterns of wave functions (and of Husimi distributions) are
swapped between the energy eigenstates via the avoiding level crossings, which is easy to
demonstrate in terms a simple coupling model of two levels. Fig. 7 is a typical example of
this phenomenon.

It is shown in [21,22] that with the aid of the diabatic transformation one can trace the
localization on the transformed basis until very near to the minimum gap with an explicit
evidence in the billiard scars. We have verified this issue in AKP. Furthermore it is
conjectured that the long periodic orbits may interpolates two shorter orbits and they may
be the cause of the avoiding crossings in this way. We are testing this conjecture in AKP.
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Figure 4. γ = 0.2 Profiles of PO, the scar strength function, and Fourier transformation of scar strength function to the action

space.
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Figure 5. Plot of (∆SQM
r , SCl

r ) for periodic orbits r = FPO, PO22, PO23, PO36, where ∆SQM
r is measured from the third

column of Fig.4 and SCl
r is the action value of the classical orbit.

Figure 6. Two samples of density plot of Husimi functions in the 3 dimensional µ − ν − pµ space. Left: γ =0.2, WHus for
E786 = −0.0007201. Red orbit is the FPO (+−). Right: γ=0.6, WHus for E579 = −0.0005681. Blue and green orbits are
respectively PO23 (+ + −−) and PO37 (+ + −−+−).

3.2. Robust association of localization with periodic orbits

We have posed the following question in the introduction of this chapter.

1. Energy levels exhibit randomness at high anisotropy and change their values randomly
repeating successive avoiding crossings when the anisotropy parameter is varied
gradually.
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Figure 7. Avoiding level crossing between 260th and 261th energy eigen states under the variation of the anisotropy γ ∈

[0.6, 0.606]. Both the wave function squared and Husimi functions are swapped around the avoiding crossing.

2. On the other hand the peak locations (29) of the DOS as predicted by a single PO change
smoothly with the anisotropy and the scar tends to be observed in the energy eigenstate
around the peak position in the DOS as in Fig.2.

Aren’t the two issues in contradiction? We have found that they can live together (within
approximation of the fluctuation size). Most important point is that the swap of the
localization patterns at avoiding crossing is in harmony with the transportation of them by
the responsible PO orbits. Besides the POT prediction (29) does not imply the exact location
of theappearance of the scar.

It has some allowance as recognized by the width of the modulation of SSF[11].

Let us explain this by Fig. 8. Here the anisotropy γ is varied from 0.6 to 0.7 with inclement
0.001. As for (1) we indeed observe both random fluctuation of energy levels as well as many
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avoided crossings. As for (2), we have picked the bouncing-type periodic orbit PO22 as an
example. The predicted peak position (29) of its contribution to DOS varies with the change
of γ as shown by a red (almost straight) curve. This PO22 produces a salient cross-shaped scar
at E260 (and E275) at γ=0.6. We have investigated how the cross-shaped scar travels in the
spectrum space suffering many avoiding crossings. It reaches at E276 (and E291) at γ =0.7
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Figure 8. The spectrum lines in the wide interval γ ∈ [0.6, 0.7] investigated with increment 0.001. The cross-shaped scar by
PO22 travels within a belt bounded by two dashed lines. The POT prediction (24) is exhibited by a red curve.
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and the track in between is enclosed by a belt shown by two dashed lines. We clearly observe
that the belt is closely associated by the POT prediction curve. In this sense the association
is robust.

4. Conclusion

We have presented ample examples of scaring phenomena for the first time in AKP.
Especially we have found how the fluctuation of energy levels and smooth POT prediction for
the scaring levels are compromised by using the advantage of AKP endowed by a chaoticity
changing parameter.

Although the theme is old, the scaring phenomenon is fascinating and we hope this
contribution fulfills a gap in the literature.
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