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1. Introduction

Cardiovascular (CV) disease is the most prevalent life-threatening clinical problem and is
a major cause of disability and economic burden worldwide [1].  Despite extensive phar‐
macotherapies,  there  remain many vascular  conditions  for  which pharmacological  inter‐
ventions are either non-existent or largely ineffective. CV gene therapy offers the benefit
of sustained and/or controlled expression of desired proteins in cell types, which makes it
more beneficial in providing durable clinical benefits [2]. The therapeutic gene works by
either over-expressing therapeutically beneficial proteins, replacing a deficient gene or its
expression proteins,  or  silencing a  particular  gene whose expression is  not  beneficial  in
the clinical scenario [3].  In addition, success of gene therapy also depends on the choice
of the vector and the delivery approach. Blood vessels are among the most feasible tar‐
gets for gene therapy because of ease of access using a catheter or by systemic delivery.
The new genetic  material  should enter  the cells  in the vasculature overcoming the ana‐
tomical,  cellular  and physiological  barriers  and induce the expression of  the transfected
gene in the target tissue. The target cells in the arteries are endothelial cells (EC), smooth
muscle  cells  (SMC) and fibroblasts,  which constitute  the intimal,  medial  and adventitial
layers, respectively [4]. In the case of atherosclerotic lesions, macrophages also become a
target cell. For the treatment of cardiovascular diseases, gene therapy strategies have been
designed to enhance re-endothelialization and EC function to reduce thrombosis,  inhibit
SMC proliferation and migration to prevent neointimal hyperplasia, and to improve ther‐
apeutic neo-vascularization to counteract ischemia.

Viral and non-viral vector systems have been evaluated for gene transfer to the vasculature.
Lipoplexes, polyplexes and lipopolyplexes as well as naked DNA have been used as non-
viral vectors for gene delivery to vascular tissues. Retroviruses, lentiviruses, adenoviruses
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and adeno-associated viruses have been tested as viral vectors. Both systems have their own
advantages and disadvantages that determine its use for a particular subset of CV diseases.
Another challenge is the development of delivery approaches that are clinically viable and
are capable of achieving consistent therapy for diseased arterial tissues. The efficiency of lo‐
calization, restriction of systemic distribution and adequacy of permeation into the target
tissue are required for the optimal delivery of the vector. It is also dependent on the require‐
ments of a given patho-physiological situation. Systemic, intravascular and perivascular ap‐
proaches are used for gene delivery to the vasculature.

In this chapter, our goal is to summarize the current understanding of gene therapy strat‐
egies used to treat CV diseases, specifically the therapies targeting thrombosis, atherogene‐
sis, SMC proliferation and migration, modification of extracellular matrix (ECM) and
regeneration of the endothelial cell layer. We will discuss various vectors and delivery ap‐
proaches used in the CV gene therapy and describe, in detail, the challenges associated with
each approach.

2. Vectors in vascular gene therapy

The ideal vector for clinical application would target the specific cell, offer the capacity to
transfer large DNA sequences, result in therapeutic levels of transgene expression that are
not attenuated by the host immune response, express transgene for a duration required to
alleviate the clinical problem, pose no risk of toxicity either acutely (as a result of immuno‐
genicity or unregulated transgene expression) or in the long-term (such as oncogenesis), and
be cost-effective and easy to produce in therapeutically applicable quantity [5]. Currently,
no available vector fulfils all these criteria; therefore, a perfect vector for vascular gene thera‐
py does not exist. Nonetheless, viral and non-viral vector systems have been evaluated for
gene transfer to the vasculature.

2.1. Viral vectors

Retroviruses,  adenoviruses  (Ad)  and  adeno-associated  viruses  (AAV)  are  used  as  viral
vectors in vascular gene transfer. Recombinant retroviruses are RNA viruses that are ca‐
pable  of  integrating  transgene  into  the  target  genome.  Disadvantages  of  this  vector  in‐
clude  instability,  the  requirement  of  cell  division  for  gene  transfer  and  the  inability  to
attain high titers.  Since  the majority  of  vascular  cells  are  not  undergoing mitosis  at  the
time of  exposure to the viral  vector,  the efficiency of  gene delivery to vascular  cells  by
such vectors may be as low as 1% to 2% [6].  Attempts have been made to increase the
transduction efficiency in endothelial cell using multiple viral exposures [7] or increasing
viral titers by ultracentrifugation [8]. Murine leukemia retroviral vectors (MuLV) pseudo‐
typed  with  the  vesicular  stomatitis  virus  G  glycoprotein  (VSV-G)  have  the  capacity  to
transfect  human  ECs  and  SMCs  in  vitro  with  significant  improvement  in  stability  and
transduction  efficiency  [9].  Unlike  other  retroviruses,  lentiviruses  are  able  to  transduce
non-dividing cells,  which is  an attractive characteristic  for  CV gene therapy.  These vec‐
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tors demonstrate significantly broadened tropism and high stability and have been used
to demonstrate efficient  transgene delivery in vitro  into SMCs and ECs from human sa‐
phenous vein [10], human coronary artery SMCs and ECs [11], and cardiomyocytes [12].

Ad vectors are the most  commonly used viral  vectors in the CV system. They transfect
non-dividing cells  efficiently  [Figure  1],  but  sustained gene  expression is  limited to  ap‐
proximately 2 weeks because the gene is kept episomal [2]. The administration of the Ad
vectors is almost invariably associated with the development of systemic neutralizing an‐
tibodies  directed against  the vector  [13].  Therefore,  lowering the immunogenicity of  the
Ad virus  is  desirable  and can be  achieved by deleting genes  that  encode viral  proteins
[14]. Another method of reducing the inflammatory reaction to gene transfer by Ad vec‐
tors  is  to  preserve  the  E3  region,  which  is  supposed to  modulate  the  host  immune re‐
sponse  in  vivo  [15].  When  systemically  administered,  Ad5  poorly  transduced  ECs  but
could effectively transduce medial SMCs during endothelial denudation [5]. Efficient my‐
ocardial  transduction  was  observed  following  local  delivery  of  Ad5  vectors  in  porcine
heart, where almost 80% of cardiomyocytes were transduced [16].

AAV vectors have emerged as versatile vehicles for gene delivery due to their efficient in‐
fection of dividing and non-dividing cells in the presence of helper virus, sustained main‐
tenance of  viral  genome leading to long-term expression of  the transgene,  and a strong
clinical safety profile [17]. AAV is non-pathogenic since it cannot replicate without the as‐
sistance of a helper virus. Recombinant AAV (rAAV) vectors have almost the entire viral
genome removed, thereby yielding a delivery vehicle with enhanced safety and reduced
immunogenicity [18].  The AAV Rep  and Cap  genes, which are required for viral replica‐
tion  and  packaging,  are  supplied  by  a  helper  plasmid  during  the  production  process.
Wild type AAV preferentially integrates to a specific locus of human chromosome 19. The
rAAV has mechanisms for sustained episomal maintenance or semi-randomly integrates
at  a  low rate  [19].  Problems with  AAV vectors  include  limited  tissue  tropism for  sero‐
types that bind heparan sulphate, challenges with preexisting immunity due to prior ex‐
posure,  and also substantially  delayed onset  of  transgene expression compared to other
vectors.

2.2. Non-viral vectors

Even though the transfection efficiency of non-viral vectors are lower than that of their viral
counterparts, they are associated with many advantages such as low immunogenic re‐
sponse, the capacity to carry large inserts of DNA (52Kb), the possibility of selective modifi‐
cation using ligand and large scale manufacture [20]. Ideal non-viral vectors should be
degradable into low molecular weight components in response to biological stimuli for low‐
er toxicity and effective systemic clearance. They should also be efficient in overcoming ex‐
tracellular and intracellular barriers and tissue/cell-targeted for specific accumulations [21].
In this group of vectors, naked DNA, cationic liposomes and cationic polymers have been
used for vascular gene transfer.
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Gene transfer with naked DNA is attractive because of its simplicity and lack of toxicity
[22]. However, the efficiency of gene transfer with naked DNA is low due to its negative
charge conferred by the phosphate groups, making cellular uptake difficult by the nega‐
tively charged cell surface, rapid degradation by nucleases in the serum and clearance by
the mononuclear phagocyte system in the systemic circulation. However, site-specific arte‐
rial  gene transfer  of  vascular  endothelial  growth factor  (VEGF)-165 could yield efficient
gene  transfection  resulting  in  accelerated  re-endothelialization,  inhibition  of  neointimal

Figure 1. Transduction using adenoviral vectors. Recombinant adenovirus enters cells via CAR-mediated binding
allowing internalization via receptor-mediated endocytosis through clathrin-coated vesicles. Inside the cytoplasm, the
endocytosed adenoviral vector escapes from the endosomes, disassembles the capsid and the viral DNA enter into the
nucleus through the nuclear envelope pore complex. The viral DNA is not incorporated into the host cell genome, but
rather assumes an epichromosomal location, where it can still use the transcriptional and translational machinery of
the host cell to synthesize recombinant protein. [CAR; Coxsackievirus and adenovirus receptor]
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thickening, reduced thrombogenicity, and restoration of endothelium-dependent vasomo‐
tor reactivity after injury due to balloon angioplasty in a rabbit model [23].  Physical ap‐
proaches have been explored for plasmid gene transfer into vascular cells in vitro  and in
vivo.  Ultrasound  exposure  can  induce  transient  pore  formation  in  the  cell  membrane,
thereby  increasing  the  plasmid  DNA uptake.  Indeed,  microbubble-enhanced  ultrasound
can  achieve  transgene  expression  levels  in  vitro  at  approximately  300-fold  than  that  of
naked plasmid DNA alone in porcine VSMCs [24]. The non-invasive nature of this techni‐
que makes it  more feasible  for  clinical  use.  Local  administration of  plasmid DNA, cou‐
pled  with  application  of  brief  electric  pulses  to  cells  or  tissues  to  increase  cellular
permeability-- also called electroporation--yields high levels of transgene expression in the
arteries [25]. However this technique is limited by its invasive nature and tissue damage
associated with high voltages applied [26].

To increase the efficiency of gene transfer by naked DNA, they are complexed with cati‐
onic lipids (liposomes or lipoplexes) or polymers (polyplexes). The resulting net positive
charge of the cationic lipid/polymer DNA complexes facilitates fusion with the negatively
charged cell membrane and also reduces susceptibility to circulating nucleases. Transfec‐
tion efficiency of cationic lipoplexes varies dramatically depending on the structure of the
cationic lipids (the overall geometric shape, the number of charged groups per molecules,
the nature of lipid anchors, and linker bonds), the charge ratio used to form DNA–lipid
complexes,  and  the  properties  of  the  co-lipid  [22].  Although  transfection  efficiencies  of
liposomes are generally seen lower in vascular cells [22], the LID vector system, consist‐
ing of a liposome (L), an integrin targeting peptide (I), and plasmid DNA (D), transfects
primary porcine vascular SMCs and porcine aortic ECs with efficiency levels of 40% and
35%,  respectively,  under  in  vitro  conditions  [27].  Some of  the  cationic  lipids  have  been
found  to  negatively  affect  cell  function.  Cationic  lipid-mediated  transfection  of  bovine
aortic ECs inhibits their attachment [28].

The DNA packaging efficiency and in vivo stability are higher for cationic polymers com‐
pared to cationic lipids. Furthermore, these complexes can be surface-modified with anti‐
bodies  or  other  targeting  ligands  to  deliver  nucleic  acids  to  specific  cells  [29].  Several
cationic polymers have been evaluated for their ability to form complexes with DNA, the
most significant being poly-lysine (PLL) and polyethylene-imine (PEI) [30]. PEI affects EC
function [31]; however, when conjugated with fractured polyamidoamine (PAMAM) den‐
drimers,  less  toxic  effects  were  observed  on  vascular  cells  in  addition  to  the  enhanced
transfection efficiencies [32].  Brito et al.  [33] developed lipo-polyplex nanovector systems
that  can transfect  EC and SMCs with reasonably high efficiency.  They used a combina‐
tion of  a  cationic  biodegradable  polymer,  poly(beta-amino ester)  (PBAE),  and a  cationic
phospholipid,  1,2-dioleoyl-3-trimethylammonium  propane  (DOTAP)  and  obtained  20%
and 33% transfection efficiencies in vitro in SMC and ECs, respectively. Molecular tuning
of  non-viral  vectors  via  stimuli  responsive  degradation  is  another  novel  approach  that
can be adopted in vascular gene transfer [21]. Schematic representation of non-viral gene
delivery is given in Figure 2.
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Figure 2. Non-viral gene delivery using lipoplexes: DNA is complexed with cationic liposomes and is internalized
through receptor mediated endocytosis. After their internalization large amounts of complexes are degraded in the
endolysosomal compartments. Only a small fraction enters into the nucleus and elicits desired gene expression.

2.3. Stem cells

One of the recent approaches is to use stem cells as gene delivery vehicles. Stem cell-based
gene therapy approaches are currently being employed in recent studies as an alternative
strategy to promote myocardial angiogenesis and regeneration. Indeed, the injection of ge‐
netically modified bone marrow-derived mesenchymal stem cells to express angiopoietin-1
improved arteriogenesis and increased collateral blood flow in porcine model of chronic
myocardial ischemia [34]. Nanofiber-expanded hematopoietic stem cells over-expressing
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VEGF and platelet-derived growth factor (PDGF) had a favorable impact on the improve‐
ment of rat myocardial function accompanied by upregulation of tissue connexin 43 and
pro-angiogenic molecules after infarction [35].

3. Major targets in vascular gene therapy

3.1. Promotion of re-endothelialization

EC loss because of vascular injury is a major contributing factor to the local activation of
patho-physiological events leading to the development of neo-intimal hyperplasia [36]. Pre‐
vious reports have shown that transplantation of autologous endothelial progenitor cells
(EPCs) onto balloon-injured carotid artery leads to rapid re-endothelialization of the denud‐
ed vessels [37]. EPCs can be genetically manipulated ex vivo, expanded, and reintroduced in
vivo, where at least a proportion will contribute to a long-lasting pool that can provide thera‐
peutically relevant levels of transgene expression. Chemokine receptor, CXCR4, is a key
molecule in regulating EPC homing [38]. Chen et al. [38] reported that CXCR4 gene transfer
to EPCs contributes to their enhanced in vivo re-endothelialization capacity. In another
study, Ohno and colleagues over-expressed C-type natriuretic peptide by gene transfer in
rabbit jugular vein grafts and observed accelerated re-endothelialization [39]. EPCs over-ex‐
pressing endothelial nitric oxide synthase (eNOS) further enhance the vasculo-protective
properties of these cells [40]. Local intravascular and extra-vascular expression of VEGF, us‐
ing plasmid DNA, accelerated re-endothelialization and decreased intimal thickening after
arterial injury in rabbit models [23, 41].

3.2. Promotion of endothelial cell function

Antithrombotic  and anticoagulation  therapy generally  involves  the  systemic  administra‐
tion of agents that target a small region of the vasculature. Localized and controlled deliv‐
ery  of  specific  genes  could  allow  sustained  antithrombotic  or  anticoagulant  treatment
when  prolonged  systemic  administration  is  undesirable.  Antithrombotic  gene  therapy
strategies could include inhibition of coagulation factors, over-expression of anticoagulant
factors, or modulation of EC biology to make thrombus formation or propagation unfav‐
orable  [42].  Ad  gene  transfer  of  thrombomodulin  decreased  arterial  thrombosis  to  28%
compared to 86% in control rabbit model [43]. Hemagglutinating virus of Japan (HVJ)-lip‐
osome-mediated gene transfer of tissue factor pathway inhibitor (TFPI), a primary inhibi‐
tor  of  TF-induced  coagulation,  significantly  reduced/inhibited  thrombosis  after
angioplasty  in  atherosclerotic  arteries  without  any  significant  adverse  effects  [44].  Ad
gene transfer of many mediators,  including hirudin to inhibit thrombin [45],  tissue plas‐
minogen activator (tPA) to enhance fibrinolysis [43], cyclo-oxygenase to augment prosta‐
cyclin synthesis [46],  prevents arterial  thrombosis and promotes local thromboresistance.
Vascular gene delivery of anticoagulants by local infusion of retrovirally-transduced EPCs
with tPA and hirudin genes has also been attempted [37].
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3.3. Inhibition of atherogenesis

The extensive cross-talk between the immune system and vasculature leading to the infil‐
tration  of  immune cells  into  the  vascular  wall  is  a  major  step  in  atherogenesis.  In  this
process, reactive oxygen species play a crucial role, by inducing the oxidation of low-den‐
sity lipoprotein (LDL) and the formation of foam cells, and by activating a number of re‐
dox-sensitive  transcriptional  factors,  such  as  nuclear  factor  kappa  B  (NFκB),  Nuclear
factor  E2-related factor-2  (Nrf2)  [47],  or  activating protein  1  (AP1)  that  regulate  the  ex‐
pression of multiple pro-and anti-inflammatory genes involved in atherogenesis [48]. De‐
livery  of  genes  encoding  antioxidant  defense  enzymes,  like  extracellular  superoxide
dismutase  [49,  50],  catalase  [51],  glutathione  peroxidase  [51]  or  heme  oxygenase-1  [52],
suppresses atherogenesis in animal models.

Apolipoprotein E (ApoE), a blood circulating protein with pleiotropic atheroprotective
properties, has emerged as a strong candidate for treating hypercholesterolemia and CV dis‐
ease. The gene transfer of ApoE Ad vectors produced substantial amounts of plasma ApoE
following intravenous injection into ApoE-/- mice, which lowered plasma cholesterol, and
after 1 month, slowed aortic atherogenesis [53]. Hepatic expression of human ApoE3 using a
second-generation recombinant Ad vector directly induced regression of pre-existing athe‐
rosclerotic lesions without reducing plasma cholesterol or altering lipoprotein distribution
[54]. High concentrations of atherogenic apolipoprotein (apo) B100 could also be lowered by
hepatic gene transfer with the catalytic subunit of apoB mRNA editing enzyme [55].

3.4. Inhibition of SMC proliferation and migration

SMC migration and proliferation as well as deposition and turnover of ECM proteins con‐
tribute to the process of Intimal hyperplasia. Several different approaches were introduced
to inhibit SMC proliferation during restenosis. Most of the approaches targeted inhibition of
cell cycle, where cell cycle inhibitor genes are over-expressed. Non-phosphorylated retino‐
blastoma gene (Rb) [56]; p21 [57, 58]; p27-p16 fusion gene [59, 60] ; cyclin-dependent kinase
inhibitor p57Kip2 [61]; and the growth-arrest homeobox gene gax [62] are few of the genes
over-expressed to inhibit cell proliferation and neo-intimal formation. Genes that have a
beneficial influence on various aspects of vessel wall physiology also inhibit SMC prolifera‐
tion. Nitric oxide generation by endothelial nitric oxide synthase inhibits SMC proliferation
in vitro and modulates vascular tone locally in vivo [63].

Another approach was to inhibit growth factor signaling by the introduction of nucleic acid
constructs that interfere with mRNA stability, such as antisense oligonucleotides, hammer
head ribozymes and siRNA [64]. Gene transfer of a truncated form of fibroblast growth fac‐
tor (FGF) receptor using Ad vector suppressed SMC proliferation in vitro [65]. Hammerhead
ribozymes directed against PDGF-A chain [66] and transforming growth factor-β [67] inhib‐
ited SMC proliferation and neointima formation in rat carotid artery after balloon injury.

The regulation of a target gene can influence the level of transcription, either by decoy oligo‐
nucleotides, which are either short double-stranded oligonucleotides or dumb-bell shaped
circular oligonucleotides that represent transcription factor binding sites, and thus compete
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for binding of a specific transcription factor that is relevant for the respective gene [64]. Ad‐
ministration of AP-1 decoy ODNs in vivo using HVJ-liposome method virtually abolished
neointimal formation after balloon injury to the rat carotid artery [68]. Transfection of vein
grafts with a decoy antisense oligonucleotide to block transcription factor E2F imparted
long-term resistance to neointimal hyperplasia and atherosclerosis in rabbits on a cholesterol
diet [69]. Another approach was to drive SMC into apoptosis during the process of prolifera‐
tion and migration. Transduction of rabbit iliac arteries with recombinant Ad vectors for Fas
ligand (L) reduced neointima formation, which occurred through the killing of Fas express‐
ing neighboring SMC by FasL-transduced cells [70].

The regulation of SMC migration is mediated partly through the action of matrix metallo‐
proteinases (MMPs) and their endogenous inhibitors,  tissue inhibitors of matrix metallo‐
proteinases  (TIMPs)  [71].  AAV-mediated  TIMP1  transduction  in  SMCs  of  injured  rat
carotid  arteries  significantly  reduced  the  ratio  of  intima  to  media  (52.4%)  after  two
months  of  treatment  [72].  Overexpression of  TIMP-2  [73],  TIMP-3  [74]  and TIMP-4  [75]
has also been demonstrated to inhibit SMC migration and neo-intimal proliferation in hu‐
man vein grafts and porcine vascular injury models. Gurjar et al.  [76] demonstrated that
eNOS gene transfer inhibits SMC migration and MMP-2 and MMP-9 activities in SMCs in
vitro. A combination approach of TIMP-1 and plasminogen activator system inhibited vein
graft  thickening  in  hypercholesterolemic  mice,  when  plasmids  encoding  TIMP-1-ATF
(amino terminal fragment of urokinase) were incorporated to the vein graft by intravascu‐
lar electroporation [77].

3.5. Enhancement of therapeutic angiogenesis

Ischemic diseases, including acute myocardial infarction and chronic cardiac ischemia, are
characterized by an impaired supply of blood resulting from narrowed or blocked arter‐
ies  that  starve tissues  of  needed nutrients  and oxygen [78].  Delivery of  genes  encoding
angiogenic factors or the whole protein has been shown to induce angiogenesis in numer‐
ous animal models with the expression of a functioning product [79]. The successful ap‐
plication  of  recombinant  protein  and  gene  transfer  for  the  treatment  of  myocardial
ischemia  was  reported  by  Losordo  and  colleagues  [80]  by  direct  intra-myocardial  gene
transfer of naked plasmid DNA encoding VEGF-165 in porcine model. These results were
confirmed in phase 1  assessment of  direct  intra-myocardial  administration of  Ad vector
expressing  VEGF-121  cDNA  in  patients  with  severe  coronary  artery  disease  [81].  Ad-
mediated FGF-4  gene  transfer  improved cardiac  contractile  function and regional  blood
flow in  the  ischemic  region during stress  in  pig  model  [82].  Placebo-controlled trials  in
humans  with  chronic  stable  angina  indicate  that  Ad5FGF-4  increased treadmill  exercise
duration and improved stress-related ischemia [82]. In another study, following coronary
artery occlusion, rabbits treated with Ad vector containing acidic FGF showed a 50% re‐
duction in the risk region for myocardial infarction [83].
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4. Challenges in gene therapy

4.1. Cellular and extracellular barriers in gene delivery

Viruses have highly evolved mechanisms for obtaining optimized receptor-mediated inter‐
nalization, efficient cytosolic release, directed and fast intracellular transport towards com‐
partments and readily disassemble. In contrast, non-viral vectors must overcome multiple
extracellular and intracellular barriers [21]. These barriers include binding to the cell surface,
traversing the plasma membrane, escaping lysosomal degradation, and overcoming the nu‐
clear envelope. To overcome the delivery barriers in non-viral gene transfer, various strat‐
egies have been employed to enhance the circulation time, improve intracellular delivery,
and enhance endosomal escape and nuclear import. Lipoplexes have shown rapid hepatic
clearance during systemic administration. Modification of lipoplexes with hydrophilic mole‐
cules like polyethylene glycol (PEG) and polyethyleneimine (PEI) causes steric hinderance
between opsonins and the delivery vectors, increasing their circulation time in the blood.
PEGylation of PLL decreases interparticle aggregation, resulting in high transfection effi‐
ciency in the presence of serum [29]. One study has demonstrated that when artery wall
binding peptide (AWBP), a core peptide of apo B100 -- a major protein component of LDL --
was conjugated to PLL with PEG as the linker, the PLL-PEG-AWBP protected the plasmid
DNA from nucleases for more than 120 min in circulation and also showed 100 times higher
transfection efficiency when compared to PLL and PLL-g-PEG in bovine aortic ECs and
SMCs [84]. In an innovative approach, micellar nanovectors made of PEG-block-polycation,
carrying ethylenediamine units in the side chain [PEG-PAsp(DET)], complexed with plas‐
mid DNA to form polyplex micelle effectively transfected vascular smooth muscle cells in
vascular lesions without any vessel occlusion by thrombus [85] in rabbit carotid arteries.
However, PEI-mediated gene delivery can affect EC function and viability [31].

The size and charge of the lipoplex/polyplex play an important role in their intracellular de‐
livery. Lipoplexes and polyplexes are generally formulated into particles with net positive
charges to trigger endocytosis by non-specific electrostatic interaction between the positive‐
ly charged complexes and negatively charged cell surface [29]. Since drug carriers with a
smaller particle size have resulted in higher arterial uptake compared to carriers with larger
size, the size of the complexes was expected to be a dominating factor in the arterial wall
lesions because of the rapid blood flow which could wash out most of the drugs or thera‐
peutic chemical agents from the arterial wall lesions within 20–30 min. Song et al. [86] re‐
ported a potentially useful particle size of 70∼160 nm for local intraluminal therapy of
restenosis.

By taking advantage of high expression levels of receptors or antigens in diseased condi‐
tions, gene complexes can be targeted using specific ligands, such as antibodies, peptides
and proteins. Cyclic RGD (cRGD) peptide recognizes α(v)β(3) and α(v)β(5) integrins, which
are abundantly expressed in vascular lesions. When cRGD was conjugated to PEG-
PAsp(DET) to form polyplex micelles through complexing with plasmid DNA, the micelles
achieved significantly more efficient gene expression and cellular uptake as compared to
PEG-PAsp(DET) micelles in ECs and SMCs [87]. PAMAM dendrimers with E/P-selectin an‐
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tibody was used for gene targeting to activated vascular ECs [88]. The lectin-like oxidized
LDL receptor (LOX-1) is expressed selectively at low levels on ECs but is strongly upregulat‐
ed in dysfunctional ECs associated with hypertension and atherogenesis. White and collea‐
gues [89] confirmed the selectivity to LOX-1 for peptides LSIPPKA, FQTPPQL, and
LTPATAI, which could be potential targets to dysfunctional ECs expressing LOX-1 receptor.
Another approach to increase intracellular delivery is to use cell penetrating peptides
(CPPs). CPPs consist of short peptide sequences that are able to translocate large molecules
into the cells and increase the transfection efficiency [90].

Following internalization of lipoplexes and polyplexes via endocytosis, endosomal entrap‐
ment and subsequent lysosomal degradation are the major hurdles that limit transfection ef‐
ficiency [29]. Lipoplexes are modified with dioleoylphosphatidylethanolamine (DOPE) or
other helper lipids due to its fusogenic functionality and its ability to destabilize endosomal
membranes. Small PLLs with cationic lipid DOCSPER [1,3-dioleoyloxy-2-(N(5)-carbamoyl-
spermine)-propane] enhanced gene transfer in primary porcine SMCs in vitro and in vivo in
porcine femoral arteries [91]. Polyplexes, PEI and PAMAM are cationic polymers of high ef‐
ficiency partly because of their ability to burst the endosomal membrane due to ‘proton
sponge effect’.

A promising new delivery strategy is to use synthetic peptide carriers containing a nuclear
localization signal to facilitate nuclear uptake of plasmid DNA. Nuclear import of plasmid
DNA is more challenging for transfecting non-dividing cells. Strategies to increase the nu‐
clear import of genes involve tagging the nuclear localization sequence (NLS) with DNA
vectors. NLS is a major player that shuttles protein-plasmid complexes through the nuclear
pore by interaction with importins and transportin [92, 93]. Incorporation of DNA nuclear
targeting sequence SV40 into expression plasmids results in 10-40 fold increases in vascular
gene expression in rat mesenteric arteries [94], confirming the function of DNA nuclear tar‐
geting sequences in vivo.

4.2. Challenges associated with the vectors

4.2.1. Insertional mutagenesis

Insertional mutagenesis is a major concern in gene therapy involving viral vectors. These
vectors integrate randomly or quasi-randomly into the host cell’s genome, to stably transfect
the target cell. The variable site and frequency of integration of the transgene can induce
mutagenesis in the host genome, resulting in devastating consequences for the cell and for
the organism. [95, 96]. Another disadvantage of the random integration of a transgene is the
unpredictability of its stability and its expression. The genomic locus in which the vector in‐
tegrates can have profound effects on the level of transgene expression, as it can completely
silence the transgene, or it can increase or decrease its expression. These effects could not be
avoided by sophisticated vector design or inclusion of the gene’s own promoter and/or en‐
hancer region in the transgenic vector construct, as the surrounding chromatin can override
the activity of the original regulatory regions. Gene targeting by homologous recombination,
however, lacks many of these shortcomings [96]. In this process, the transgene recombines
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with its natural locus in the host genome, thereby ensuring correct transcription. Also, after
homologous recombination, the targeted modification of the chromosomal locus is stable,
whereas randomly integrated sequences might be lost over time. In their seminal paper,
Russel and Hirata [97] reported that DNA vectors based on the AAV could target homolo‐
gous chromosomal DNA sequences and allow high-fidelity, non-mutagenic gene repair in a
host cell. Although the laborious vector design and low transfection efficiencies of AAV vec‐
tors compared to the other viral vectors still remains a concern, statistical information neatly
outlines the advantage of rAAV gene replacement system over standard viral vectors, which
induce strong immune response.

4.2.2. Tissue-specific targeting

The promiscuous tropism of vectors resulting in high-level transgene expression in multiple
tissues is another major challenge in vascular gene therapy. After systemic application, most
viral vectors are trapped by the liver, hampering delivery to target CV tissues. Approaches
to restrict gene delivery to desired cell types in vivo relied mostly on cell surface targeting or
cell-specific promoters.

The cis-acting regulatory elements of the SM (smooth muscle)22α [98-100], telokin [101],
smooth muscle myosin heavy chain [102], smooth muscle α- [100] and γ-actin [103], and
desmin [104] genes have been shown to direct reporter gene expression to smooth muscle
tissues in transgenic mice. In our studies, specific gene transfer to the SMC layer was ach‐
ieved in swine coronary and peripheral arteries using SM22α promoter in AAV [17]. Al‐
though the efficiency of transduction was low when compared to a similar study using AAV
vectors with cytomegalovirus (CMV) promoter [105], the use of SM22α promoter caused
specific transduction of SMCs in vivo. An interesting approach to enhance the transduction
efficiency of SM22α -containing plasmid was to incorporate chimeric transcriptional cas‐
settes containing a SM-myosin heavy chain enhancer element combined with the SM22α
promoter [106]. The transfection levels obtained using these chimeric constructs in Ad vec‐
tor were similar to that with CMV promoter when tested in rat carotid arteries. Certain
DNA nuclear targeting sequences can be used to restrict DNA nuclear import to specific cell
types. Young et al. [107] improved the efficiency of transduction in SMCs of rat vasculature
using a SMC-specific DNA nuclear targeting sequence.

EC specific gene expression was obtained when promoters of fms-like tyrosine kinase-1
(FLT-1) [108], intercellular adhesion molecule (ICAM) -2 [109], angiopoietin-2 [110], eNOS
[111], vascular cell adhesion molecule-1 (VCAM-1) [112], von Willebrand factor [113], tyro‐
sine kinase with immunoglobulin and epidermal growth factor homology domains (Tie)
[114], kinase-like domain receptor [115] were used in transgenic mouse models. Other EC-
specific promoters include the oxidized LDL receptor LOX-1 [116] and ICAM-1 [117], which
exhibit upregulation upon cytokine stimulation, a possible advantage depending on the ap‐
plication in inflammatory conditions [118]. With the possible exception of the mouse Tie-2
and human ICAM-2 genes, most of EC–specific promoters tested to-date have been shown
to direct expression in distinct and restricted sites of the vascular tree [119]. A combination
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approach of the Tie2 promoter and enhancer (Tshort) by Minami and collegues [119] direct‐
ed widespread EC expression in vivo.

Another challenge was in generating an EC-specific promoter with comparable efficiency as
the CMV promoter. White et al. [120] examined several novel Ad expression cassettes for
EC-specific gene transfer with CMV, Tshort, ICAM-2, ICAM-1, FLT-1 promoters, respective‐
ly and found that LOX-1 promoter elements significantly increased reporter gene expression
in carotid arteries compared to other promoters. The efficacy of these novel expression cas‐
settes in large animal models have yet to be established.

An increasingly important area to in-tissue specific targeting is to engineer viral vectors Ads
and AAVs with altered cell tropisms to narrow or broaden its efficiency in tissues refractory
to infection [19, 121]. Non-genetic approaches typically utilize bispecific antibodies that both
neutralize wild-type virus tropism and provide a new cell binding capacity [122]. For genet‐
ic targeting strategies, the virus capsid are engineered to express foreign ligands that target
selected receptors in the absence or presence of additional modification to ablate the natural
tropism of the virus [122, 123]. Ad homing to target endothelial cells at specific sites of the
body can be achieved by deleting the ability of the virus to interact with its natural receptor,
Coxsackievirus and adenovirus receptor (CAR), and a simultaneous addition of a ligand
that directs the virus to the angiotensin converting enzyme on the ECs. Retargeting of
AAV-2 with novel peptides could increase both transduction efficiency and selectivity [124]
in vascular ECs [125] and SMCs [126] in vitro.

4.3. Challenges associated with the mode and route of gene delivery

4.3.1. Systemic gene delivery

The vascular system represents an ideal route of substance transport for reaching a specific
site for therapeutic intervention. However, in the case of non-viral vectors, which are cation‐
ic polymers in most cases, it has been found that electrostatic interactions between the
sulphated glycosaminoglycans in the serum as well as those expressed on the cell surface
cause premature release of plasmid DNA leading to its inactivation and extracellular degra‐
dation by serum DNAses [21]. Also, after systemic vascular application, non-specific distri‐
bution of plasmid DNA throughout the vasculature would result in undesired side effects
because of accumulation at non-specific sites. Intravenous administration of cationic poly‐
mers resulted in their localization to liver, lung, kidney, and spleen in pigs and rabbits
[127-129]. Other barriers to systemic delivery include rapid clearance of the lipoplexes by
the reticulo-endothelial system and target specificity.

Most Ad vectors are trapped by the liver, hampering delivery to target CV tissues after sys‐
temic application. Systemic tail vein injection of Ad vector in mice resulted in virus DNA
deposition liver, lung, kidney and testis [130]. Furthermore, the use of a heterologous viral
promoter CMV in the majority of vascular gene transfers causes systemic organ toxicity re‐
sulting from unrestricted transgene expression [131]. Retargeting of vectors and use of tissue
specific promoters offers an enhanced safety profile by reducing ectopic expression in vital
organs including the liver and lungs.
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4.3.2. Endovascular gene delivery

Endovascular catheter-based gene delivery allows localization of vectors to the vessel wall
and has the advantage that smaller quantities of viral vectors can be used when compared to
those used in systemic delivery. The localized delivery minimizes widespread bio-distribu‐
tion of vectors and simultaneously increases the local vector concentration. Several catheters
are used for vascular gene delivery [132], and the efficiency of gene transfer depends on
multiple physical parameters during the delivery process, including balloon pressure, vessel
wall exposure time, concentration, and injection force [133]. Diffusive balloon catheters that
include double balloon, channel, microporous and hydrogel balloons, facilitate passive dif‐
fusion of the vector to reach only the innermost layers of the artery (intima and inner media)
[134]. Although this system has the advantage of causing relatively minor damage to the
vessel media and intima, the major drawbacks include tissue ischemia caused due to blood
flow blockage following balloon inflation and relatively low gene transfection rates owing to
the short exposure time to the vessel wall. The pressure-driven balloon catheters [135], like
the circumferential needle injection balloon catheter and the porous balloon catheter, are
thought to efficiently delivery vectors to the deeper medial and adventitial layers of the ar‐
tery compared to passive diffusion catheters, but they increase the risk of vascular injury.
Damage to the endothelial lining promotes SMC proliferation and may lead to restenosis.
The localized vascular injury can also cause increased inflammatory response. Iontophoretic
catheters, a mechanically assisted injection catheter, enhance the vector penetration across
the EC lining by generating an electrical current gradient to drive charged or hydrophilic
molecules as deep as the adventitial layer of the artery wall, but depends on the charge, size,
and concentration of the delivered compound [136]. Despite the theoretical aspects, in most
cases of catheter-based gene transfer the vector is not distributed to the target vessels but to
the region of tissue surrounding the target vessel or into the systemic circulation.

Gene eluting stents are attractive alternatives for localized gene delivery as they provide a
platform for prolonged gene elution and efficient transduction of opposed arterial walls, es‐
pecially in the treatment of in stent restenosis [132]. Local delivery of naked plasmid DNA
encoding for human VEGF-2 via gene-eluting stent could decrease neointima formation
while accelerating re-endothelialization in rabbit model [137]. Stents coated with lipoplexes
containing eNOS plasmid accelerated re-endothelialization in hypercholesterolemic rabbits
[138]. The same research group also demonstrated successful Ad and AAV delivery to the
vessel wall by gene eluting stents with no systemic dissemination of the viral vectors [139].
Stents are often coated with synthetic or naturally occurring biopolymers for prolonged re‐
lease of the gene to the vessel wall [140]. Recently, fully biodegradable stents have shown
great promise in the treatment of peripheral arterial disease [141]. A combination approach
of therapeutic gene delivery and fully biodegradable stents would be a novel approach to
gene therapy.

4.3.3. Perivascular gene delivery

In endovascular approach, most catheters require prolonged total vascular occlusion for effi‐
cient gene delivery to the vasculature increasing the risk of ischemia. Delivery of genes di‐
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rectly into the adventitia bypassing intima and media may facilitate relatively rapid and
efficient delivery compared to endovascular approaches [132]. The advantages of perivascu‐
lar gene transfer are that the blood flow and endothelium are not disrupted and the place‐
ment of vector particles within tissues will result in enhanced local transduction efficiency
compared to that achievable by endoluminal delivery [142]. Moreover, the local gene deliv‐
ery through this ‘outside in’ approach has received increased attention due to important
findings on the capacity of adventitia to influence neointima formation and vascular remod‐
eling [143]. Localized adventitial delivery of a replication-deficient Ad construct containing
a fibroblast-active promoter with the gp19ds portion of NADPH inhibitor was effective in
reducing overall vascular superoxide anion O2

- and neointima formation after angioplasty in
rat common carotid artery [144]. Shneider et al. [145] showed that the infusion of Ad vectors
into the carotid artery adventitia achieved recombinant gene expression at a level equivalent
to that achieved by means of intraluminal vector infusion. Further, perivascular approach
has been reported to minimize the pro-inflammatory effects of Ad vectors [145]. Adventitial
gene delivery are also reported to be performed with silastic or biodegradable collars [146]
which act as reservoirs of the vector.

The endovascular access is comparatively difficult in the case of coronary arteries, and the
numerous side branches will also permit the run-off of the infused volume. An alternative
delivery approach for coronary arteries is the expression of diffusible gene products into the
pericardial space surrounding the heart and coronary arteries [147]. Transvascular needle
injections of Ad vectors to the adventitia and perivascular tissue of coronary arteries have
also been reported [148].

4.4. Immunological barriers to gene transfer

The immune system has evolved to eliminate foreign material and therefore, constrains the
successful use of gene-replacement therapy based on viral vectors. There are several reports
that suggest innate and adaptive immune responses to gene transfer [149, 150]. The vector
dose, the route of administration, the nature of the transgene, and host-related factors re‐
sponsible for inter-individual variability influence the immune response [151]. The early re‐
sponses involve mechanisms that include the detection of pathogen-associated molecular
patterns (PAMPs) present on the viral structural proteins containing the transgene by pat‐
tern recognition receptors (PRRs) on cells of the innate immune system (i.e., macrophages
and dendritic cells) and the subsequent elaboration of pro-inflammatory cytokines that can
up-regulate later adaptive immune responses [152]. The most studied family of PRRs are the
toll-like receptors (TLRs), of which TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 have been im‐
plicated in initiating inflammatory responses to viruses [153]. The adaptive responses can
include: the generation of antibodies to the transgene delivery vehicle compromising vector
administration, or the generation of antibodies to the transgene product which nullifies
transgene expression, or cytotoxicity to vector and/or transgene product which leads to the
loss of transduced cells. It also results in a CD8+ memory T cell response that thwarts further
efforts to use the same vector or transgene.
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Ad vector particles can elicit strong innate and adaptive immune responses. The interplay of
both systems activates CD4+ and CD8+ T cells and B cells as well as facilitates the induction
of transgene-specific immune responses. The innate immune responses after systemic ad‐
ministration of Ad vectors are due to several processes: complement system activation, ana‐
phylotoxin release, macrophage activation, release of cytokines and chemokines, including
Interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, macrophage inhibitory protein-2, and
RANTES (regulated and normal T cell expressed and secreted); EC activation, generalized
transcriptome dysregulation in multiple tissues, activation of macrophages and dendritic
cells, mobilization of granulocyte and mast cells, and thrombocytopenia [154]. These re‐
sponses are due to activation of multiple PRRs including RIG-I-like receptors and Toll-like
receptors: TLR-2, TLR-4 and TLR-9 [155]. In vivo administration of higher doses of Ad vec‐
tors can result in one or all of these innate responses or may even lead to mortality in small
animal models [156]. Ad infection of ECs is followed by expression of adhesion molecules
such as ICAM-1 and VCAM-1 leading to increased leukocyte infiltration within transduced
tissues [157]. Kupffer cells, the resident macrophages of the liver, rapidly scavenge and elim‐
inate Ad5-based vectors from the circulation in mice [158], and this interaction contributes
to the induction of pro-inflammatory cytokines and chemokines [159]. It has been reported
that increasing the dose of Ad vector would probably fail to increase transgene expression,
as the CAR adenoviral receptors would become saturated; in addition, the higher dose
would induce a stronger inflammatory response responsible for increased elimination of the
infected cells expressing the transgene [151].

Ad-based gene transfers can be hindered due to adaptive immune responses to the virus or
the transgene it encodes. Ad viruses can induce a cytotoxic T-cell response as well as infil‐
tration by CD4+ and CD8+ T cells. The mechanism involves internalization and priming by
dendritic cells of capsid antigens associated with Class II Major histocompatibility complex
(MHC) antigens, presentation of these antigens to CD4+ T cells, which become activated,
and in turn CD8+ T cell activation by these CD4+ T cells [151]. These adaptive immune re‐
sponses can limit the duration of transgene expression, and/or limit the ability to re-admin‐
ister the vector.

Development of new large capacity or gutless (devoid of all viral genes) vectors [160] or
modification of capsid sequences [161] are a few of the various strategies devised to reduce
the immunogenicity of the Ad viral vectors. Adaptive immunity against these vectors has
been substantially reduced through the development of helper-dependent Ad vectors that
contain no Ad genes. However, these gutless Ad vectors can efficiently transduce antigen
presenting cells (APCs) [162], which readily triggered innate immune responses and further
augmented the induction of adaptive immune responses to the transgene product. This
problem led to the introduction of tissue-specific promoters in gutless Ad vectors to restrict
transgene expression in target cells but not in APCs [162]. Genome modification, capsid
modification by Ad capsid-display of immuno-evasive proteins, chimeric Ad vectors and
Ad vectors derived from alternative Ad serotypes are few techniques adopted for eluding
Ad vector immunity [161]. The tropism modification strategies for targeted gene delivery
using Ad vectors have been extensively reviewed [163]. Another method to decrease the im‐
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mune response is to modify the route of delivery of the vector. In the adventitial delivery of
Ad vectors to rabbit carotid arteries, recombinant gene expression was achieved at a level
equivalent to that achieved by intraluminal vector infusion. Despite the generation of a sys‐
temic immune response, adventitial infusion had no detectable pathologic effects on the vas‐
cular intima or media [145]

Pre-existing immunity due to neutralizing antibodies against endemic Ad serotypes in hu‐
man populations can contribute to pre-existing Ad specific adaptive immune responses
[154]. These cellular responses may be more challenging than humoral immune responses,
as these cellular adaptive immune responses to Ads have been shown to recognize multiple
diverse, cross-clade Ad serotypes subsequent to exposure to only a single Ad serotype [154].
Arterial gene transfer with type 5 Ad vectors did not cause significant levels of gene expres‐
sion in the majority of humans. Both immune-suppression and further engineering of the
vector genome to decrease expression of viral genes show promise in circumventing barriers
to Ad-mediated arterial gene transfer [164].

The innate immune response to the AAV capsid has received limited attention due to the
minimal responses that AAV2 elicits [162]. According to recent reports by Herzog and oth‐
ers [165], innate immune system also plays important roles in activation of immunity by
AAV mediated gene transfer, both in inducing the initial response to the vector and in pro‐
moting a deleterious adaptive immune responses. The initial innate immune responses were
mediated by the TLR9-MyD88 pathway via a traditional NF-κB pathway to induce type 1
interferon production. Subsequently, alternative NF-κB pathway is triggered, prompting
adaptive immune responses [166]. In vivo, intravenous injection of AAV-lacZ rapidly indu‐
ces the expression of messenger RNAs (mRNAs) for the cytokines TNF-α, RANTES, inter‐
feron-γ-induced protein 10, macrophage inflammatory protein(MIP)-1β, monocyte
chemotactic protein-1, and MIP-2. However, this effect lasts only 6 h, compared to more
than 24 h with Ad infection [151]. The adaptive cell-mediated response is far weaker with
AAV vectors than with adenoviral vectors probably due to the inability of AAVs to efficient‐
ly infect APC, including dendritic cells and macrophages. AAV vectors may be capable of
infecting immature dendritic cells, but only when large doses of vector are used. In addition,
even though a modest amount of dendritic cells are present at sites of AAV infection in vivo,
they usually fail to induce a T-cell response of sufficient magnitude to eliminate the infected
cells and, therefore, to decrease the duration of transgene expression [151].

Cytotoxic T-cell responses to AAV capsid antigen especially in patients with pre-existing
neutralizing antibodies against AAV remain a major road block to achieve persistent thera‐
peutic correction for clinical application. Natural, asymptomatic AAV infection in humans is
common, and it estimates that up to 80% of humans possess neutralizing antibodies to some
AAV serotypes, especially AAV-2 [167]. Recently, multiple serotypes of AAV in addition to
AAV2 have been developed; these serotypes carry different capsid proteins and exhibit dif‐
ferent tropism towards different organs [18]. However, changing serotypes may only lead to
partial success due to the strong conservation of immune-dominant capsid epitopes in
AAVs. In patients with high titers of neutralizing antibodies to gene therapy vectors such as
AAV and Ad vectors, IgGs can be removed from blood by plasmapheresis, double filtration
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plasmapheresis and immune-absorbant plasmapheresis before gene transfer procedure to
increase transduction rates of target tissues [168].

Plasmids alone or in combination with naked bacterial DNA can stimulate innate immune
responses [152]. Plasmids, composed chiefly of bacterial DNA, contain far greater amounts
of unmethylated CpG motifs than do the DNA in eukaryotic cells. DNA devoid of CpG mo‐
tifs does not induce proinflammatory cytokine synthesis by macrophages in vitro. TLR 9 rec‐
ognizes the unmethylated CpG motifs in immunostimulatory sequences of bacterial DNA
which activate the cells responsible for innate immune responses (for example macrophag‐
es) after penetration of bacteria into the body [169]. Indeed, elimination or methylation of
these sequences could be a method for suppressing the inflammatory response induced by
unmethylated CpG sequences in plasmids [168].

5. Conclusion

An enormous amount of research has been done in the past few decades on the choice of the
therapeutic gene, vectors and delivery approaches for effective vascular gene transfer. The
low efficiency of gene transfer to vascular tissues still remains a major drawback.. Of the
several approaches used so far, Ad-mediated gene transfer has been found to be the most
efficient when compared to other methods. However, gene transfer using viral vectors has
often caused ectopic expression and also an increased immunological response. The use of
tropism modified vectors and plasmids with cell specific promoters are solutions for reduc‐
ing the ectopic expression. Using “gutless” viral vectors devoid of the immunogenic regions
of viral plasmid is an attractive option to reduce the immunologic response, but we have to
wait for more in vivo data using these third-generation vectors to reach a conclusive result
[160]. Non-viral methods have more barriers to overcome to successfully transfect the cell;
however, with the advent of innovative technologies like nanobots [170], stimuli responsive
polymers [171], novel erythrocyte based carriers [172], magnetically targeted delivery [173]
and focused in vivo plasmid DNA delivery to the vascular wall via intravascular ultrasound
destruction of microbubbles [174]; we expect enhanced transgene expression in vascular
cells in future studies. This will also be a possible solution to tackle with the immune re‐
sponse associated with the viral vectors. Site specific biodegradable stent based gene deliv‐
ery approach [175] and modified percutaneous gene delivery systems offer new
opportunities for enhanced gene delivery to vascular cells.
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