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1. Introduction 

Viruses are considered as extremely successful predators as they can replicate and control 

the host cell synthesizing machinery. Viruses have coevolved with their hosts and thus have 

limited pathogenicity in any immunocompromised natural host. Viruses can exist in two 

forms: extra cellular virion particles and intracellular genomes. Virions are more resistant to 

physical stress than genomes but are susceptible to humoral immune control. Nevertheless, 

to exist as a species, virus replication and transfer to a new host are essential. These 

processes are associated with the production of antigenic proteins that make the virus 

vulnerable to immune control mechanisms ‘warning’ the host of the presence of an invader 

[1]. There are two classes of viral immunoregulatory proteins: the proteins encoded by genes 

having sequence similarity with cellular genes and those coded by genes without any 

sequence similarity to cellular genes. The second class of protein may represent a paradigm 

for co-evolution [2].  During the period of coexistence with their hosts, viruses have learned 

how to manipulate host immune control mechanism. It is well established that the viruses 

have evolved wide variety of immune evasion strategies viz., evasion by noncytocidal 

infection (Arena and Hanta viruses), evasion by cell to cell spread (Canine distemper virus 

and cytomegalovirus), evasion by infection of nonpermissive, resting or undifferentiated 

cells (herpes virus induced latency), evasion by infection with restricted viral gene 

expression by destruction of immune effector cells and macrophages (destruction of CD4+ T 

lymphocytes by HIV 1 and 2 viruses), evasion by downregulation of MHC – antigen 

expression (betaherpesviruses), evasion from cytokine action (Adenoviral infected cells 

evade the action of TNF through viral gene products), masking of epitopes and immune 

decoy (Ebola virus), evasion by induction of nonneutralizing antibodies (Aleutian Mink 
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disease virus), evasion by induction of immunologic tolerance (congenital infections like 

Bovine Viral diarrhea, arena virus infections and some retro virus infections), evasion by 

sequestration in immunologically privileged tissues (replication of cytomegaloviruses in the 

kidney, salivary glands and mammary glands), evasion by integration of viral genome into 

host cell genome (induction of prophage in case of retro viral infection) and evasion by 

genetic drift (Maedi/Visna, Equine Infectious Anaemia) [2, 3]. The present review will 

highlight the different complex mechanisms associated with the host immune evasion by 

the viruses with special reference to the Classical Swine Fever Virus. 

2. Newer concepts in the evasion of host deffense by viruses 

The main sensors of the innate immune response are pattern recognition receptors (PRR) 

which can recognize pathogen associated molecular patterns (PAMPs). This recognition 

leads to the expression of cytokines, chemokines and co-stimulatory molecules that 

eliminate pathogens like viruses for the activation of antigen presenting cells and for the 

activation of specific adaptive response [4]. Among the PRRs, there are Toll Like Receptors 

(TLRs) that can be either endosomal or extracellular [5, 6] and retinoic acid-inducible gene- 

(RIG-)I/MDA5 (melanoma differentiation-associated gene) [7] known as RNA helicase-like 

receptors (RLRs). Further, Double-stranded RNA-dependent protein kinase (PKR), 2', 5'-

oligoadenylate synthetase (2'- 5' OAS), and adenosine deaminase acting on RNA (ADAR), 

known as effector proteins, complement the function of PRRs. All these proteins are 

responsible for recognizing viral components and induce proinflammatory cytokine 

expression or interferon (IFN) response factors. There are certain cellular components which 

are manipulated by viruses to evade the innate immune response. Expression of type-I IFN 

depends on the activation of Interferon Regulatory Factor - 3 (IRF3) and IRF7 via I kappa B 

kinase (IKK) epsilon and Tank Binding Kinase 1 (TBK1). The genome of Rabies virus, Borna 

disease virus and Ebola virus code for the P phosphoprotein and VP35 that can block the 

antiviral response induced by IFN [8, 9, 10]. In contrast, the human herpes simplex virus 8 

encodes different analogs of IRF with negative dominant activity, allowing it to interfere with 

the activity of cellular IRFs [11]. The infected cell polypeptide 0 (ICP0) from Bovine herpes 

virus can interact with IRF3 and induce its proteasome-dependent degradation [12]. Similarly, 

the V protein of paramyxoviruses interacts with MD5-α and inhibits IFN-α expression [13]. 

One of the major non-speific humoral deffense mechanisms of the body for combating and 

clearing the infectious agents is complement system [14, 15, 16]. Viruses encode homologs of 

complement regulatory proteins that are secreted and block complement activation and 

neutralization of virus particles. The cowpox virus (CPV) complement inhibitor, termed 

inflammation modulatory protein (IMP), blocks immunopathological tissue damage at the 

site of infection, presumably by inhibiting production of the macrophage chemo attractant 

factors C3a and C5a. Viruses protect the membranes of infected cells and the lipid envelopes 

of virus particles from complement lysis by encoding homologs of inhibitors of the 

membrane-attack complex. Human cytomegalovirus (HCMV), HIV and vaccinia virus (VV) 

used to borrow different host cellular factors, such as CD59, to protect from complement 

action. Moreover, some viruses encode Fc receptors [17], thus inducing antibody response. 
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These antibodies may kill infected cells by complement-mediated cytolysis or by antibody-

dependent cell-mediated cytotoxicity (ADCC). 

In case of FMD virus, following a 5' untranslated region known as the S fragment, there is 

poly “C” tract comprising over 90 per cent ‘C’ residues [18]. The length of this tract is 

extremely variable [19]. There are some evidences that length of this tract is associated with 

virulence and persistence of infections [20].  

There is also evidence of viral interference with interferons. Interferons were discovered 

because of their ability to protect cells from viral infection. The key role of both type I (α and 

β) and type II (γ) IFNs as one of the first anti-viral defense mechanisms is indicated by the 

fact that anti-IFN strategies are present in most viruses. Viruses block IFN-induced 

transcriptional responses and the Janus Kinase (JAK) / signal transducers and activators of 

transcription (STAT) signal transduction pathways also inhibit the activation of IFN effector 

pathways that induce an anti-viral state in the cell and limit virus replication. This is mainly 

achieved by inhibiting double-stranded (ds)-RNA-dependent protein kinase (PKR) 

activation. Once active, the PKR causes phosphorylation of eukaryotic translation initiation 

factor 2a (eIF-2a) and the RNase L system, which are responsible for degrading viral RNA 

and translation in the host cell. Moreover, active PKR is also able to mediate the activation of 

the transcription factor NFkB which upregulates the expression of interferon cytokines, 

which work to spread the antiviral signal locally. In addition, active PKR is also able to 

induce cellular apoptosis. All these mechanisms due to PKR activation ultimately leads to 

inhibition of the spread of viral infection. But inhibition of PKR activation causes the viral 

infection to spread and thus helps in evasion of the immune system. Secreted cytokine 

receptors or binding proteins are mainly encoded by Poxviruses which actually encode 

soluble versions of receptors for IFN-α and -β (IFN-α/bR) and IFN-γ (IFN-γR), which also 

block the immune functions of IFNs 6. The IFN-α/βR secreted by Vaccinia virus (VV) is also 

localized at the cell surface to protect cells from IFN [21, 22]. Additionally, several viruses 

inhibit the activity of IFN-γ, a key activator of cellular immunity, by blocking the synthesis 

or activity of factors required for its production, such as interleukin (IL)-18 or IL-12. CPV 

cytokine response modifier (Crm) A inhibits caspase-1, which processes the mature forms of 

IL-1b and IL-18 [23]; various poxviruses encode soluble IL-18-binding proteins (IL-18BPs) 

[24]; measles virus (MeV) binds CD46 in macrophages and inhibits IL-12 production [15]; 

herpes viruses and poxviruses express IL-10 homologs that diminish the Th1 response by 

downregulating the production of IL-12 [25, 26]. 

Cytokines play a key role in the initiation and regulation of the innate and adaptive immune 

responses, and viruses have learned how to block cytokine production, activity and signal 

transduction. African swine fever virus (ASFV) replicates in macrophages and encodes an 

IkB homolog that blocks cytokine expression mediated by nuclear factor (NF)-kB and the 

nuclear factor activated T cell (NFAT) transcription factors 13. Many viruses block signal 

transduction by ligands of the tumor necrosis factor (TNF) family, whereas others 

deliberately induce some cytokine pathways; For example, the Epstein–Barr virus (EBV) 

latent membrane protein 1 (LMP1) recruits components of the TNF receptor (TNFR) and 

CD40 transduction machinery to mimic cytokine responses that could be beneficial for the 
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virus, such as cell proliferation [27]. One of the most interesting mechanisms identified in 

recent years is the mimicry of cytokines (virokines) and cytokine receptors (viroceptors) by 

large DNA viruses like herpesviruses and poxviruses [28, 29]. The functions of these 

molecules in the animal host are diverse. Soluble viral cytokine receptors might neutralize 

cytokine activity and cytokine homologs might redirect the immune response for the benefit 

of the virus. Alternatively, viruses that infect immune cells might use these homologs to 

induce signalling pathways in the infected cell that promote virus replication. The 

herpesvirus cytokine homologs vIL-6 and vIL-17 might have immunomodulatory activity 

but might also increase proliferation of cells that are targets for viral replication [28]. Viral 

semaphoring homologs have uncovered a role for the semaphorin family, previously known 

as chemoattractants or chemorepellents involved in axonal guidance during development in 

the immune system, and have identified a semaphorin receptor in macrophages that 

mediates cytokine production [30, 31].  

Apoptosis, or programmed cell death, can be triggered by a variety of inducers, including 

ligands of the TNF family, irradiation, cell cycle inhibitors or infectious agents such as 

viruses. The cellular proteins implicated in the control of apoptosis are targeted by viral 

anti-apoptotic mechanisms [32, 33]. Viruses inhibit activation of caspases: encode homologs 

of the anti-apoptotic protein Bcl-2, block apoptotic signals triggered by activation of TNFR 

family members by encoding death-effector-domain-containing proteins and inactivate IFN-

induced PKR and the tumor suppressor p53, both of which promote apoptosis. Epstein-Barr 

virus and oncogenic human herpes viruses use Bcl-2 orthologs like BHRF1 and BALF-1 to 

block mitochondrial release of cytochrome c [34, 35]. Mouse γ- herpesvirus (MHV) -68 encodes 

a Bcl-2 ortholog (MHVBcl-2) that protects the infected cell against TNF-mediated apoptosis 

[36]. An alternative mechanism is provided by the glutathione peroxidase of molluscum 

contagiosum virus (MCV), which provides protection from peroxide or UV induced apoptosis 

and perhaps from peroxides induced by TNF, macrophages or neutrophils. 

Infection with the human and simian immunodeficiency viruses are unique in that the 

infections give rise to prolonged, continuous viral replication in the infected host. 

Destruction of virus-specific T helper cells, the emergence of antigenic escape variants and 

the expression of an envelope complex that structurally minimizes antibody escape to 

conserved epitopes contribute to persistence. Moreover, the virus encoded protein Nef 

prevents the viral antigen presentation [37]. 

3. Recognition of CSFV by immune system 

Amidst the diversified mechanisms evolved by different viruses to evade the host immunity 

(innate or adaptive), CSFV plays a unique role in evading the host deffense and maintain the 

infection. The virus expresses two major PAMPs: the ssRNA genome and the dsRNA 

replication intermediates. The TLR’s sensing such patterns are located in the endosomal 

compartment [38] or in the cytoplasm in case of the cellular helicases Retinoic acid-Inducible 

Gene 1 (RIG-I) and Melanoma Differentiation-Associated protein 5 (MDA-5) [39]. TLR3 

binds dsRNA [40, 41], whereas TLR7 recognizes ssRNA [42, 43]. Conventional DC mainly 
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expresses TLR3 [44] while plasmacytoid DC (pDC) express TLR7 [45]. RIG-I and MDA-5 

both bind dsRNA. Recently however it was shown that RIG-I can sense uncapped viral 

single stranded RNA bearing a 5'-triphosphate [46, 47]. The stimulation of TLR3 leads to the 

activation of NFkB (early NFkB response) or to the activation of IRF3, which in turn 

upregulates type I IFN transcription and subsequently transcription of NFkB (late NFkB 

response) [48]. TLR7 stimulation leads to the activation of IRF7 but not of IRF3 [49]. Thus 

there is induction of type I interferons and various pro-inflammatory cytokines which play 

crucial role in antiviral host immune responses. Understimulation of any of these two TLR’s 

(i,e., either TLR 3 or 7) leads to down regulation of host immune response and over 

stimulation leads to exaggerated immune response. 

4. Few salient features about the disease Classical Swine Fever 

Classical swine fever (CSF) is a disease of domestic pigs and wild boar caused by CSF virus 

(CSFV). CSFV, first reported in the United States in 1833 causes important economical losses 

worldwide. Besides the United States of America, only Australia, Canada, Ireland, New 

Zealand, the Scandinavian countries and Switzerland are currently considered free of CSFV. In 

Europe the recent outbreaks occurred in Bulgaria Croatia and Germany in the year 2006 [50]. 

The natural reservoir for CSFV is the wild boar, which remains the major threat for new 

outbreaks. The virus is endemic in most of the Eastern European countries but the domestic 

pig population of Western Europe can be considered free from the disease. The control 

measures for CSFV include stamping out with a non-vaccination policy. Consequently pigs 

have to be free of virus and antibody against CSFV. Whether seroconversion results from 

vaccination or disease, pigs seropositive for CSFV must be eliminated. Acute or endemic 

CSF in domestic pigs has large economic impact on general restriction on pig meat trade 

[51]. The outbreak of CSF, and occurrences of CSFV in the tissues of pigs were reported from 

India as well [52]. 

There are three distinct genogroups of the virus (viz., 1, 2 and 3) with three or four 

subgroups [53, 54]. Even though group 1 viruses are predominant in India, group 2 viruses 

are also rapidly spreading and may form a major threat in future [55]. 

Early stage of the disease (CSF) is characterized by fever and diarrhoea. The gradual 

progression of the disease results in a severe wasting syndrome. The terminal stage is 

signified by a blue discoloration of the skin and weakness of the hind legs along with 

neurological symptoms. Autopsy finding includes disseminated intravascular 

coagulopathy, extensive tissue hemorrhages and thymus atrophy [56]. 

5. A few salient features of the structure, composition and function of the 

CSFV genome 

Classical swine fever virus (CSFV) is a member of the family Flaviviridae, genus Pestivirus 

[57]. The species consist of small, spherical enveloped viruses with an approximate diameter 
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of 40-60 nm based around an electron-dense inner core structure of about 30 nm [58]. The 

virus bears a single stranded positive sense RNA molecule spanning approximately 12.5 kbp 

and is made up of a single open reading frame (ORF) flanked by a 3' and 5' nontranslated 

region (NTR), the latter contains conserved regions implicated in the translational events 

[59, 60]. Notwithstanding the fact that the virus has a RNA genome, it is reported to be 

relatively stable [61]. Nevertheless, a recent study [62] indicated that recombination between 

strains is possible. The ORF is translated into a single polypeptide of  about 3900 amino 

acids which is co-and post-translationally processed into mature peptide by a number of virus 

and host encoded proteases [63, 64, 65, 66]. The virion is made up of 4 structural proteins viz., 

C, Erns, E1 and E2 which are encoded at the 5' end of the genome. The spherical nucleocapsid 

coat of the virus is composed of numerous proteins while the surface is made out of Erns, E1 

and E2 in homodimeric (Erns, E2) or heterodimeric (E1E2) form [67, 68]. E1 and E2 consist of 

transmembrane domains whereas Erns has no transmembrane spanning domain and its 

attachment to the virion is rather tenuous. In addition to the structural proteins, the CSFV viral 

genome encodes further 8 non-structural proteins, including an N-terminal protease (Npro), 

p7, the non-structural proteins (NS) 2, 3, 4A, 4B, 5A and finally 5B [64, 69]. 

CSFV is normally a noncytopathogenic (ncp) virus. A rare cytopathogenic (cp) form can 

occur spontaneously in cell culture [70] and has also been found in wild boar [71]. Its 

significance in CSFV pathogenesis is unknown. The CSFV genome consists of single 

stranded positive sense RNA. This RNA carries a single large open reading frame (ORF) 

flanked by a 5' and a 3' non-translated region (NTR). The NTR at the 5' end harbours an 

internal ribosome entry site [72, 73, 74]. Therefore the RNA can directly undergo cap 

independent translation upon uncoating. The large ORF encodes a single polyprotein which 

is co and post-translationally cleaved into altogether 12 structural and non-structural 

proteins including Npro (the first protein encoded by the ORF) by either cellular signalases or 

viral proteases [75]. It exhibits auto protease activity and cleaves itself from the nascent 

polyprotein [76]. Npro is the only viral gene that can be deleted without altering virus 

replication [77]. There is also report of counteraction of the type I IFN induction pathway by 

Npro [78, 79, 80] by down-regulating the expression levels of the interferon regulatory factor 

3 (IRF3) [81, 82]. IRF3 is the rate limiting component of the INF-b promotor enhanceosome 

and thus regulates the transcriptional activity of this gene [83, 84]. The second protein 

translated by the ORF is the capsid protein C (Core). It contains the Erns signal sequence [85] 

and a signalase recognition site [86]. The C gene is followed by the other three structural 

genes Erns, E1 and E2, the three envelope proteins of CSFV. All these proteins are cleaved 

by signalases [86]. Erns exists in secreted form [87]. It exhibits RNase activity in vitro [85]. It 

remains unclear whether this RNase activity has a specific role in the life cycle of CSFV. A 

lymphotoxic function of the secreted Erns has been reported [88]. More recently it has been 

shown that Erns of BVDV is involved in the inhibition of dsRNA-mediated type I IFN 

induction [89]. A very recent report proposed a cooperative effect of Npro and Erns of BVDV 

on transplacental infection in cattle [90]. Encoded downstream of envelope protein gene E1, 

the glycoprotein E2 harbours the major immunogenic epitopes. The antigenic region of E2 

was divided in the three domains A, B and C based on analysis using monoclonal antibodies 

(mAb) [91, 92]. E1 and E2 form either homodimers or heterodimers. They both contain 
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transmembrane regions that anchor the glycoproteins in the viral envelope. Erns has no 

transmembrane region and is associated with the envelope by interaction with E1 and/or E2 

or by hydrophobic interactions with the membrane. The p7 protein is not part of the virion 

but was found to be essential for virus assembly [93]. Protein p7 of the closely related 

hepatitis C virus (HCV) forms an ion channel [94]. It is not clear yet whether p7 of CSFV has 

the same function. The non-structural gene products are cleaved by the NS2 autoprotease 

between NS2 and NS3 [95] and by the NS3 protease at the downstream cleavage sites [96, 

97, 98]. NS2 is an inducible autoprotease that is activated by four cellular proteins [99, 100]. 

Enhanced cleavage between NS2 and NS3 correlates with the appearance of the cp biotype 

[101]. The uncleaved NS2-3 protein is essential for the formation of viral particles [101, 102]. 

The cleaved NS3 protein is produced essentially during the first few hours post-infection. 

Besides being a protease the NS3 protein has also helicase [103, 104] and NTPase activity 

[105, 106]. The NS4A protein is an essential co-factor of the NS3 protease [107]. NS4B is 

assumed to be a co-factor of the RNA-dependent RNA-polymerase encoded by the NS5B 

gene. This RNA-polymerase contains a GDD (Glycine-D-aspartate-D-aspartate) active site 

motif, otherwise known as the motif c [108]. The binding and entry of pestiviruses is a 

multistep process involving initial attachment of virions, interaction with specific 

receptor(s), internalization, and membrane fusion [109, 110, 111, 112]. The surface protein 

CD46 was proposed as receptor for BVDV [104]. Specific cell surface receptors for CSFV 

have not yet been identified. It has been shown that recombinant E2, E1 and Erns can 

independently bind to the cell surface [113, 114]. E2 adsorption competitively inhibits 

infection with homotypic and heterotypic pestiviruses [115]. After capsid uncoating, RNA 

replication and translation takes place in so-called replication complexes. These complexes 

have been well characterized for the closely related hepatitis C virus [116] and for some 

members of the genus Flavivirus [117]. The assembly pathway of pestiviruses is poorly 

understood. As mentioned above the uncleaved NS2-3 precursor protein in association with 

NS4A are essential for particles formation [101, 118]. Several studies on different 

pestiviruses have revealed that NS4B is an endoplasmic reticulum (ER)-associated integral 

membrane protein that contains four putative transmembrane domains flanked by 

cytoplasmic N- and C-terminal regions [119, 120, 121, 122]. Interaction of CSFV NS4B with 

molecular components of the immune system has also been reported [123]. 

6. Npro and its role in induction of poly (IC) induced antiviral activities 

The first protein encoded is the non-structural protein Npro. The gene coding for this protein 

is the only non-essential gene in the pestivirus life cycle [124]. It exhibits autoproteolytical 

activity and cleaves itself off the downstream nucleocapsid protein C [125, 126, 127]. When 

CSFV, BVDV and BDV are compared, the amino acid sequence identity of Npro is found to be 

higher than 70 per cent [128] and the residues Glu22, His49, and Cys69 are essential for the 

proteiolytic activity of Npro [125]. Moreover, the residues Cys168 and Ser 169 surrounding 

the cleavage sites are also conserved [126]. Resistance to poly(IC)-induced cell death and 

control of IFN induction are dependent on the presence of the Npro gene, indicating a 

function of Npro in innate immune evasion of CSFV [129]. The characterisation of Npro gene is 

also found to be beneficial for the development of inactivated vaccine [130]. 
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7. Immune evasion and immunopathogenesis of CSF 

CSF virus (CSFV) has high affinity for vascular endothelial cells and lymphoreticular cells 

including T cells, B cells and monocytes [122]. Severe depletion of B cells and T cells in 

Peripheral Blood Mononuclear Cells (PBMC) and virus persistence in lymphoid tissues is 

thought to be the most important characteristics of CSFV infection that leads to the acquired 

immunosuppressive state [131, 132]. 

Recently it has been observed that ncp BVDV induces translocation of IRF-3 into the nucleus 

without subsequent binding to DNA [133]. Furthermore, ncp BVDV was able to block 

Semliki Forest virus-induced IFN production through a block in the formation of IRF-3 – 

DNA complexes [134]. Whether this is also true for CSFV and whether Npro is involved in 

this process remain to be investigated. But we can not ignore the fact that the presence of 

Npro permits efficient infection of monocytic cells, including monocytes, macrophages, and 

even dendritic cells.These cells are among the main targets for CSFV allowing high-level 

replication and permit cell-associated spreading and colonization of immunological  

tissue by CSFV. Furthermore, they appear to play a central role in virus-induced 

immunomodulation [135]. 

Dendritic cells (DCs) are one of the primary immunological sentinels of the immune system 

[136, 137]. Their strategic localization at mucosal surfaces and dermal layers makes them an 

early target for virus contact [138]. Functional disruption of DCs is an important strategy for 

viral pathogens to evade host defences [139, 140]. Monocytotropic viruses such as CSFV can 

employ such a mechanism as the virus can suppress immune responses and induce 

apoptosis without infecting lymphocytes. The virus infects both conventional dendritic cells 

(cDCs) and plasmacytoid dendritic cells (pDCs) [141, 142, 143]. The infected DCs display 

neither modulated MHC nor CD80/86 expression. Interestingly, similar to macrophages, 

CSFV do not induce IFN-α responses in the cDCs as Npro protein promotes proteosomal 

degradation of interferon regulatory factor (IRF) 3 [144, 145]. So, it can be said that CSFV can 

replicate in cDCs and control type I IFN responses, without interfering with the immune 

reactivity [146]. However, in pDCs, IRF 7 is more prominent and there is lack of interference 

of Npro with IRF 3 which results in augmented IFN α response by pDCs. This is the reason 

for an exaggerated pDC response, relating to the immunopathological characteristics of the 

disease [147, 148, 149]. 

Regulation of CSFV RNA turnover with minimal accumulation of dsRNA is an important 

factor governing the evasion of host deffense by the virus [144]. The temporal modulation of 

NS2-3 processing by the NS2 autoprotease is crucial in RNA replication control and the 

intracellular level of NS3 strictly correlates with the efficiency of RNA replication [150]. But, 

whether these proteins regulate the dsRNA levels remains to be established. The viral 

structural protein Erns is also actively involved in the dsRNA-mediated induction of IFNβ [151]. 

IL-6 is an important cytokine in providing protection during early part of CSFV infection. 

The synthesis of NS4B protein during viral replication in the tonsil down regulates the 

expression of IL-6 and this is especially true with CSFV strain Brescia [123].  Swine 
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Leukocyte Antigen I (SLA I) molecules present the endogenous peptides to activate the 

CD8+ T cells that control viral replication within cells. CSFV interferes with the expression of 

SLA I molecules by the monocytic cells, thereby, inhibiting apoptosis of the cells. This 

strategy seems to be quiet helpful for the virus to escape the host immuno-surveillance and 

establishment of persistence in tissues [152]. Antibodies may be temporarily detected in 

serum sample. But these antibodies can not eliminate the virus from the host system. 

Consequently, the antibodies are neutralized by the virus and cease to be detectable [153]. 

Blocking B-lymphocyte maturation by infection and destruction of germinal centers is a key 

event in the pathogenesis of acute, lethal CSF before the development of generalized 

infection [154]. Immature B lymphocytes (i,e., centroblasts, centrocytes and B blasts) can 

themselves be the cellular targets of the virus in any stage of maturation within follicles 

[155] or they may lack critical cytokines because of an infection of the supporting follicular 

dendritic cell network [154]. However, it is clear that depletion of B lymphocytes can not 

account for all the pleiotropic symptoms of this disease. But, as it is generally held that 

antibodies against CSF can be protective and as recovery from acute infection is known to be 

associated with seroconversion [156, 157] it appears justified that B-follicle tropism of an 

HCV isolate is an important determinant for the course of disease [154]. 

8. Conclusion 

The understanding of the virus-host interaction network is important to design  antiviral 

strategies and to formulate antiviral drugs. In this context, the ability of the viruses to evade 

the host immune system plays a key role. The understanding of the complex mechanisms of 

host immune system manipulation will ultimately result in undertaking suitable 

immunoprohylactic measures. 
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