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1. Introduction

Normal mammalian cells in culture have a limited life span and will eventually maintain a
growth arrested state, referred to as replicative senescence. Usually induced by telomere
shortening this form of arrest is irreversible in the sense that cells cannot be triggered to re-
enter proliferation by physiological mitotic stimuli like growth factors. Senescence may also
occur prematurely in response to various stress stimuli such as oxidative stress, DNA dam‐
age or active oncogenes. Thereby premature senescence acts as an important tumor suppres‐
sive mechanism and not surprisingly there is emerging evidence that senescence is indeed
not only a result of tissue culture but markers of senescence have been identified in vivo in
human and animal tissue.

The function of the retinoblastoma protein (pRb) is central to the onset of senescence. pRb, in its
active hypophosphorylated form, is a potent repressor of genes that function during DNA rep‐
lication and thereby pRb causes cell cycle arrest. The cell cycle inhibitors p16INK4a and p21Waf1

and their homologues work in concert with pRb by inhibiting cyclin dependent kinases (CDKs)
from phosphorylating pRb and thus maintaining in its active growth inhibitory state.

Additionally to the transient role in growth inhibition active, hypophosphorylated pRb co‐
ordinates major changes in direct and epigenetic gene regulation leading to changes in chro‐
matin structure, which are crucial to the onset and maintenance of senescence.

This chapter provides an insight in these molecular mechanisms of cellular senescence.

2. Senescence features and biomarkers

Senescent cells display several characteristic morphological and biochemical features. The
detection of these markers has been used to identify senescent cells in vitro an in vivo. The
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typical senescence phenotype consist of enlarged cell with multiple or enlarged nuclei,
prominent Golgi apparatus and sometimes a vacuolated cytoplasm (Figure1). Recently a
novel method to measure protein levels with fluorescence microscopy confirmed that in‐
deed senescent cells accumulate increased levels of protein in the cytoplasm and nucleus [1].
In addition to the detection of characteristic morphological changes the most common meth‐
od used to identify senescent cells is measurement of the lysosomal beta-galactosidase activ‐
ity with a simple biochemical assay [2]. Due to an expansion of the lysosomes senescent cells
show an increased activity of this enzyme, which is therefore often referred to as senescence-
associated beta-galactosidase (SA-beta-gal), [3, 4]. However, it should be noted, that an in‐
creased beta-gal activity is an unreliable marker of senescence since it is also detectable in
vitro after prolonged cell culture, serum withdrawal, TGF-beta, heparin or TPA treatment
[3, 5-8]. The tumour suppressors p16INK4a and p21Waf1 are mediators of cell cycle arrest and
senescence and therefore often used as biomarkers. Since neither p16INK4a nor p21Waf1 is strict‐
ly required for the induction or maintenance of the senescence program their predictive val‐
ue is limited if used individually. A specific feature of senescent cells are condensed
heterochromatic regions, known as senescence-associated heterochromatic foci (SAHF).
These heterochromatin spots are enriched with i) histone H3-methylated at lysine 9
(H3K9meth), its binding partner ii) heterochromatin protein-1γ (HP- 1γ) and iii) the non-his‐
tone chromatin protein, HMGA2, which all have been used as markers of SAHF [9, 10].

Figure 1. Senescence characteristics

A) The typical senescence phenotype consist of enlarged cell with multiple or enlarged nu‐
clei, and an increased SA-beta-gal activity is visible after N-RASQ61K induced senescence. Hu‐
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man diploid fibroblasts (HDF) were transduced with lentiviruses expressing N-RASQ61K or
copGFP control. The efficiency of transduction was controlled with the co-expression of
copGFP and was consistently above 90%. p16Ink4a expression, chromatin condensation (DA‐
PI), and the appearance of increased SA-ß-Gal activity were analyzed and quantified 15
days after infection. Cells enlarged to show DAPI-stained chromatin foci are indicated with
arrows. B, C) HDF induced to senesce with oncogenic N-RASQ61K were stained with DAPI
and an antibody to H3K9meth or γH2AX to highlight senescence-associated heterochroma‐
tin foci or DNA damage foci respectively. H2AX is a member of the histone H2A family that
gets instantly phosphorylated after DNA damage and forms foci at DNA break sites.

3. pRb in cell cycle regulation

The retinoblastoma protein (pRb) is often referred to as the “master brake” of the cell cy‐
cle because its main function is to inhibit E2F transcription factors from inducing a range
of  genes  essential  for  DNA  replication  and  thus  proliferation  [11].  Consequently  active
pRb causes cell cycle arrest. In contrast during proliferation when cells are promoted to‐
wards cell  division,  pRb is  sequentially  phosphorylated by a  series  of  cyclin dependent
kinases  (CDKs)  and  this  results  in  pRb  inactivation  and  consequently  derepression  of
proliferation genes.

Initiation of cell proliferation is normally triggered by growth factors. These external mole‐
cules function as ligands to a number of growth factor receptors expressed on the cell sur‐
face and thus activate signalling cascades, most prominently the mitogen activated protein
kinase (MAPK) pathway, and ultimately lead to the expression of a number of genes includ‐
ing cyclin D [12]. CDK4 and 6 initiate phosphorylation of pRb in the presence of cyclin D
and this leads to de-repression of early cell cycle genes including cyclin E and thus the entry
into the cell cycle. Subsequently, CDK2 and CDK1, in co-operation with cyclins E, A and B,
continue to stepwise further phosphorylate and inactivate pRb, which leads to cell cycle pro‐
gression and finally cell division. As the “master brake” of the cell cycle pRb is an important
tumor suppressor and alterations of its pathway have been associated with the childhood
cancer retinoblastoma and are known to occur in over 90% of cancers [13]. There are two
important types of cell cycle inhibitors represented most prominently by p16INK4a and
p21Waf1. p16INK4a is at the forefront of cell cycle inhibition as it binds specifically to the cyclin
D dependent kinases CDK4 and CDK6 and displaces cyclin D and thereby it prevents the
entry into the cell cycle and arrests cells in G1 phase (Figure 2). p21Waf1 is more promiscuous
and is able to inhibit all CDK molecules at any stage during the cell cycle. p21Waf1 molecules
do not necessarily displace cyclin partners from their CDK target and importantly it may re‐
quire several p21Waf1 molecules to effectively inhibit CDKs [14]. In normal cells p16INK4a and
p21Waf1 are able to work hand in hand, the accumulation of p16INK4a and binding to CDK4
and 6 frees p21Waf1 molecules from these kinases to bind and inhibit CDK2 and 1 more effi‐
ciently [15]. These basic cell cycle regulatory functions of pRb, p16INK4a and p21Waf1 are essen‐
tial to initiate and maintain senescence and it is not surprising that all three molecules are
considered important tumor suppressors.
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Figure 2. The Cell Cycle

This simplified model, focusing on early cell cycle entry, illustrates that hypophosphorylat‐
ed, active pRb represses E2F-mediated transcription. The action of CDKs, exemplified by the
cyclin D dependent CDK4 and 6, phosphorylate pRb and thus release E2F to activate tran‐
scription of early DNA replication genes. p16INK4a and p21Waf1, the latter usually activated by
p53, inhibit CDKs and retain pRb in its active cell cycle inhibitory state.

4. The role of the tumor suppressor p16INK4a in senescence

With regard to senescence, it is long known that p16INK4a levels accumulate and cause
growth arrest and senescence when cells approach their replicative life span [16-23]. More‐
over, in long term tissue culture studies cells that were able to overcome senescence com‐
monly had lost p16INK4a and p53 expression [24]. Increased p16INK4a expression is also linked
to oncogene induced and other forms of premature senescence [25-33].

Interestingly, despite this clear correlation of p16INK4a up-regulation with senescence there is
some evidence from p16INK4a is not strictly required for senescence to occur. Evidence form
mouse models show that mouse embryonic fibroblasts (MEFs) of p16-null mice undergo a
comparable number of cell divisions as wild type MEFs before entering senescence [34] [35],
while in primary melanocytes, which were lentivirally transduced to express oncogenic
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HRAS or NRAS, silencing of p16INK4a did not abolish most senescent features. Interestingly
however, the formation of SAHF did only occur in the presence of p16INK4a [29, 36, 37]. These
findings show two important points: first there are other redundant mechanisms able to
compensate for p16INK4a loss and rescue senescence and second the p16INK4a-pRb pathway
has a specific role in SAHF formation and, importantly, these heterochromatin foci have
been suggested to abolish expression of proliferation associated genes and secure senescent
features so senescence becomes irreversible [9] (see section 7 for more detail). This idea is
supported by a report that senescence was only reversible, via p53 inactivation, in fibro‐
blasts and mammary epithelial cells with low but not with high p16INK4a expression [38]. It is
noteworthy that the importance of SAHF in securing senescence has been challenged recent‐
ly and SAHF are thought dispensable for senescence by some investigators and/or only as‐
sociated with oncogene-induced senescence [39, 40]. The fact that SAHF formation only
occurs in the presence of increased p16INK4a levels remains undebated and it is therefore
tempting to speculate a direct p16INK4a role in the formation of these structures.

Even though cells may be able to compensate for p16INK4a loss and still undergo a growth
arrest characterised by most if not all senescent features, the importance of the tumor sup‐
pressor p16INK4a in senescence is clear as p16-null tumor cells can be driven into senescence
by the sole re-expression of p16INK4a: Induced p16INK4a expression in glioma cells caused a
typical senescent phenotype [41], reversing promoter hypermethylation allowed for the re-
expression of endogenous p16INK4a in oral squamous cell carcinoma cells leading to senes‐
cence [42], inducible p16INK4a expression in osteosarcoma cells induced senescence after 3-6
days, potentially irreversible after 6 days [43] and inducible p16INK4a in human melanoma
cells caused a senescent phenotype after 3-5 days in the absence of p53 [44, 45]. Moreover,
even in normal early passage human fibroblasts the ectopic introduction of p16INK4a or func‐
tional peptides thereof initiated cell cycle arrest and senescent features [46, 47]. In line with
this, melanoma associated germline mutations of p16INK4a are impaired in inducing a cellular
senescence program in melanoma cells and this disability to promote senescence may con‐
tribute to the melanoma-risk of p16INK4a linked melanoma-prone families [45].

5. Timing of Senescence by repression and activation of p16INK4a

5.1. p16INK4a repression

In fact, the ability to induce senescence in response to accumulated or sudden genomic
stress is probably the most important tumor suppressive function of p16INK4a. In line with
this consideration it is not surprising that p16INK4a expression is tightly repressed at the chro‐
matin and transcriptional level in “young” proliferating cells and in cells with extensive re‐
newal capacities, such as stem cells. The polycomb protein Bmi1, which is also known as
“stem cell factor” is facilitating repression of the INK4a locus at the chromatin level [48, 49].
Intriguingly, in a functional feedback loop, in human fibroblasts the Bmi1-mediated repres‐
sion of p16INK4a requires active pRb and also H3K27 (histone 3/lysine 27] trimethylation fa‐
cilitated by the histone methyltransferase EZH2 in concert with a second polycomb protein,
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SUZ12 [50]. Crucially, Bmi1 chromatin binding can be inhibited by its phosphorylation
through the MAPK and p38 signalling pathways [51]. Hence these pathways are able to di‐
rectly oppose p16INK4a repression and lead to its transcriptional activation via Ets and Sp-1
during oncogene-induced senescence.

In concert with Bmi-linked chromatin-remodelling events a number of transcription factors fa‐
cilitate p16INK4a repression during the proliferative life-time of cells. The perhaps most impor‐
tant transcriptional repressors of p16INK4a are Id proteins, with the main representative Id1. Id
proteins function by binding to E-box DNA sequences to repress the INK4a promoter and im‐
portantly by interfering with Ets transcriptional complex formation and thereby inhibiting the
main INK4a transcriptional activator, Ets, in two ways [52, 53]. In line with this, high Id1 levels
were associated with early stage melanoma whereas premalignant and interestingly also more
advanced melanoma showed limited Id1 expression [54]. This suggests a role of the Id1/
p16INK4a regulative connection during melanomagenesis and Id1 may be dispensable in later
melanoma stages once p16INK4a is either more tightly repressed by engaging repressive histone
modifications or inactivated by other mechanisms. Id1 down-regulation on the other hand is
usually associated with cell differentiation and senescence [55]. Consequently, ectopic expres‐
sion of Id1 delayed senescence in melanocytes [56] and keratinocytes [57], while MEFs lacking
Id1 prematurely senesced due to increased p16INK4a levels [58, 59]. Another way to oppose Ets
driven p16INK4a transcription was identified, when Cdh1, an adaptor protein of the anaphase
promoting complex, was shown to bind to and promote degradation of Ets2 and thereby in‐
creased the replicative life span of MEFs [60], while the Epstein-Barr virus protein LMP1 re‐
presses p16INK4a by promoting the nuclear export of Ets2 [61, 62]

Interestingly, p16INK4a may also be repressed by the oncogene β-catenin, which has been
linked to melanoma. β-catenin binds the INK4a promoter at a conservative β-catenin/Lef/Tcf
binding site and thereby directly represses its transcription. Consequently β-catenin silenc‐
ing increased p16INK4a levels in A375P human melanoma cells, while stabilization of β-cate‐
nin together with oncogenic N-RAS led to prevention of senescence and thus,
immortalization [63]. Importantly, a role of β-catenin in melanocyte senescence is controver‐
sial as nuclear β-catenin was commonly found in benign melanocytic nevi [64-66] and these
lesions were proposed to be senescent by some investigators [29, 67], this again is controver‐
sial, as benign nevi are not be distinguished from normal melanocytes or primary melano‐
mas using a range of common senescence markers [68]. It would clearly be interesting to test
whether nuclear β-catenin does overlap with the expression of p16INK4a in benign nevi as the
latter is mosaic and not found in all cells [29] and co-localisation or lack of it could help clar‐
ify this debate. Another repressor of p16INK4a is the “T-box transcription factor” Tbx2, this
transcription factor binds to corresponding T-box DNA sequence elements [69]. Tbx2 over-
expression was identified in melanomas and associated with melanoma progression [70].

5.2. p16INK4a expression

When cells reach their finite life span the pendulum at the INK4a promoter swings from repres‐
sion to activation and the SWI/SNF chromatin remodeling complex, replaces Bmi1 repressors
and relaxes chromatin structures around the INK4 promoter region, which is strictly depend‐
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ent on the SWI/SNF subunits BRG1 and hSnf5, and the relaxed chromatin structure allows tran‐
scription factor access [71] (Figure 3a). Alterations of hSnf5 are associated with early childhood
rhabdoid cancer and re-expression of hSnf5 in rhabdoid cancer cells leads to p16INK4a accumula‐
tion, growth arrest and senescence [71, 72] and this requires functional p16INK4a [73].

The best understood transcription factors driving p16INK4a expression and thereby growth ar‐
rest and senescence are Ets1 and Ets2. They are effectors of MAPK signalling, often in re‐
sponse to oncogenic stress, such as activating N-RAS or B-RAF mutations, which induce an
increase in p16INK4a levels [25, 29, 37, 52]. In line with this, human fibroblasts with biallelic
mutations in p16INK4a did increase mutant p16INK4a expression in response to RAS signaling
or expression of ectopic Ets, but failed to arrest or undergo senescence [74]. Interestingly in‐
creased p16INK4a expression has also been linked to loss of p53 and this appears to be corre‐
lated with increased Ets protein half-life [75]. Another member of the Ets transcription factor
family, ESE-3, was independently identified as a down stream target of p38 signalling and
caused senescence via p16INK4a up-regulation [76]. p38 signalling has been linked to en‐
hanced p16INK4a expression before and this involved the downstream transcription factor
Sp-1, which was proposed to be required for p16INK4a up-regulation during senescence in hu‐
man fibroblasts [77]. Sp-1 was reported to engage the p300 enhancer leading to further
p16INK4a upregulation [78] (Figure 3b).

Figure 3. Schematic presentation of p16INK4a regulation

(A) During the proliferative cellular life-time, EZH2 in cooperation with SUZ12 trimethy‐
lates H3K27 at the genomic INK4a locus and these histone modifications attract the poly‐
comb repressor BMI1, which maintains the p16INK4a promoter region inaccessible for
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transcriptional activation. Once cells reach their finite life span or during premature senes‐
cence the histone modifications at the INK4a locus change from repressive methylations to
activating acetylations, which attract the SWI/SNF complex. The SWI/SNF subunits hSnf5
and BRG1 are instrumental in opening the chromatin structure and allowing access of the
transcriptional machinery to the p16INK4a promoter. (B) Ets transcription factors are down
stream targets of MAPK signalling, exemplified here by RAS, and bind to E-box p16INK4 pro‐
moter motifs to activate gene expression. Id transcription factors can compete with Ets for
DNA binding and oppose transcriptional expression. The levels of Id proteins decline with
onset of senescence and Ets are able to promote p16INK4a expression.

6. The role of the p53/p21 pathway in senescence

The transcription factor and tumor suppressor p53 is often referred to as “guardian of the
genome” and inactivating mutations in p53 are observed in about half of all human cancer
cases. The p53 protein is a critical regulator of cell survival in response to cellular stress sig‐
nals including DNA damage, oncogene activation, hypoxia and viral infection (reviewed in
[79]. In the absence of stress stimuli p53 gets rapidly ubiquitinated by one of several E3 li‐
gases including MDM2, MDM4, TOPORS, COP1, and ARF-BP1 and subsequently degraded
in the proteasome [80, 81]. Stress signals, on the other hand, induce covalent modification
usually by disrupting the interaction between p53 and the E3 ubiquitin ligases which pre‐
vents its degradation. Oncogenic stress, for example, activates the alternative reading frame
product of the INK4a locus (p14ARF) that stabilizes p53 by binding and thereby inhibiting
its negative regulator MDM2.

Several lines of evidence show convincingly that the p53 and its downstream effector p21Waf1

play a crucial role in the regulation of cell cycle arrest and senescence. Overexpression of
p53 [82] and p21Waf1 [83-86] autonomously induced senescence in human cells and activation
of p53 by either overexpression of p14ARF [87] or nutlin-3 treatment [88] induced senes‐
cence in a p21Waf1 dependent manner in human diploid fibroblasts (HDF) and human glio‐
blastoma cells respectively. Furthermore, inactivation of p53 or p19ARF (mouse homologue
of human p14ARF) prevents senescence in mouse embryonic fibroblasts (MEF) [89-91] and
human fibroblast lacking p21Waf1 can bypass the senescence growth arrest [83]. Further
supporting evidence comes from studies that show that, inactivation of p53 using viral on‐
coproteins, anti-p53 antibodies or anti-sense oligonucleotides can extend the replicative life‐
span or even reverse the senescence growth arrest in human cells [38, 92-94]. However, it
should be noted that although inactivation of the p53 pathway can weaken or even reverse
the senescence arrest in some cells, there is emerging evidence that it fails to do so in cells
with an activated p16INK4a/pRb pathway [38, 95-97]. Despite the clear evidence of p53’s role
in promoting senescence a study conducted by Demidenko and co-workers suggested that
p53 can also act as an inhibitor of senescence [98]. Surprisingly, p53 was able to reverse a
p16INK4a and p21Waf1 driven senescence response in human fibroblasts. Although the underly‐
ing mechanisms are not fully understood, inhibition of the mTor (mammalian target of rapa‐
mycin) pathway seems to be involved in the repression of cellular senescence [98-101].
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6.1. DNA damage and senescence

The human genome is constantly exposed to genotoxic stress such as ultraviolet light, reactive
oxygen species (ROS) as well as chemical and biological mutagens. To ensure the integrity of
the genome cells have evolved a sophisticated safety system that can implement a cell cycle ar‐
rest to allow the repair of the incurred damage. The initial step in the complicated DNA dam‐
age repair process is the detection of DNA damage. The Mre11/Rad50/NBS1 (MRN) complex
function as a DNA damage sensor is localized in nuclear foci at the sites of double strand breaks
(DSBs) [102-104]. Here, the complex tethers DNA ends, processes and repairs free strands via
endonuclease and exonuclease activities [105-107]. The MRN complex is also involved in the
recruitment and activation of ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-
related) protein kinases, which in turn activate checkpoint-1/2 (CHK1/2) kinases leading to
phosphorylation and thereby stabilization of a variety of target genes including p53 [108]. In
the case of irreparable damage, the cell will be permanently retracted from the pool of dividing
cells by the induction of apoptosis or senescence (Figure 4] [109, 110].

6.2. Drug induced senescence

Several sources of genotoxic stress including cisplatin, cyclophosphamide, doxorubicine,
taxol, vincristine, cytarabine, etoposide, hydroxyurea, bromodeoxyuridine, adriamycin,
bleomycin mitomycin D, interferon beta, radiation, ROS, H2O2 have been used to trigger
senescence-like growth arrest in vitro and in vivo allowing a detailed analysis of the under‐
lying signaling events [28, 111-122]. The crosslining agent cisplatin, for example, induced
senescence in primary human fibroblasts and HCT116 colon carcinoma cells in a p53 and
dose dependent manner [123, 124]). Interestingly, treatment of HCT116 cells with low cispla‐
tin concentrations lead to DNA damage and senescence whereas high drug concentrations
induced apoptosis via superoxide production. Furthermore, in human lung cancer cells in‐
duced p53 expression enhanced the cytotoxic effect of cisplatin whereas p21waf1 overexpres‐
sion surprisingly lead to increased drug resistance [82]. Similarly, cisplatin-resistant human
non-small cell lung cancer (NSCLC) cells could be sensitized to drug-induced senescence by
re-expressing p16Ink4a [118]. Duale and co-workers compared changes in the gene expression
profiles of a cisplatin treated human colon carcinoma cells (HCT116) and cell lines derived
from testicular germ cell tumors (TGCTs). The systematic approach combining the acquired
gene expression data and other publicly available microarray data identified 1794 genes that
were differentially expressed including 29 senescence-related genes such as IGFBP 7, inter‐
leukin 1 and MAPK8 [125]. These findings highlight the notion that cellular response to che‐
motherapeutic agents is generally depending on the cellular context as well as the type and
level of the stress signal.

6.3. Oncogene-induced senescence and DNA damage

In contrast to chemotherapeutic agents that directly damage the DNA, activated oncogenes
do the harm by forcing the cell in uncontrolled, constitute replication cycles which leads to
DNA replication stress and subsequent DNA damage [126, 127]. During this process DNA
replication forks stall making the DNA more susceptible to single or double strand breaks.
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The subsequent activation of the DNA damage response (DDR) machinery delays cell-cycle
progression by initiation of the ATM/ATR-CHK1/2 pathway and stable knockdown of any
one of these DDR genes was sufficient to bypass RAS induced senescence in human fibro‐
blasts. Specifically, in the absence of ATM, ATR, Chk1 or Chk2, human fibroblasts continued
to proliferate despite Ras expression, and BrdU incorporation increased from approximately
5% in the control sample to 15% in cells deficient for a DNA damage protein. Interestingly,
the inhibition of both the p16INK4a and DNA damage pathway enhanced the effect and en‐
abled over 60% of the cells to replicate DNA [126]. In a similar study, Bartkova and co-work‐
ers showed that the suppression of ATM or p53 allowed the MRC5 and BJ human
fibroblasts to bypass oncogene-induced senescence using overexpressed Mos (an activator
of the MAPK pathway) or Cdc6 (a DNA replication licensing factor). However, in this report
p16INK4a depletion alone did not weaken the senescence response [127].

Figure 4. DNA damage pathway in senescence
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To protect the integrity of their DNA, cells need to be able to sense DNA damage and acti‐
vate response pathways that coordinate cell cycle progression and DNA repair. Ataxia telan‐
giectasia mutated (ATM) and ATM-Rad3-related (ATR) kinases are important DNA damage
checkpoints proteins that transduce signals from the DNA damage sensors to the effector
proteins that control cell cycle progression, chromatin restructuring, and DNA repair. ATM
and ATR activate other kinases such as Chkl (activated by ATR) and Chk2 (activated by
ATM) that phosphorylate and activate the tumour suppressor protein p53. ATM and ATR
can additionally enhance p53 activity by directing p53 phosphorylation on Ser15. Activated
p53 can halt progression of the cell cycle in the G1 phase, allowing DNA repair to occur and
preventing the transmission of damaged DNA to the daughter cells.

7. pRb in senescence: maintaining a secure proliferative arrest

In the previous sections we have reviewed the pivotal role of the cell cycle inhibitors p16INK4a

and p21Waf1 in keeping pRb in a hypophosphorylated, active state and explored the mecha‐
nisms of timing the expression of these tumor suppressors with the onset and maintenance
of senescence. Here we explore the roles of active pRb in the senescence program, which go
beyond the antiproliferative functions described in the cell cycle section 3.

There is longstanding evidence that pRb is required for an intact senescence program, for
instance re-introduction of pRb into SAOS osteosarcoma cells that have lost its expression
can cause senescence [128]. On the other hand inactivation of pRb with the viral oncoprotein
E1A prevents senescence, while a mutant form of E1A that is impaired in pRb binding is un‐
able to prevent senescence [9]. Interestingly, another mutant E1A, that is able to bind pRb
but is unable to interact with the histone deacetylases p300 and p400 leads to less efficient
development of senescence [9].

7.1. pRb and SAHFs

These data highlight that chromatin remodeling plays an important role in the cellular sen‐
escence program. Indeed, during senescence E2F responsive genomic promoter regions are
stably repressed from transcription by the establishment of heterochromatin regions. As
mentioned above (section 3) these regions are visible as microscopical “senescence associat‐
ed heterochromatin foci” (SAHF) when cells are stained with certain DNA intercalating
dyes such as DAPI. The term heterochromatin refers to a highly condensed protein-DNA
structure, which is facilitated by modifications of the histone core molecules of chromatin
and suppresses DNA access by the transcriptional machinery and thus gene expression of
these regions is tightly suppressed (reviewed in [129]). The investigation of SAHF remains a
progressing research field and is developing forward with improved microscopic imaging
technology and the ability to isolate these complex structures and analyse them more pre‐
cisely and we can expect to understand even more about their role and configuration in the
future. To date we know that SAHF formation coincides with the recruitment of heterochro‐
matin proteins by pRb when interacting with the histone deacetylase 1 (HDAC1] at E2F-re‐
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sponsive promoters [130]. A number of heterochromatin-associated histone modifications
were characteristically found associated with SAHF. These include the reversion of histone
3/lysine 9 acetylation (H3K9Ac) and histone 3/lysine 4 trimethylation (H3K4me3) and signif‐
icantly, since it is often used as a marker of senescence, the promotion of histone 3/lysine 9
trimethylation (H3K9me3) and H3K27me3. H3K9 trimethylation is a fundamental step dur‐
ing heterochromatin formation as it attracts HP1 proteins, which are pivotal for heterochro‐
matin assembly [9]. It is important to highlight that senescence does not always lead to a net
increase in overall H3K9me3, suggesting that SAHF formation is local and indeed targeted
via pRb to E2F promoters [131]. H3K9me3 is thought to be very stable and is able to prevent
histone acetylases (HATs) to catalyze histone acetylations. Histone acetylations are com‐
monly associated with “euchromatin”, which describes actively transcribed chromatin re‐
gions. Accordingly, SAHF formation is thought to “lock” chromatin regions that encode
proliferation genes and thus contributes to the very secure silencing of E2F responsive pro‐
liferation genes, which is not reversible by physiological stimuli [9]. H3K9 trimethylation as‐
sociated with SAHF formation is thought to be catalyzed by either the SUV39H1
methyltransferase, which together with HP1 interacts with pRb during E2F promoter silenc‐
ing in senescence [132] or the RIZ1/PRDM2 H3K9 methyltransferase, which was also shown
to co-operate in pRb gene repression and is inactivated in colon, breast and gastric carcino‐
ma [133]. Furthermore, a search for H3K9me3 interacting proteins to identify proteins in‐
volved in the senescence program identified JMJD2C, which is a H3K9 specific demethylase.
Thereby it is the direct antagonist of the SUV39H1 H3K9 methyltransferase and its over-ex‐
pression is not surprisingly associated with several forms of cancer [134].

Lately there is a different view about the importance of SAHF emerging and SAHF forma‐
tion, may according to a recent study only be of major relevance in the oncogene induced
senescence process that crucially involves DDR and the corresponding ATR signalling, as
knock-down of ATR prevents SAHF formation during RAS induced senescence. The same
study also found that SAHF resembling structures containing H3K9me3 do independently
occur in proliferating oncogene expressing cells, however the investigators data show that
these structures are not associated with E2F target promoters, which remain active. The au‐
thors concluded that SAHF structures might not be an essential feature of senescence [40].

More recently a groundbreaking study by the Narita group has combined microscopic, elec‐
tron microscopic and genomic data analysis to shed more light on SAHF formation and
structure. Their significant findings are that H3K9me3 and H3K27me3 may in fact not di‐
rectly be involved in SAHF. Although these markers are usually associated with SAHF, the
overall methylation status of histone tail lysines does not change within the genomic DNA
during senescence. Moreover, the investigators found that SAHF formation was linked to
pre-senescent replication timing and specific histone modifications were characteristic for
early-, mid- and late replications genes. Significantly though, when they prevented SAHF
formation by silencing of either pRb or the high mobility group AT-hook 1 (HMGA-1),
which they and others had previously linked to SAHF formation, there was no change to
H3K9me3 in proliferating cells [135] and this may explain the above-mentioned data by Mic‐
co et al [40]. Moreover, Chandra et al. reversed H3K9 and H3K27 trimethylation by either
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overexpressing the H3K9me3 favoring histone demethlyase JMJD2D or by silencing SUZ12,
a polycomb protein involved in H3K9 and K27 methylation. Importantly, even without
these methylated histone markers RAS induction still led to senescence with the occurrence
of DAPI dense SAHF structures. The investigators concluded that SAHF formation is medi‐
ated through spatial rearrangement of pre-existing H3K9me3 and H3K27me3 regions but
that these histone marks are not a prerequisite for the SAHF formation process [135]. Clear‐
ly, further studies are needed to fully define the combined roles of histone modifications,
heterochromatin and SAHF in senescence.

Consistent with gene silencing and decreased acetylation during senescence is the down-
regulation of the histone acetylases p300/CBP, which was observed in melanocytes reaching
in their finitive lifespan [136].

With regard to the role of chromatin remodelling in senescence, there is also evidence that
ATP dependent chromatin remodeling complexes, such as SWI/SNF are required for senes‐
cence onset in roles other than the timely expression of p16INK4a as described in section
5.1.2: The introduction of the ATPase active component of the SWI/SNF complex, BRG1, into
various cell lines induced senescent features. This is attributed to the BRG1 ability to interact
with pRb and participate in E2F target promopter repression [137]. However development
of senescence in response to BRG1 introduction was only convincing in cells that also lack
the BRG1 homologue ATPase BRM [138]. Interestingly we found that BRG1 is able to inter‐
act with p16INK4a, and since p16INK4a is required for SAHF formation it might directly be in‐
volved in this process in co-operation with BRG1. However, the absence of BRG1, by
specific silencing, does neither prevent p16INK4a induced growth arrest nor senescence associ‐
ated SAHF formation. It should be noted however, that the WMM1175 melanoma cells used
in these experiments also express the BRG1 homologue BRM and therefore they still have
functional SWI/SNF complexes even in the absence of BRG1. [139]. It still needs to be tested
whether BRM also interacts with p16INK4a and whether the BRM-p16INK4a complex is involved
in SAHF formation. This idea is in line with a suggested role for BRM in melanocyte senes‐
cence as it was demonstrated that BRM was recruited and required, albeit transiently, by the
pRb-HDAC1 complex during the initiation of SAHF [140].

Importantly, although the p53-p21 pathway was demonstrated to be capable of inducing a
number of senescent features and does so in response to DNA damage, telomere dysfunc‐
tion and oncogene induced senescence [38, 97], E2F promoter silencing via SAHF formation
requires an intact p16-pRb pathway [9, 141]. As expected, SAHF formation is prevented by
cancer associated p16INK4a mutations [45]. Since p21Waf1 is capable of inhibiting all CDKs it
remains unclear why it appears less effective in promoting a secure senescence program in
involving heterochromatin formation (Figure5).

The current view is that pRb binds HDAC1 and attracts H3K9 and H3K27 methylating com‐
plexes (exemplified by SUV39H1 and EZH2/SUZ12) to promoters of E2F responsive prolif‐
eration genes leading to histone trimethylation and heterochromatin and thereby DAPI
dense microscopic structures. Recent work indicates that H3K9 and H3K27, although usual‐
ly associated with SAHF, may not be a strict requirement. Instead the formation of DAPI
dense structures is linked to the timing of presenescent replication events [135]. This view
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would explain the fact that SWI/SNF including BRM has been associated in a transient man‐
ner with the build up of SAHF structures; BRM can also interact with pRb but strictly is as‐
sociated with acetylated histones and replicating chromatin is acetylated [140]. The complete
understanding of SAHF formation is still an evolving field. Regardless, it is widely accepted
that functional p16INK4a and pRb as well as the HMGA, which accumulate at E2F target pro‐
moters during senescence, are critically required for SAHF arrangement. In regards to
p16INK4a it is tempting to speculate that its specific role in SAHF formation goes beyond CDK
inhibition and thus maintaining pRb in an active state.

Figure 5. Chromatin remodeling and SAHF formation

8. Conclusion

Senescence  is  a  potent  means  of  tumor  suppression.  The  mechanisms of  senescence  in‐
volve  cell  cycle  regulatory  protein  functions  in  concert  with  the  chromatin  remodeling
machinery to maintain a complex and secure withdrawal from proliferation. The under‐
standing of these mechanisms is  still  evolving and is predicted to identify novel targets
for cancer therapy.
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