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1. Introduction 

Translation initiation is a rate-limiting step of protein synthesis. Therefore, it is highly 

regulated by different mechanisms, which depend upon the structural characteristics of a 

given mRNA. Most cellular mRNAs are translated by a cap-dependent mechanism that 

requires the binding of the trimeric complex of eukaryotic initiation factors (eIF)4F, 

comprised of eIF4G, eIF4E and eIF4A, to the 7-methyl GpppN cap structure at the 5’ end of 

the mRNA. However, many viral and some cellular mRNAs have evolved a cap-

independent mechanism of translation initiation that uses a highly structured internal 

ribosome-entry site (IRES) sequence located in the 5’ untranslated region (5’UTR) of their 

mRNA (Holcik & Sonenberg, 2005). The IRES was first discovered in poliovirus (a typical 

member of picornaviruses) and later in other viruses such as hepatitis C virus (HCV), HIV, 

Herpesviruses, etc., and also in many cellular mRNAs (Jang, et al., 1988, Labadie, et al., 2004, 

Locker, et al., 2011, Pelletier & Sonenberg, 1988). Cellular physiological conditions dictate 

when a given mRNA uses cap-dependent or IRES-dependent translation initiation. Under 

normal conditions, cellular mRNAs translation is initiated by a cap-dependent mechanism; 

however, under stress conditions, such as starvation, irradiation, heat shock, hypoxia, toxin 

and viral infection, the translation initiation is switched from cap-dependent to an IRES-

driven mechanism, which may be on the same mRNA (Komar & Hatzoglou, 2005, Spriggs, 

et al., 2005). 

Several viral infections trigger endoplasmic reticulum (ER) stress responses in a variety of 

ways inside the host cell. One of the most significant effects is the shutting off of global, cap-

dependent translation, which results in activation of IRES-dependent translational 

mechanisms. This is quite apparent in picornaviruses because their viral mRNA does not 
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contain a cap structure at the 5’end. Also, its IRES located in the 5’UTR recruits ribosomes and 

other factors, which then scan to reach the initiation codon without the requirement of the 

eIF4E (Jang, et al., 2009, Jang, 2006). IRES containing viruses are able to benefit from the ER 

stress response, enhancing their own protein synthesis while also enhancing their self-defense 

capability. There are several mechanisms by which virus infections and other stress signals 

achieve inhibition of cap-dependent translation of cellular mRNAs, including: i) site specific 

cleavage of cellular translational initiation factors, such as the eukaryotic translation initiation 

factor 4GI (eIF4GI) by picornaviral and HIV proteases (Chau, et al., 2007, Etchison, et al., 1982, 

Lamphear, et al., 1993, Ohlmann, et al., 2002) or by cellular caspases (Marissen & Lloyd, 1998). 

ii) phosphorylation of eIF2α and other co-factors of translation. The site specific cleavage or 

modification of translation factors does not affect IRES-driven translation, but instead 

promotes IRES-containing mRNA to utilize the cleaved translation initiation factor or specific 

IRES transacting factors (ITAFs) for their translation (Morley, et al., 2005, Raught, 2007). (iii) 

overproduction of homologous proteins of cap-binding protein eIF4E (e.g. 4E-BP), which 

compete with eIF4G limiting its binding (Marcotrigiano, et al., 1999) to eIF4E iv) suppression 

of eIF4E expression by certain microRNAs  (Ho, et al., 2011, Mathonnet, et al., 2007). 

The rapid inhibition of cellular cap-dependent protein synthesis has been demonstrated as a 

critical precursor to cell fate. In this context, it is noteworthy that the IRES-containing cellular 

mRNAs are found to be preferentially involved in the control of cell fate by functioning to 

promote cell growth and survival or apoptosis (Jackson, et al., 2010, Sonenberg & Hinnebusch, 

2009, Spriggs, et al., 2005). Notable genes include the B-cell lymphoma-2 (Bcl-2) family 

proteins, apoptotic protease activating factor 1 (Apaf-1), checkpoint homolog kinase 1(chk-1), 

eIF4GII, p53 and 78kDa Glucose-regulated protein 78 or Binding immunoglobulin protein 

(GRP78/BiP) (Komar, et al., 2005, Spriggs, et al., 2005). It was therefore suggested that IRES-

mediated translation plays a critical role in regulation of cell fate (Spriggs, et al., 2005). Cellular 

genes containing IRESs in their mRNA are continually being discovered, some amid 

controversy as being true IRESs (Shatsky, et al., 2010). Previous studies have indicated that the 

cell fate decision is made based on the severity and duration of the stress signal. Under a 

transient stress or during the early phase of infection, the IRES will mediate translation 

initiation of genes promoting cell survival/growth, which enhance cellular capability to combat 

viral infection. However, under a severe or prolonged stress such as persistent infection of 

picornaviruses, translation initiation will selectively express the genes responsible for inducing 

cell apoptosis (Henis-Korenblit, et al., 2002, Lewis, et al., 2008), effectively destroying the host 

cells and potentially limiting the viral infection of surrounding cells. In any circumstance, the 

host cell will employ an alternate way to defend itself. In this chapter, we will discuss the 

recent advances in the understanding of IRES-mediated translational control of genes under 

stress conditions, with a particular focus on ER stress caused by picornaviral and other viral 

infections.  

2. Viral Manipulation of ER stress pathways and components  

The ER stress response or unfolded protein response (UPR) is a major component of disease 

(Tabas & Ron, 2011). Many viral infections induce ER stress and have adapted mechanisms 
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to modulate the stress response and its effectors. On the cellular level, ER stress may be 

triggered by many factors, including serum starvation, hypoxia, changes in calcium 

homeostasis, viral infections, as well as other perturbations (Chakrabarti, et al., 2011). In 

general, ER stress is triggered by the accumulation of misfolded or unfolded proteins in the ER 

lumen. In response to this stress, a coordinated adaptive program termed the unfolded protein 

response (UPR) is activated and serves to minimize the accumulation and aggregation of 

misfolded proteins (Chakrabarti, et al., 2011). The molecules and signaling pathways of the 

UPR may vary slightly dependent upon cell type. The stress response or UPR is regulated by 

master regulatory protein, BiP or GRP78. The initial, transient phase of the ER stress response 

functions to increase the removal or degradation and folding of misfolded or unfolded 

proteins. In its non-stressed state, BiP is bound to the ER luminal domain of the 

transmembrane proteins including PKR-like ER kinase (PERK), inositol requiring enzyme 1 

(IRE1) and activating transcription factor 6 (ATF6) (Chakrabarti, et al., 2011). These are the 

three major arms of the UPR. Viral infection causes the rapid accumulation of viral and other 

cellular proteins trafficked to the ER. When excess proteins accumulate in the ER lumen, BiP 

dissociates from its three transmembrane sensors, resulting in the functional activation of the 3 

major arms of the UPR. PERK and IRE1 are activated and undergo homodimerization and 

auto-phosphorylation (Bollo, et al., 2010, Liu, et al., 2000, Oikawa & Kimata, 2010), triggering 

their downstream genes. The activation of the IRE1 pathway leads to the splicing of X box 

binding protein 1 (XBP-1) (Lee, et al., 2002). This spliced form of XBP-1 mRNA encodes an 

active transcription factor that binds to the promoter of unfold protein response element 

(UPRE) to induce expression of a subset of genes encoding protein degradation enzymes, 

resulting in ER-associated misfolded protein degradation (Lee, et al., 2003). The activation of 

PERK results in the phosphorylation of eIF2 on its α subunit (Raven & Koromilas, 2008). eIF2α 

phosphorylation effectively shuts down global, cap-dependent protein synthesis and causes a 

shift in translation to that of cellular mRNA containing IRESs reducing the burden of 

accumulating proteins in the ER (Harding, et al., 2002). This constitutes a translational switch 

to IRES-mediated translation initiation. UPR activation also involves the trafficking of ATF6 by 

BiP, resulting in its migration to the Golgi apparatus, where it is cleaved by S1P and S2P 

proteases, releasing a soluble fragment that enters the nucleus and bind to promoters 

containing the ER stress response elements (ERSE) and ATF/cAMP response elements (CREs) 

to activate ER chaperone genes, such as BiP, GRP94, and calreticulin (Yoshida, et al., 2001). 

These newly synthesized chaperones refold misfolded proteins in the ER in an effort to relieve 

ER stress. ATF6 also promotes XBP1 splicing (Lee, et al., 2002), indicating the 

interconnectedness of the three branches of the UPR. The shift from cap-dependent to cap-

independent translation mediated by ER stress is critical to both cell fate and viral infection 

productivity. Many viruses, particularly RNA viruses, such as members of the Picornaviridae 

family, have evolved to replicate through cap-independent mechanisms, thus the shut-off of 

global protein synthesis induced by ER stress is of major strategic importance.  

When ER stress is chronic or prolonged, it leads to the induction of ER mediated apoptosis 

(Tabas, et al., 2011). As is the case in viral infection, viral proteases also inhibit select cellular 

translational components, which may be initiated by ER stress. Our group has demonstrated 
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that CVB3 protease 2A and 3C can cleave eIFGI and induce cell apoptosis (Chau, et al., 2007). 

Viral proteins, such as picornaviral protein 2B, have been shown to contribute to the depletion 

of calcium stores within the ER (Wang, et al., 2010), furthering the viral life cycle by 

contributing to viral release. Prolonged and sustained severe ER stress eventually drives the 

cell to apoptosis (Mekahli, et al., 2011). Although significant progress in our understanding of 

apoptosis initiated by ER stress has been made in recent years, the molecular mechanisms of 

ER induced apoptosis are yet to be fully elucidated. During prolonged/severe ER stress, the 

functions of the three branches of the UPR (IRE1, ATF-6 and PERK) act in concert during 

prolonged/severe ER stress to induce apoptosis. Under those conditions, the endonuclease 

activity of IRE1 becomes less specific. As a result IRE1 contributes to the degradation of 

membrane associated mRNA, termed regulated IRE1 dependent degradation (RIDD). RIDD 

activation and XBP1 splicing highlight the two distinct functions for IRE1 during ER stress, the 

former being apoptotic and the latter generally regarded as protective (Hollien, et al., 2009).  

Previous studies indicate a correlation between enhanced ER stress induced apoptosis and the 

induction of RIDD activity. RIDD activation requires the nuclease domain of IRE1 to be 

activated, whereas IRE1 induced XBP1 splicing is modulated by IRE1 kinase domain 

activation (Hollien, et al., 2009). IRE1 has also been shown to bind Bcl-2 homologous 

antagonist/killer (Bak) and Bcl-2 associated x protein (Bax) (Hetz, et al., 2006), two pro-

apoptotic proteins from the Bcl-2 family previously described in mitochondria derived 

apoptosis. Recently, however, it was shown that Bax translocates not only to the mitochondria, 

but also to the ER membrane during prolonged ER stress (Gotoh, et al., 2004, Hetz, et al., 2006, 

McCullough, et al., 2001, Wang, et al., 2010). Once translocated to the ER membrane, Bax 

permeabilizes the membrane, causing ER luminal proteins to be translocated to the cytosol 

(Wang, et al., 2010). Normally anti-apoptotic in function, BiP, once in the cytoplasm 

translocates to the plasma membrane where it becomes an apoptotic inducing receptor for 

prostate apoptosis response-4 (Par-4) (Wang, et al., 2010). Par-4 has been shown to co-localize 

with BiP in the ER. The binding of Par-4 to membrane bound BiP activates the extrinsic 

apoptotic cascade through FADD, caspase8 and caspase3 (Burikhanov, et al., 2009). 

Interestingly, the secretion of Par-4 is activated by TRAIL (Hart & El-Deiry, 2009). Several 

viruses including avian H5N1 and HIV have been shown promote cell death through TRAIL 

activated apoptosis in macrophages by enhancing TRAIL induced caspase10 activation 

(Ekchariyawat, et al., 2011, Zhu, et al., 2011). 

Additionally, during prolonged and severe ER stress, PERK also enhances the translation of 

specific downstream genes, including ATF-4 (activating transcription factor-4) (Fels & 

Koumenis, 2006). ATF-4 is able to activate pro-apoptotic C/EBP homologous protein (CHOP) 

during conditions of prolonged, severe ER stress (Ma, et al., 2002). CHOP acts to induce 

apoptosis by promoting constitutively expressed Bax translocation to the mithochondria 

through inhibition of anti-apoptotic Bcl-2 transcription, as Bcl-2 functions to inhibit Bax in pro-

survival conditions (Gotoh, et al., 2004, McCullough, et al., 2001). Here we see a connection 

between apoptosis mediated by IRE1 (by binding to Bax/Bak) and by PERK-mediated CHOP 

activation through ATF4, stressing the importance of cross talk between the three arms of the 

UPR. Interestingly, CHOP acts as a negative regulator of eIF2α phosphorylation as well 
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(Novoa, et al., 2001). The importance of the pathways described above in both global 

translation attenuation and apoptosis has made them the target of manipulation of many 

viruses. For example, Hepatitis E virus (HEV) open reading frame 2 protein (ORF-2) is able to 

modulate ER stress induced apoptosis by increasing eIF2α phosphorylation and activation of 

CHOP, simultaneously (John, et al., 2011). Our lab also obtained a similar result in studying 

coxsackievirus B3 (CVB3)-induced apoptosis through phosphorylation of eIF2α and activation 

of CHOP; however, this activation is not through ATF4 but through ATF6 (Zhang, et al., 2010). 

For HEV, during infection, CHOP, which normally induces apoptosis and translocation of Bax 

to the mitochondria, is unable to perform this pro-apoptotic function. This is due to the 

simultaneous activation and interaction of heat-shock proteins Hsp-70B, Hsp-72 and Hsp-40 

by HEV protein ORF-2 (John, et al., 2011). Several members of the heat shock protein family, 

including Hsp-70, have been demonstrated to contain an IRES element in its long 5’UTR 

region of mRNA (Ahmed & Duncan, 2004, Hernandez, et al., 2004). This strategic modulation 

of pro-apoptosis and pro-survival proteins occurs presumably to delay apoptosis, while 

allowing the viral replication cycle to continue to completion. This demonstrates the careful 

strategic interplay between the virus and host translational factors as well as host cell 

components of the UPR. In doing so, a given virus is able to modulate the delicate balance 

between apoptosis and survival.  

3. Structures of IRES 

3.1. Classification of viral IRESs  

IRES dependent translation initiation was first described in 1988 in the 5’UTR of the RNA 

genome of poliovirus (PV) (Pelletier, et al., 1988). Since this original discovery, IRES elements 

have been identified in the long, highly structured 5’UTR of almost all picornaviruses, 

including encephalomyocarditis virus (EMCV) (Lindeberg & Ebendal, 1999), Foot-and-mouth 

disease virus (FMDV) (Ohlmann&Jackson, 1999), Coxsackievirus B3 (Yang, et al., 1997) human 

rhinoviruses (HRV) (Rojas-Eisenring, et al., 1995), and other viruses, such as, Hepatitis A(Ali, 

et al., 2001), HIV (Weill, et al., 2009) and DNA viruses such as Kaposi’s sarcoma-associated 

herpesvirus (KSHV) (Bieleski,, et al., 2004). Inherit to viral strategy, viruses must hijack cellular 

translational machinery, facilitating their own translation and replication. Translation 

initiation is the rate-limiting step of translation, which is the reason that it has evolved as a key 

strategic process, vital to viral strategy. Picornaviral mRNA, like many RNA viruses, is 

uncapped or lacks the 5’ terminal m7GpppN cap structure found in cellular mRNAs (Belsham, 

2009). Instead, picornaviruses and other IRES translating viruses contain a small, virus-

encoded peptide or VPg (Jang, et al., 1990). The discovery of IRES elements across a variety of 

viruses also identified distinct structural and functional differences amongst them, leading to 

the implementation of an IRES classification scheme. Viral IRESs are subdivided into four 

categories based on their structure, function and mechanism of initiation of translation. All 

four IRES types commonly share the necessity of (on some level) involving non-canonical 

translational factors that interact with IRES and replace the function of some canonical 

translation initiation factors. The canonical translation factors involved also vary dependent 
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upon the IRES structure, degree of interaction, and form the basis for IRES designation and 

classification.  

3.2. Type I IRESs  

Type I IRESs (fig.1) comprise enteroviruses and rhinoviruses. These IRESs contain a tetra-

loop, cloverleaf structure in stem loop position I that resembles the 4-way junction of tRNA. 

This structure interacts with host cellular protein poly(rC)-binding protein 2 (PCBP2) and 

viral protein 3CD to form a bridge between the 5’ and 3’ ends to facilitate multiple rounds of 

viral replication (Fernandez-Miragall, et al., 2009). Downstream of the cloverleaf stem loop 

at position I are three distinctive C-rich motifs that precede the stem loop at position II. Two 

more C-rich regions are present in domain IV. There is also a pyrimidine tract motif located 

downstream of domain V, with a silent AUG region found 10-15 bases further downstream.  

 

Figure 1. Schematic of proposed secondary structure of viral IRESs. A) Type I IRES represented by PV-

1 (adapted from Jang, 2006) B) Type II IRES represented by EMCV (adapted from Jang,, 2006) C) Type 

III IRES represented by HCV (adapted from Beales, 2003 D) Type IV IRES represented by Plautia stali 

intestine virus (PSIV) (adapted from Kanamori, and Nakashima, 2001) E) DNA virus IRES represented 

by Kaposi’s sarcoma-associated herpesvirus (KSHV) (adapted from Beales, 2003) F)  HIV IRES, 

represent by HIV-2 (adapted from Locker,  2010) 
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The functional AUG initiation codon is traditionally further downstream from the silent AUG 

in type I IRESs, so the ribosome must scan downstream to the next AUG to begin translation 

initiation. Type I IRESs contain an eIF4G binding site that is absent the N-terminal region. This 

is due to viral protease cleavage of eIF4G to produce a truncated, yet functional form. This 

truncation eliminates its N-terminal region that contains a cap-binding domain. It is this 

feature that allows the ribosome to be recruited independent of the cap-structure, which is the 

hallmark of IRES-dependent translation. N-terminal deficient eIF4G is the integral translation 

initiation factor in the recruitment of the 43S ribosomal subunit, a process that is further 

enhanced by eIF4A. In fact, mutations made to the eIF4G-binding domain of the poliovirus 

IRES are the basis for the mutation of the PV strain given as the vaccine, further stressing the 

importance of translation initiation as a rate-limiting step (Malnou, et al., 2004). All together, 

type I IRESs contain six stem loops termed stem loops I-VI. The authentic IRES structure is 

located in the stem loop II-VI region, which facilitates initiation and translation of the viral 

genome (Pelletier, et al., 1988). Many of the canonical translation initiation factors, with the 

exception of eIF4E and the N-terminal region of eIF4G, are necessary for type I and II IRES 

translation. For this reason, viral modulation of these cap-dependent translation initiation 

factors has been identified as a vital component to viral strategy. Type I and II IRESs also 

utilize non-canonical translation initiation factors, termed IRES-specific cellular transacting 

factors (ITAFs). Examples of ITAFs include La autoantigen, PTB (pyrimidine tract binding 

protein) and UNR (upstream of N-Ras) (Costa-Mattioli, et al., 2004, Verma, et al., 2010, 

Cornelis, et al., 2005). ITAFs allow for the bypass of canonical translation initiation factors that 

are likely functionally inhibited and the target of viral strategy, either through direct 

proteolytic cleavage or modulation of pathways (such as UPR modulation). 

3.3. Type II IRESs  

Type II IRESs (fig.1) comprise the cardio- and apthoviruses of the Picornavirdiae family. There 

are several features of the IRES structure which differentiates the type II from that of the type I 

IRES. The 5’UTR are significantly longer than their type I counterparts. In place of the 

cloverleaf structure at stem loop position I, there is a hairpin or S structure. Just downstream of 

the S structure is an ~200bp C-tract that separates the S structure from the coding region. In 

between the C rich tract and the coding region there are three structural distinct regions. The 

first are 2 to 4 pseudoknots, next is the cis-acting replication element (cre) and lastly the IRES 

element, which spans stem loops II-V, also termed H-L. Just downstream are two AUG triplets 

that actively initiate protein synthesis. Interestingly, each produces a unique version of the 

leader protein. Type II IRESs require many of the canonical translation initiation factors. eIF4G, 

eIF4A and eIF4B have been demonstrated to interact with the SL J/K/L regions of the type II 

IRESs, with mutations to these domains causing reductions in IRES activity (Jang, 2006). As 

mentioned above, viral IRESs often utilize ITAFs, which further enhance translation in the 

absence of the canonical translation factors. The variability of ITAFs and canonical translation 

factors seen amongst the four types of IRESs is indicative of differences amongst IRES 

structural components, which are able mimic the function of both. 
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3.4. Type III IRES  

Type III IRES (fig.1) structures demonstrate a new level of IRES-mediated translation 

initiation in which they are able to induce conformational changes directly to the ribosome 

that influence its entry, position and stability (Hellen, 2009). Flaviviruses, such as hepatitis C 

virus (HCV), contain IRESs considered to be prototypical of type III IRESs. The HCV IRES 

contains 3 distinctive domains, II, III and IV. Domain II is an irregular shaped, long stem 

loop structure. Domain III is a pseudoknot that also contains several hairpin-structured sub-

domains, IIIa-IIIf, whereas domain IV is a short hairpin structure containing the initiation 

codon. The HCV IRES, like all other type III IRESs, is able to directly and independently 

bind the 40S subunit, thereby bypassing the need for canonical eIFs 4A, 4B, 4F, 1 and 1A. 

Hepatitis C virus (HCV) has been shown to require eIF3 and the eIF2GTP/Met-tRNAMeti. 

ternary complex to bind sequentially for translation initiation. However, some type III 

IRESs, such as the Simian picornavirus type 9 (SPV9) IRES, have been shown to promote 

Met-tRNAMeti recruitment to the ribosome independent of eIF2 (de Breyne, et al., 2008). 

Therefore negating the need for eIF2, which is quite often phosphorylated (i.e. 

translationally inactivated) during viral infection due to interferon activation of PKR or 

PERK, which induce subsequent phosphorylation of the eIF2 subunit. Type III IRES-

containing viral mRNA has been demonstrated to be more resistant to translation inhibition 

caused by eIF2 phosphorylation than that of the cap-dependent cellular mRNAs (Pestova, 

et al., 2008).  

3.5. Type IV IRES 

Type IV IRESs (fig.2) initiate translation on the intergenic region (IGR) by direct binding of 

the 40S subunit or to the 80S ribosome. They are represented by the dicistroviruses, 

particularly the cricket paralysis virus (CrPV), which contain the smallest regions for 

internal ribosomal entry. Structurally, its IRES consists of 3 distinct domains. Each domain 

contains a pseudoknot and may or may not contain a hairpin like structure in stem loop 3. 

Type IV IRESs translation initiation occurs without involving any canonical initiation 

factors, initiator tRNA, or a proper AUG start codon. In contrast to conventional AUG 

codon for IRES translation initiation, the start codon of type IV IRESs may be GCU, GCA, 

GCC or CAA. In fact, studies have shown that translation initiation of CrPV IRES is 

impaired by the promotion of the eIF2GTP/Met-tRNAMeti.ternary complex to the 40S 

subunit. This may be an evolutionary advancement of conditions where the eIF2 is 

phosphorylated, such as during ER stress and viral infection (Hellen, 2009).  

3.6. IRES of Lentiviruses  

The HIV IRESs (fig.1) represent yet another new class of IRES, not previously characterized 

by the four IRES types already described. On one hand, it displays type III IRES properties 

possessing the ability to directly and indirectly bind to 40s and eIF3 (Locker, et al., 2011). On 

the other hand, it requires all eIF’s except for eIF4E and eIF1, a property of class I and II 

IRESs (Locker, et al., 2010). The structure of the HIV IRES is highly complex. It contains a 
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long 5’UTR harboring a Tar stem loop, Poly-A, PBS, DIS, SD and Psi regions (Vallejos, et al., 

2011). Interestingly, in contrast to its type I, II and III IRES counterparts, the HIV IRES 

appears to be resistant to structural mutations which to date have been unable to alter its 

function (Vallejos, et al., 2011). Also unique is its ability to recruit three initiation complexes 

to a single RNA molecule (Locker, et al., 2010). The translational requirements of HIV IRESs 

lend themselves to the notion that, while able to be translated cap-dependently, HIV RNA 

possesses and indeed utilizes IRESs as part of a tightly regulated and conserved method of 

cap-independent translation. The redundant ability of HIV to translate through a variety of 

mechanisms highlights the importance of translation being a key, highly regulated process 

of the viral lifecycle. The utilization of the HIV IRESs takes place relatively late in the viral 

life cycle and is regulated by the G2/M phase of the cell cycle, also activated by osmotic 

stress (Vallejos, et al., 2011). This is particularly interesting given that cap-dependent 

translation is shut-off during the cell cycle, leading to the notion of a new level of 

evolutionary complexity exemplified by the ability of HIV to modulate translation between 

cap-dependent and independent translation based on cell physiology. The HIV IRES also 

utilizes a subset of ITAFs that are exclusively available during the G2/M phase (Vallejos, et 

al., 2011). The utilization of its IRES is thought to regulate the transition between translation 

and encapsidation. The HIV-2 virus is only able to be encapsidated once the cognate form of 

it is translated, versus HIV-1 that can be either translated or propagated as a genome and 

encapsidated into virons (Locker, et al., 2010). This is suggestive of a possible role of 

generation of structural/functional proteins in correlation with its IRES. In fact, the gag 

polyprotein encoded by the Gag IRES associates with 5’ UTR of HIV mRNA, forming a 

gRNA–Gag complex that inhibits ribosomal scanning, decreases translation and increases 

encapsidation (Chamond, et al., 2010). The ability to switch from cap-dependent to IRES-

dependent translation by HIV is most closely related to that of cellular IRES-containing 

mRNA, which will be addressed in the next section.  

3.7. IRES of Cellular mRNA 

While many of the viral IRES-containing mRNAs have been studied quite extensively, much 

less is known about cellular IRES-containing mRNA. It’s estimated that ~10-15% of cellular 

mRNA possesses the ability to translate via cap-independent mechanisms (Graber, et al., 

2009, Johannes, et al., 1999, Qin & Sarnow, 2004). The cellular genes that contain IRESs in 

their mRNAs generally have been shown to code for proteins that are involved in growth, 

proliferation, apoptosis, stress response, differentiation and cell cycle regulation (Komar & 

Hatzoglou, 2011). Cellular IRESs often are found in mRNA containing long 5’UTRs that are 

rich in GC and have complex secondary structures (Holcik, et al., 2005). Often, in the mRNA 

structure there are also multiple short modules whose combined effects are IRES activation, 

as well as pseudoknots, that are believed to be inhibitory in function (Stoneley & Willis, 

2004). However, to date there is no consensus structural or conformational motifs that are 

conserved among cellular IRES that would make them easily identifiable. Unlike their 

structurally stable viral counterparts, cellular IRESs identified to date follow a pattern of less 

structure corresponding to enhanced IRES activation (Filbin & Kieft, 2009). Like their viral 
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counterparts, cellular IRESs are able to initiate translation without many of the canonical 

translational factors, particularly cap-binding factors such as eIF4E (Hellen & Sarnow, 2001). 

Cellular IRESs also utilize ITAFs to replace canonical translational factors rendered 

unavailable. Many of the ITAFs utilized by the cell are also utilized by viruses, including 

PTB, UNR, poly-(rC)-binding protein 1 (PCBP1), La autoantigen and hnRNPC1/C2, many of 

which shuttle between the nucleus and cytoplasm (Stoneley & Willis, 2004). Dicistronic 

cellular mRNA containing IRESs were inactive when introduced directly into the cytoplasm, 

suggesting the possibility of prerequisite nuclear ITAF-IRES complex formation for IRES 

activation, at least for apoptotic genes (Spriggs, et al., 2005). Interestingly, much like the 

highly evolved HIV IRES, the G2/M phase of the cell cycle (where cap-dependent protein 

synthesis is inhibited) is important for cell cycle regulatory gene’s IRES activation as well, 

including p58PITSLRE (Stoneley & Willis, 2004).  

The notion of cellular mRNAs containing IRESs is not without controversy. The viral shut 

down of host canonical translation machinery results in an overall reduction in global 

protein synthesis. However, many host cellular stress responsive mRNAs are still actively 

translated. This led to the hypothesis that certain select cellular mRNAs contain IRESs in 

their 5’UTRs. Indeed, there are several cellular mRNAs containing IRESs in their 5’UTR 

(Gilbert, W.V., 2010). The previous methods used to determine the existence of cellular 

IRESs have been under some scrutiny as to their capability of truly detecting and confirming 

actual IRES structures within cellular 5’UTRs. Bicistronic reporter assays where the 5’UTR of 

the suspected mRNA containing IRES was cloned between two reporter genes are subject to 

false positives via cryptic promoter artifacts (Gilbert, W.V., 2010). Therefore, future work 

needs to be done to verify if some cellular genes truly contain IRESs in the 5’UTR of their 

mRNA.  

3.8. DNA virus IRES 

Much less studied are the DNA viruses, which transcribe mRNA containing an IRES that 

translates certain proteins independent of the cap structure, much like their cellular IRES 

counterparts. To date, there are six known DNA viruses known to contain IRESs, four of 

which belong to the Herpesviridae family (http://iresite.org/), particularily the latent 

gammaherpesviruses (Coleman, et al., 2003). The most well documented DNA viral IRES is 

that of the Kaposi’s sarcoma herpes virus (KSHV) (fig.2) (Bieleski, and Talbot,  2001) while 

others include Herpes simplex virus (Griffiths, A. and Coen, D. M., 2005) and Marek’s 

disease virus (Tahiri-Alaoui,  et al., 2009) to name a few. The KSHV IRES is representative of 

most IRESs in the Herpesviridae family in that it is similar in structure to that of HCV, 

containing two major stem loops (Beales, et al., 2003). Although most IRESs identified are 

located in the 5’UTR, the KSHV IRES is found in the coding sequence of the upstream 

cistron, vCyclin (Bieleski & Talbot, 2001). Interestingly, the KSHV IRES is translational 

active during viral latency and codes for a viral FLICE (FADD [Fas-associated death 

domain]-like interleukin-1 beta-converting enzyme)-inhibitory protein, vFLIP (Flice 

inhibitory protein homolog), which inhibits caspase activation and also promotes 

proliferation (Bieleski & Talbot, 2001). Again, the trend for IRES involved in cell 
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growth/proliferation is consistent in DNA viruses as well. While there remains quite a bit 

yet to be discovered in our understanding of the structure and function of IRES elements in 

translation initiation, clearly, the stress-induced shift from cap-dependent to IRES-

dependent translation is a vital strategy for the cell and virus to survive unfavorable 

conditions. 

*For a comprehensive review of current known IRESs, the reader may refer to 

http://iresite.org/.  

4. Mechanisms of survival: Switching translation initiation from cap-

dependent to IRES-dependent 

As discussed above, both cells and viruses utilize a strategy for survival by switching 

translation initiation from cap-dependent to IRES-dependent. During this process, both the 

canonical translation factors and ITAFs utilized by a given virus are dependent upon IRES 

structure, as it is highly indicative of function. For example, structural components found in 

the mRNA of Hepatitus C virus (HCV) IRES are able to mimic the function of certain 

canonical translational factors. (Sonenberg, et al., 2009). HCV also utilizes litagin and the 

oncogenes MCT-1/DENR as ITAFs, supplementing the function canonical factors of eIF1, 

eIF1A, eIF3 and eIF3 (Skabkin, et al., 2010). Picornaviruses and others have demonstrated 

the capability of influencing the cell and manipulating its translational components, 

favoring its own translation and replication. Viral translation includes modulating not only 

canonical eukaryotic initiation factors, but also their binding proteins as well. The 

eukaryotic translation initiation components modulated during infection are specific to a 

given virus and can vary quite substantially. On the other hand, host cells utilize highly 

conserved mechanisms of defense to a variety of stimuli, including viral infection, osmotic 

shock, toxin, heat shock, etc. Here, we summarize some of the recent advances in our 

knowledge of the mechanisms utilized by viruses and cells to promote IRES-dependent 

translation allowing survival during unfavorable conditions. 

4.1. Cleavage of translation initiation factors by viral proteases 

In order to influence cellular translation, viral proteases often target the cellular canonical 

translation initiation factors for cleavage. The early identified such factor is eIF4G (later 

called eIF4GI), which along with eIF4E, constitute critical translational factors targeted 

during several viral infections. This is evident by the highly specific cleavage of eIF4GI 

during picornaviral infection, which generates a truncated C-terminal form that is unable to 

bind eIF4E (Svitkin, et al., 2005). Another translation initiation factor eIF4GII as well as the 

polyA binding protein (PABP), a protein facilitating the formation of a closed translation 

initiation loop by interaction of the 5’ and 3’ ends of the mRNA, has been reported to be 

cleaved by picornaviral 2A (Gradi, et al., 1998, Joachims, et al., 1999). All these cleavages 

often correspond with a translational shift to IRES-dependent translation (Redondo, et al., 

2011 Welnowska, et al., 2011), rendering the eIFs incapable of performing cap-dependent 

translation. Another group also showed that the shift in translation seen during the later 
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phase of poliovirus infection is not entirely due to phosphorylation (inactivation) of eIF2 

(see discussion in later session), but may also depend upon protease 3C activation and 

cleavage of another translation initiation factor, eIF5B, to a C-terminal truncated version 

thought to replace eIF2 during translation (White, et al., 2011). In all these cleavage events, 

viral protein synthesis was increased during periods of global protein suppression caused 

by eIF2 phosphorylation, however the mechanism may likely be a combination of both 2A 

and 3C proteolytic activity. The apparent shift in translation occurs at times during infection 

when viral proteases are highly expressed. These observations are representative of viral 

evolution in correspondence to cellular anti-viral mechanisms. Other factors such as FMDV 

protease 3C mediated specific cleavage of eIF4AI but not eIF4AII highlight the target 

specificity that has quite often evolved to be viral specific (Li, et al., 2001).  

4.2. Cleavage of translation initiation factors by caspases 

Like their viral counterparts, the cell utilizes a subset of proteases, the caspases, to cleave 

some translation initiation factors. The activation of the caspases often corresponds to the 

induction of apoptosis (Cohen, 1997). It has been demonstrated in cells committed to 

apoptosis that caspases cleave eIF4E-BP1, which enhances its capability to bind and inhibit 

eIF4E, thereby inhibiting cap-dependent translation (Tee & Proud, 2002). eIF2 is cleaved at 

its α subunit by caspase-3, further implicating its critical role in translational control (Satoh, 

et al., 1999). Caspase-3 was also shown to cleave scaffolding protein eIF4GI, inhibiting its 

eIF4E binding capabilities, as well as cleaving its homolog DAP5 (death associated protein 5, 

also called NAT1/p97), both during conditions of apoptosis (Henis-Korenblit, et al., 2000, 

Marissen, et al., 1998). Perhaps not surprisingly, viral strategies target many of the same 

canonical translation initiation factors (including all of those mentioned here) and is 

reflective of similar strategies used by the cell defense system, marking a translational 

switch to cap-independent translation during stress and promoting translation of apoptotic 

inducing genes.  

4.3. Phosphorylation of eukaryotic initiation factors and co-factors  

The cell has multiple signaling mechanisms that it utilizes to influence translation. 

Phosphorylation is perhaps the one of most common and conserved method utilized by the 

cell. Protein kinases involved in cellular stress response regulation such as PKR, PERK, 

GCN2, and HRT (heme-regulated kinases) all conservatively deactivate eIF2 on its  subunit 

in response to their respective stress stimulus, influencing the shift to cap-independent 

translation (Sonenberg, et al., 2009). This multi-faceted capability of the cell to redundantly 

suppress cap-dependent translation initiation through phosphorylation of eIF2 is quite 

intriguing and spans multiple disease and stress conditions. This highlights the critical 

importance of translation initiation in cell fate and physiology. eIF4E also is a highly 

targeted translation factor during viral infection as well as during other conditions of stress, 

such as heat shock, ER stress, oxidative stress, etc. In fact, eIF4E and its regulatory protein 

eIF4E-BP have been utilized as predictive biomarkers in breast cancer (Coleman, et al., 

2009). This is because it functions as the cap binding translation initiation factor thought to 
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be the rate-limiting step of translation and therefore is a key component to cap-dependent 

translation (Gingras, et al., 1999). The availability of eIF4E (which is highly cytoplasmic) to 

participate in cap-dependent translation is regulated by several factors, the most apparent 

being 4E-BP, which binds eIF4E and is involved in its localization to the nucleus and in 

stress granules, rendering it inactive (Sukarieh, et al., 2009). 4E-BP is regulated by 

phosphorylation by the highly conserved serine/threonine kinase (mammalian target of 

rapamycin (mTOR)), which decreases its affinity to eIF4E (Kimball & Jefferson, 2004), thus 

resulting in increased levels of protein translated cap-dependently due to increased 

availability of cap binding protein eIF4E. However, hypophosphorylated 4E-BPs binds 

strongly to eIF4E and thus attenuates cap-dependent translation. Similarly, eIF4G has been 

shown to be phosphorylated by protein kinase C (PKCα) through the Ras-ERK pathway, 

resulting in increase affinity for eIF4E binding and enhanced eIF4E-mnk1 modulating 

capabilities (Dobrikov, et al., 2011). Therefore, phosphorylation modulated by stress 

stimulus (i.e. heat shock, osmotic stress, ER stress, viral infection) results in stress pathway 

activation (ERK, MAPK, PKR, etc.) and subsequent phosphorylation of a translation 

initiation component (i.e. eIF4E, eIF4G, eIF2, 4E-BP) which represses or enhances its function 

and contributes to the translational switch between IRES and cap-dependent modes.  

4.4. eIF4E-binding Proteins and other associated proteins compete with eIF4E to 

inhibit cap-dependent translation 

Another similar mechanism for controlling the shift of translation initiation is the up-

regulation of 4E-BP production, which affects the mRNA 5’-cap recognition process of 

eIF4F. In cap-dependent translation, eIF4E forms the eIF4F complex along with translation 

initiation factors eIF4A, eIF4B and eIF4G (Merrick, 1992). The interaction between eIF4G and 

eIF4E in the eIF4F complex is inhibited by 4E-BPs (also called eIF4E homolog). Recently, it 

was reported that Argonaut (Ago) protein, a core component of RISC, binds directly to the 

cap structure and that this binding competes with eIF4E and results in inhibition of cap-

dependent translation initiation (Kiriakidou, et al., 2007). The central domain of Ago exhibits 

limited sequence homology to the eIF4E and contains two aromatic residues that could 

function in a similar manner to those in eIF4E in interaction with the cap structure. 

However, this conclusion has been questioned by another study (Eulalio, et al., 2008). 

Another factor eIF6 has been reported to associate with Ago protein and the large ribosomal 

subunits (Chendrimada, et al., 2007). By binding to the large ribosomal subunit, eIF6 

prevents this subunit from prematurely joining with the small ribosomal subunit. Thus, if 

Ago2 recruits eIF6, then the large and small ribosomal subunits might not be able to 

associate, causing translation to be repressed (Chendrimada, et al., 2007). Drosophila Cup 

also suppresses cap dependent translation by binding eIF4E at the same conserved sequence 

utilized by 4E-BPs (Nakamura, et al., 2004).  

4.5. The Role of microRNAs (miRNA) in translational control 

Many viruses also indirectly influence the availability of cellular translational components. 

miRNAs are small (~20-24 nts) non-coding RNAs that bind partially complimentary mRNA 
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sequences (mostly in the 3’UTR and less so in the 5’UTR and coding regions) resulting in 

translational repression and mRNA degradation or (in instances of cellular quiescence) 

translational activation (Fabian, et al., Sonenberg, et al., 2009). They are loaded onto target 

mRNA sequences by an RNA induced silencing complex (RISC), whose major component 

proteins are the Ago protein family (Sonenberg, et al., 2009). It was recently shown that Ago 

proteins are required for miR-122 activated translation during HCV infection (Roberts, et al., 

2011). In addition, as mention earlier, Ago binds competitively to the cap structure of 

mRNA to inhibit cap-dependent initiation of translation. It is not surprising that miRNA 

mediated repression has been shown to be specific to a given mRNA containing both a cap 

structure and poly-(A) tail, in fact mRNA without a cap structure or poly-(A) tail were 

resistant to miRNA-mediated repression (Humphreys, et al., 2005). miRNA modulated 

repression takes place in processing (P)-bodies that contain decapping enzymes (see 

discussion in a later section), further supporting the role of miRNA in suppressing cap-

dependent translation initiation (Sonenberg, et al., 2009). Viruses have been shown to 

influence the expression of select miRNAs (Ho, et al., 2011, Humphreys, et al., 2005, Lei, et 

al., 2010), which are often involved in the inhibition of cap-dependent translation 

(Humphreys, et al., 2005, Walters,  et al., 2009) lending to a virally influenced  shift to IRES-

mediated translation. In the early study of the mechanism of translation suppression using 

an artificial miRNA targeting CXCR4, the cap/4E-BP and the poly-(A) tail of mRNA were all 

found to play an important role because they are each necessary but not sufficient for full 

miRNA-mediated repression of translation. Replacing the cap with a viral IRES impairs 

miRNA-mediated suppression. These results suggest that miRNAs interfere with the 

initiation step of translation and implicate 4E-BP as a molecular target (Humphreys, et al., 

2005). This finding was further solidified by a recent study, which demonstrated that 

enterovirus 71 (EV71) infection up-regulated miR-141 expression and resulted in a shift from 

cap-dependent to cap-independent translation initiation by targeting 4E-BP. As EV71 RNA 

translates through a cap-independent, IRES mechanism, this targeting enhanced EV71 

replication (Ho, et al., 2011). Another miRNA, miR-2, has also been reported to utilize a 

similar mechanism to target the cap structure (Zdanowicz, et al., 2009). This study screened 

a library of chemical m7GpppN cap structures and identified defined modifications of the 

triphosphate backbone that augment miRNA-mediated inhibition of translation but are 

“neutral” toward to general cap-dependent translation. Interestingly, these caps also 

augment inhibition by 4E-BP, suggesting that miR-2’s cap targeting is through a mechanism 

related to the 4E-BP class of translation regulators (Zdanowicz, et al., 2009).  

The above studies clearly support the notion of a virally influenced translational shift 

favoring cap-independent translation. This is achieved through several mechanisms 

including indirectly, such as up-regulating the expression of certain miRNAs that repress 

cap-binding canonical translation initiation factors in the eI4F complex (Mathonnet, et al., 

2007). Here, it is worth mentioning that viruses with a nuclear DNA phase, including HIV 

and Herpesviruses, may generate virally derived miRNAs during the infection cycle 

(Griffiths-Jones, et al., 2008, Pilakka-Kanthikeel, et al., 2011), however, whether HIV 

generates miRNAs is still contentious as other labs have not been able to verify them 

experimentally (Lin., Cullen, 2007, Pfeffer, et al., 2005). Intriguingly, the cytoplasmic RNA 
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tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, has been shown to 

encode its own viral miRNA when a heterologous miRNA-precursor stem-loop was 

artificially introduced into the RNA viral genome (Rouha, et al., 2010). This opens up the 

possibility of other cytoplasmic RNA viruses to have similar capabilities. It may be possible 

to artificially introduce miRNAs into viral genomes, which may in turn be able to shut 

down viral replication by targeting mRNAs of specific translation initiation factors required 

by the virus, which generate a new avenue for generating vaccines and attenuating viral 

replication. Clearly miRNAs represent an exciting and newly emerging dimension to our 

study and understanding of viruses and their ability to manipulate cellular translation 

during infection and other conditions of stress.  

4.6. Activation of decapping enzymes 

Decapping of mRNA by decapping enzymes represents another modality by which cap-

dependent translation is suppressed by the cell. To date, two decapping enzymes have been 

identified: Dcp2 which cleaves mRNA at the cap site and the scavenger decapping enzyme 

(DcpS) that hydrolyzes the cap structure, both function to facilitate the subsequent 

degradation of target cap-dependent mRNA (Li & Kiledjian, 2011). Enzymatic decapping of 

select mRNAs is influenced by miRNA. As mentioned above, miRNA mediated repression 

occurs in P-bodies where Ago proteins have been shown to co-immunoprecipitate with 

decapping enzymes, suggesting their close association (Parker & Sheth, 2007). P bodies also 

contain other proteins including, GW182, the CAF1-CCR4-NOT deadenylase complex, the 

decapping activators (e.g., DCP1, EDC3, Ge-1), and the RNA helicase RCK/p54, all of which 

have been implicated in miRNA function (Eulalio, et al., 2007, Parker, et al., 2007). 

Decapping enzymes functions may also be modulated by cell signaling pathways and are 

also found in stress granules. Indeed, the phosphorylation of the decapping enzyme DCP2 

has been shown to influence stress granule formation and its availability in P-bodies (Yoon, 

et al., 2010). HCV has been shown to selectively disrupt P-body components during 

infection leaving the decapping enzyme DCP2, active and functioning to highjack other 

translational machinery for the enhancement of its own translation (Ariumi, et al., 2011). 

Therefore, not surprisingly, viruses modulate decapping enzyme activity to favor their 

translation.  

5. Conclusions and perspectives 

It is evident that more and more newly discovered cellular mRNAs contain IRESs and can 

participate in a shift in translation from global, cap-dependent to IRES-driven initiation 

during ER stress. One of the most well studied causes of ER stress is viral infection, which 

can globally shut down cap-dependent translation initiation by different mechanisms. To 

adapt to unfavorable stress conditions, both cell and virus (e.g., HIV) need to adjust their 

mode of translation initiation by switching from the cap-dependent to cap-independent 

mechanism. As picornaviruses do not have a cap structure, its RNA translation will not be 

inhibited; instead it will be enhanced because more translational machinery is available due 

to the shutoff of global cap-dependent translation, achieved by a number of mechanisms. 
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During transient ER stress, the IRES-containing cellular mRNAs that are responsible for cell 

survival/growth, such as BiP and Bcl-2, will be selectively translated by an IRES-dependent 

mechanism, utilizing ITAFs in place of inhibited canonical translational factors. This 

mechanism allows cells to respond rapidly to the transient changes in growth conditions 

and to delay apoptosis. Once the stress is removed, cellular homeostasis is restored. 

However, during prolonged or severe stress, such as in persistent infection of 

picornaviruses, the pro-death genes, such as Apaf1, DAP5, CHOP, p53, etc., are also 

selectively translated by the same IRES-driven mechanism, allowing the cells to fine-tune 

their responses to cellular stress and, if conditions for cell survival are not restored, to 

proceed with final execution of apoptosis (Fig. 2).  

 

Figure 2. The proposed model for the switch of translation initiation from cap-dependent to IRES-

dependent during picornaviral infection or other cellular stresses. Positive and negative feedback loops 

are indicated by plus and minus signs, respectively. 

Although some mechanisms on the switch of the translation initiation and subsequent 

selective translation have been described, many questions are still unanswered: for example, 

what are the regulators for selecting the pro-survival or proapoptotic genes? In other words, 

do these genes contain different binding sequences for their specific regulators? Previous 

studies using a polysome system predicted that approximately 10-15% of the cellular 

mRNAs contain IRESs (Carter, 2000, Graber, et al., Qin, et al., 2004); thus, more IRES-

containing cellular mRNAs will need to be discovered to fully understand the underlying 

mechanisms of IRES-dependent translational control. In the shutoff of global cap-dependent 

translation, cleavages of cellular proteins are known to play an important role. In this 

regard, besides the viral proteases and the activated cellular caspases, other cellular 

proteases responsible for the cleavage of translation initiation factors need to be identified. 
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In addition, efforts to discover other cellular target proteins that are specifically cleaved 

during cellular stress are another future area of research. Identification of these target 

proteins may uncover the linkage between translational control and pathogenesis. Recently, 

miRNAs, as a group of new regulators of gene expression, were found to be involved in 

regulation of the shift of translation initiation. However, the research in this direction is just 

emerging. More studies on the interactions between miRNAs and their target mRNAs 

encoding translation initiation factors need to be carried out. Indeed, the biological 

implications of the selective translation of specific genes are clearly important. Since the 

IRES-mediated translation initiation links with many pathophysiological conditions, such as 

hypoxia, heat shock, toxin, metabolic disorder, viral infection, etc., the failure of maintaining 

the balance between the cap-dependent and cap-independent translation initiation may 

cause human diseases, such as heart disease, stroke, diabetes, and viral induced diseases. 

Similarly, dysregulated apoptosis has been associated with many human disorders, ranging 

from autoimmune diseases, neurodegeneration to a variety of cancers. Therefore, better 

understanding how the translational control determines the cellular response to stress will 

provide novel insights into the molecular pathogenesis of human disorders and will likely 

eventually lead to the development of effective therapeutics. 
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