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1. Introduction

Ultrasound imaging is widely used to assess carotid, brachial, femoral, as well as other ar‐
teries. There are major advantages of using ultrasound in comparison to other imaging tech‐
niques, such as its non invasiveness and its capability to produce real-time visualization of
the arterial lumen and vessel wall that is not possible with any other imaging modality [1].
Recent clinical studies have benefited from continuous improvements in ultrasound image
quality, new imaging techniques and signal processing algorithms with the aim of identify‐
ing the vulnerable carotid plaque based on the mechanical wall motion behavior [2,3].

The vulnerable arterial plaque may cause atherothrombotic events, myocardial infarction
and stroke, which are responsible for approximately 35% of the total mortality in the west‐
ern world, and are the leading causes of morbidity world-wide [4]. The first indication of
cardiovascular disease is a thickening of the intimal and medial layers of the arterial wall. It
involves lipid accumulation and the migration and proliferation of many cells in the sub-in‐
timal and medial layers, which results in the formation of plaques. It is the rupture of such
plaques that causes myocardial infarcts, cerebrovascular events, peripheral vascular disease
and kidney infarcts. The impact of the intima-media thickness (IMT) on the incidence of car‐
diovascular events in the Rotterdam study by B-mode ultrasound indicates that the risk of
myocardial infarction increases 43% per standard deviation increase (0.163 mm) in common
carotid IMT [4]. The main conclusions resulting from this study were supported by other in‐
dependent investigations which reveal that an IMT higher than 0.9-1.0 mm indicates a po‐
tential atherosclerotic disease, which translates into an increased risk of a cardiovascular

© 2013 Gutierrez et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
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event. Hence, the robust segmentation and measurement of IMT by B-mode ultrasound has
a considerable impact in the early diagnosis of atherosclerosis, prognosis prediction, and in
the monitoring of responses to lifestyle and prescribed pharmacological treatments.

Ultrasound signals have also been extensively used in clinical sites, by exploiting Doppler
effect to measure vascular blood velocity and flow, among other applications [5,6]. Typical‐
ly, a spectrum of frequencies related to the different velocities of the blood cells is presented
as a curve of velocity versus time. The analysis of this curve can reveal important relation‐
ships between the frequency spectral pattern along the cardiac cycle and the presence of car‐
diovascular diseases [7,8], among other examples [9,10].

2. Arterial vessels image analysis

2.1. Problem statement

The current clinical practice in the assessment of the early cardiovascular diseases involves
acquisition of B-mode ultrasound data from large superficial arterial vessels such as the
common carotid artery (CCA). The image acquisition process generates sequences of two di‐
mensional ultrasound images along the time (2D+time) that are currently interpreted using
either manual annotation procedures or commercially available semi-automatic image proc‐
essing environments. While the manual annotation generally results in accurate IMT meas‐
urements, it is subject to intra and inter-observer variability. Moreover, this procedure
requires annotating multi-frame ultrasound data, which is not only labor intensive but also
highly dependent on the experience of the observer. All these factors stimulated the investi‐
gation of automatic segmentation techniques, which can greatly support the clinical practi‐
tioners in their evaluation and may have substantial benefits in the quality of the medical
act. As a consequence of this clinical interest, a large number of studies were focused on the
development of automatic IMT segmentation algorithms in order to provide an accurate
analysis of IMT measurements [11-31].

The IMT complex is best visualized in longitudinal sections of the CCA. Fig. 1 shows a rep‐
resentative B-mode ultrasound image of the CCA and a schematic illustration of the relevant
leading edges of echo responses. Previous studies [10-12] have shown that the leading edges
can be mapped to the following interfaces: near-wall media-adventitia, far-wall lumen-inti‐
ma and far-wall media-adventitia. The lumen diameter (LD) is defined as the distance be‐
tween the intima-lumen interface of the near-wall and the lumen-intima interface of the far-
wall. The far-wall IMT is defined as the distance between the far-wall lumen-intima (FWLI)
and the far-wall media-adventitia interfaces (FWMA).

The determination of ultrasonic measurement of the artery becomes equivalent to accurately
detecting the echo boundaries presented in Fig. 1. However, the existence of ultrasonic
imaging artifacts such as speckle, reverberations and dropouts make the accurate definition
of a boundary very difficult.
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Figure 1. Interfaces between carotid tissue layers obtained from B-mode ultrasound.

2.2. IMT segmentation algorithms

Since the IMT complex is defined by two distinguishable interfaces in the ultrasound image
data, the majority of studies that addressed the IMT segmentation were built on several as‐
sumptions regarding the intensity profiles associated with each interface. The automatic de‐
tection of such interfaces requires a priori knowledge that implies a certain amount of user
intervention. In recent studies, substantial efforts have been dedicated to reduce the level of
user intervention during the IMT segmentation process. A review of the methods in this
area is presented by Molinari et al. [13], which address the main directions of research in the
field of IMT segmentation. The published methods in this area can be classified in three
classes: edge-based, dynamic programming and probabilistic IMT segmentation methods.
The edge based segmentation schemes aim to reconstruct the IMT complex from gradient
data and in this process prior knowledge relating to the intensity profiles is enforced in the
process of selecting the FWLI and FWMA interfaces. The early segmentation schemes that
addressed the identification and measurement of the IMT were based on semi-automatic
methods where the user intervention was critical to obtain accurate results. De Groot et al.
[14] analyzed the contribution of the patient and observer variability in the process of the
IMT measurement in serial carotid and femoral B-mode ultrasound scans. Through the use
of variance components analysis they found that 75% of the variance in the measurement of
the far-wall thickness could be attributed to the differences among patients and a 7% varia‐
bility recorded in the analysis of the mean IMT thickness was caused by the ultrasound
equipment. In a study presented by Selzer et al. [15], the initial IMT boundary position was
manually selected and this information was used to guide an IMT edge-based segmentation
process. Dwyer et al. [16] developed a semi-automatic IMT segmentation algorithm that was
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applied in B-mode ultrasound images. In the algorithm the average distance between the
FWLI and FWMA interfaces was used to approximate the IMT. A selection of the frames
used in this study was carried out by the user to ensure that there would be a clear identifi‐
cation of the interfaces.

Liguori et al. [17] proposed a multi-step semi-automatic IMT segmentation algorithm that
has been developed for the analysis of single frames B-mode ultrasound data. The first step
of their method involves the manual selection of the region of interest (ROI) followed by a
threshold procedure that is applied to set all pixels with intensity values lower than a pre-
defined threshold. The IMT detection entails an analysis of the intensity profiles associated
with the gradient data under the assumption that all pixels corresponding to the lumen are
anechoic and the image areas that define the tunica intima and tunica adventitia are the
most reflective arterial layers.

The two IMT interfaces are selected by analyzing the strength of the gradient in the direction
of the ultrasound beam, the FWLI interface corresponds to the first relative maximum, while
the FWMA is given by the second one. A similar approach was employed in [18,19], where
the authors also analyzed the pixel intensity profiles to detect the salient intensity transitions
that are characteristic for the two IMT interfaces. Ilea et al. [20] adopted a multiscale ap‐
proach that embeds a statistical shape model with the aim of identifying the two interfaces
that form the IMT without any user intervention. The developed algorithm was validated on
49 single frame B-mode ultrasound images and results were compared against manually an‐
notated data. Delsanto et al. [21] implemented a hybrid algorithm where active contours
were applied to refine the initial FWLI and FWMA estimates. The reported results indicate
the efficiency of this approach in reducing the level of outliers, but several problems that are
caused by the gaps in the IMT structure started to surface. The assumption that in longitudi‐
nal images of the carotid artery the IMT is defined by a pair of active contours was used in
subsequent contributions [22-26]. However, all contributions require a user interaction in the
process of initializing the active contours.

Gutierrez et al. [27] proposed a different semi-automatic active contour-based IMT segmen‐
tation algorithm where the edge information is extracted using a multiresolution approach.
The major objective of this paper was to measure the lumen diameter and the IMT and in
their experiments the authors assessed the performance of their semi-automatic algorithm
against the manually segmented ultrasound data using metrics such as the coefficient of var‐
iability and correlation.

Dynamic programming algorithms were proposed [28,29] as a computationally efficient alter‐
native to the standard heuristic search methods when applied in the context of boundary trac‐
ing, and due to their intrinsic properties they positioned as an attractive approach for IMT
segmentation. An example is represented by the work of Liang et al. [29] where the authors ad‐
dressed the IMT segmentation problem by adopting a multiscale approach. Rocha et al. [30] ap‐
plied a related segmentation scheme to more challenging ultrasound images that exhibit
arterial plaques. Their approach starts with the detection of the media adventitia layer by
searching for the best fit of a cubic spline to the edge data by taking into account the anatomical
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characteristics of the adventitia. This is followed by the segmentation of the lumen boundary
by applying a hybrid dynamic programming-based active contour technique.

A distinct category of algorithms relied on probabilistic schemes to identify the IMT interfa‐
ces such as the work of Destrempes et al. [31]. Their algorithm was developed based on the
assumption that the echogenicity of the region of interest where the IMT is located can be
modeled using a mixture of three Nakagami distributions and the parameters of the distri‐
butions are estimated using an expectation maximization (EM) algorithm. The proposed
method proved accurate but it requires user interaction for the ROI initialization.

The discussion will be continued with a technical presentation of an artery boundary seg‐
mentation method to measure lumen diameter and IMT.

2.3. Artery boundary enhancement

One of the first steps in to segment artery leading edges is to enhance such interfaces from
B-mode ultrasound images. To enhance border detection accuracy, a multiscale border iden‐
tification can be implemented using filters in the form of scaled convolution operators
[32,33]. The scale space of an image is constructed through convolution of the image with a
two-dimensional (2D) Gaussian density kernel with zero mean and standard deviation:

( )
2

22

2

1,
2

x

DG x e ss
ps

-
=

r

r (1)

where D denotes the dimension of the input domain. A blurred replica of the original image
is obtained by convolution with G(x→ ;σ) for a specific σ. The stack of images as a function of
increasing scale parameter σ is coined a linear scale space. Hence, as σ increases the detailed
object structures vanish while gross structures persist. Fig.2 shows the 2D gradient magni‐
tude calculated for a carotid vessel image (B-mode ultrasound) in three different scales.

a) b) c) d)

Figure 2. gradient magnitude calculated for a carotid vessel image (B-mode ultrasound) in three different scales: a);
b); c); d).
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Based on these features a scaled artery image is used to identify the approximated position
of the near and far walls. Two complementary images are obtained based on the gradient
value in y-direction: one that enhances pixel values transitions from high to low echoes,
such as edges encountered in near wall tissue interfaces, and other that enhances pixel val‐
ues transitions from low to high echoes (such as edges encountered in far wall tissue interfa‐
ces). Fig. 3 shows the boundary enhancement of the near and far wall.

a) b)

Figure 3. Boundary enhancement of the near wall a) and far wall b)

2.4. Contour modeling

The contour of each wall can be modeled following the Geometrically Deformed Model pro‐
posed by Lobregt and Viergever [34]. In this model, a set of vertices connected by straight
line segments or edges forms the basic contour structure (Fig. 4).
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Figure 4. Contour model consisting of a set of vertices V i which are connected by segments or edges.
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In Fig. 4, the position of a vertex V i is represented by a vector pi, and the edge between V i
and V i+1 by a vector di. The contour deformation is caused by a combination of forces which
act on the vertices. The resulting acceleration in vertex V i is denoted by a vector ai.

The contour local curvature at a vertex V i is defined as the difference between the directions
of the two edge segments that join at that location:

1
ˆ ˆˆi i ic d d -= - (2)

The local tangential unit vector is defined as the normalized sum of the unit vectors of two
joining edge segments:

1

1

ˆ ˆ
ˆ

ˆ ˆ
i i

i
i i

d d
t

d d
-

-

+
=

+ (3)

The local radial direction at a vertex V i is obtained from t̂ i by a rotation over π 2 radians:
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2.5. Dynamic force formulation

In the model definition, the dynamic in each vertex V i must satisfy the Newton´s second law,

int, , ,i i ext i damp i

i i i

F F F F
F am
= + +

=
(5)

Where μi is a coefficient that has a mass unit, Fdamp,i, Fint,i  and Fext ,i  and are the damping (or
viscous), the internal and the external forces, respectively.

The internal force can be estimated from the local contour curvature along the local r-axis :

( )int, ˆi i iF c r= × (6)

The external force acting in each vertex can be approximated by some image feature. In this pa‐
per we used the information obtained from the local image gradient as the external force.

The damping force is proportional to the velocity of the vertex and points in opposite direction:

, .damp i iF k v» - (7)

The total force F i acting on a vertex is a weighted combination of damping, internal and exter‐
nal forces :
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int int, , ,i i ext ext i damp damp iF w F w F w F= + + (8)

where wint, wext   and wdamp are the weighting factors.

The deformation process over the contour is implemented as a numerical time integration
process in which the complete state of the contour is calculated at a sequence of discrete po‐
sitions in time [34]. A set of state equations controls the deformation process in terms of po‐
sition, velocity and acceleration of each vertex on the contour:
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Where pi(t + Δt), vi(t + Δt) and ai(t + Δt) define the position, velocity and acceleration, re‐
spectively, of the vertex in a incremental time Δt . The vertex mass, mi, is setting constant for
all vertices and the resulting force, F i, is calculated using equation (8).

Fig. 5 shows the result of the deformation of the active contours during the process of detec‐
tion the FWLI and FWMA in two patients in systole and diastole. The vessel’s lumen diame‐
ter and IMT can be obtained by automatic measurement of the distance between segments
estimated from the linear regression of the contours in each interface.

Figure 5. The detection of FWLI and FWMA using active contours in two patients during systole and diastole (in red)
and the automatic measurement of the distance between segments obtained from the linear regression (in green) of
the contours in each interface.
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2.6. Vascular blood velocity and flow

As presented in the previous sections, B-mode ultrasound is capable of reliably and accu‐
rately imaging peripheral arteries and can be used for vessel diameter measurement. Ultra‐
sound signals have also been extensively used in clinical sites by exploiting Doppler effect to
measure vascular blood velocity and flow.

The Doppler effect refers to an increase or decrease in the frequency of a wave that is travel‐
ing toward or away from the observer, respectively. This principle is applied in Doppler ul‐
trasound to measure the direction and velocity of blood flow in the vessels. The relationship
between the Doppler shift and blood flow velocity is:

( )0

02 cos
c f f

v
f q
-

= (10)

where c is the speed of sound in blood (1540 m/s), θ is the angle between the ultrasound
beam and the direction of blood flow, and f  and f 0 are the frequencies of the transmitted
and returned signals, respectively. Due to the angle dependency, alignment of the ultra‐
sound beam parallel with the direction of blood flow is essential to obtain accurate flow esti‐
mates.

In vascular studies using commercial ultrasound equipment, a spectrum of frequencies re‐
lated to the different velocities of the blood cells is presented as a curve of velocity versus
time (Fig. 6). This information can reveal important relationships between the frequency
spectral pattern along the cardiac cycle and the presence of cardiovascular diseases [7-10].

Figure 6. Typical screen of an ultrasound system showing a curve of vessel’s blood velocity versus time.
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However, commercial ultrasound systems are primarily dedicated to get instantaneous data
for individual patients, and they have, in general, low flexibility to perform large-scale re‐
searches. Thus, to make this kind of study easier in clinical protocols involving hundreds of
patients, computational tools have to be developed to extract quantitative data from spectral
display of Doppler ultrasound images.

Higa et al. [35] proposed a methodology used to extract blood velocity and flow automati‐
cally from images of the type shown in Fig. 6. A brief description of the method proposed is
presented below.

After two steps defined by the user: calibration and selection of the region of interest (ROI),
a Gaussian filter (σ=1 pixel, precision ≥  90%) can be applied to the grayscale input image to
attenuate high frequency noise.

The detection process of the time axis (‘X’) considers the smallest variation of the pixels
intensities occurs in the horizontal direction. Thus, equations (11), (12) and (13) calculates
the ordinate ‘y’ expected for the axis ‘X’, which will be the reference (0 m/s) to the veloci‐
ty calculation.

( ) ( ) ( ) ( )
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>ï - + += í

ï £î

(11)

( ) ( )
2

min max
0

, , ,
m

i
f j g i j j y y

-

=

é ù= Î ë ûå (12)

( ) ( ){ }min max, | maxy j y y f y f jé ù= Î =ë û (13)

where I(i, j) is the image intensity (grayscale level) at i and j coordinates; m is the image
width (in pixels); ymin and ymax are, respectively, the ordinates of the superior and inferior
lines that delimit the rectangular ROI defined by the user; z is an empirical pre-defined
threshold to reject the graphic background;

The image can be transformed to a binary image depending on a threshold level that can be
defined by the user. After image binarization, a median filter (size: 3 x 3 pixels) can be ap‐
plied to edge smoothing and spurious suppression.

An envelope detection step can be initialized with horizontal lines at the top and at the bot‐
tom of the ROI. Each point of these lines is moved down or up to the border of the binary
curve. Then, the algorithm holds either the superior or the inferior contour (Fig. 7), assum‐
ing that, in general, the desired one has higher amplitude variation.

Finally, after automatic detection of the peaks (Fig. 7), the algorithm can compute the mean
peak velocity (V̄ P), the mean envelope velocity (V̄ N ) and the velocity time integral (VTI ),
according to the equations (14), (15) and (16), respectively.
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Figure 7. Detection of the axis ‘X’, envelope (by superior or inferior contour) and peaks in the vessel’s blood velocity
vs. time curve.
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where Pis the total number of peaks detected in the curve; N  is the total number of pixels in
the curve; XCal  and YCal  are the calibrations in pixels for the time and the velocity axes,
respectively; A is the amplitude in pixels for each point in the curve.

In addition, if B-Mode images are available, an arterial wall interface detection module can
determine the vessel diameter and the mean peak blood flow (ϕ̄P) and the mean blood flow

(ϕ̄N ) can be estimated using (16) and (17).
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where V̄ P  is the mean peak velocity obtained by equation (14); V̄ N  is the mean velocity ob‐
tained by equation (15); Dmax and Dmin are de vessel’s maximum and minimum diameters;

3. Clinical applications

3.1. Automatic IMT measurement

The method presented in the previous section can be used in clinical applications to assess
large sequences of 2D+time B-mode ultrasound images of the CCA. We performed an ex‐
periment that comprised the analysis of 180 images from 30 patients (3 images in diastole
and 3 images in systole for each patient), all of which included manually defined interfaces
for reference. The minimum and maximum artery diameters were measured for each patient
using the manual and the automatic procedure.

In order to study the variability between the automatic and manual definition of artery
boundaries, the pooled mean, μ̄ , and the standard deviation, σ, for the difference between
automated and manual measurements of lumen diameter were computed. The coefficient of
variation (CV ) was calculated according equation (19).

100 %
2

CV s
m

æ ö
= ´ç ÷ç ÷
è ø

(19)

The strength of the relationship between automated and manual methods is indicated by the
correlation, Ra,m, between the two measurements:

,
, .

a m
a m

a m

Cov
R

s s
= (20)

where Cova,m is the covariance between the automated and manual measurements. σa and σm
are the standard deviation of automated and manual measurements, respectively.

Means (μa,m) and standard deviations (σa,m) for the differences between the automatic and
manual methods were calculated for the population (n=30). The coefficients of variability
(CV a,m) and the correlation (Corra,m) between both methods were also obtained.

The results obtained for the parameters μa,m,  σa,m  ,  CV a,m  and Corra,m  are summarized in
Table 1.
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Automatic

μa ± σa (mm)

Manual

μm ± σm (mm)

Difference Δ

μa,m ± σa,m (mm)
Variability

CV (%)

Correlation

Corra,m

Lumen Diameter

diastole)
7,85 ± 1,01 7,78 ± 1,01 0,13 ± 0,09 0,83 0,99

Lumen Diameter

(systole)
6,81 ± 1,06 6,77 ± 1,05 0,12 ± 0,10 1,00 0,99

Intima Media

Thicknes
0,72 ± 0,14 0,63 ± 0,12 0.09 ± 0,06 6,16 0,90

Table 1. Lumen diameter (LD) and Intima-Media thickness measured using automatic and manual methods (n=30).
The difference (Δ), the coefficient of variability (CV ) and the correlation (Corra,m) between both measurements are
also presented.

A comparative analysis between commercial ultrasound systems operated by specialists and
the method presented in the previous section to measure blood velocity and flow automati‐
cally can be performed. A new experiment was performed using systolic mean peak veloci‐
ties (102 samples) and velocity time integrals (75 samples) of common carotid and brachial
arteries under basal condition, brachial arteries in the reactive hyperemic response and
echocardiographic exams. Table 2 shows the number of images and samples used in this
analysis.

Artery
Number of

images

Number of samples

Peak velocity
Velocity time

integral

Common carotid arteries 30 39 31

Brachial arteries under basal condition 23 35 24

Brachial arteries in the reactive hyperemic response 10 15 15

Echocardiographic exams 11 13 5

Total 74 102 75

Table 2. Composition of samples used to validate the methodology.

According to the procedure described in the previous section, the peak velocities measured
from the carotid arteries were negative (average: -0.59 m/s), while from the brachial arteries
under basal condition, as well as in the reactive hyperemic response, the peak velocities
were positive (averages: 0.63 m/s and 1.18 m/s, respectively). In the echocardiographic im‐
ages the measurements were either positive or negative and the average of the absolute val‐
ues was 1.48 m/s.

Similarly, positive or negative velocity time integrals were dependent on the exam type.
However, the number of cardiac cycles used to get these measurements was not standar‐
dized, leading to a range of the samples, from -150 to 91 cm.
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Fig. 8 shows Bland-Altman’s [36] and Linear Regression graphics for the systolic peak veloc‐
ity analysis, where ‘A’ refers to the measurements done with a commercial ultrasound sys‐
tem and ‘B’ refers to the methodology described in section 2.6. Bias, standard-deviation,
correlation coefficient, and linear equation results are presented in Table 3. Like peak veloci‐
ty, Figure 9 and Table 4 were obtained for velocity time integral analysis.

 

Figure 8. Bland-Altman’s (up) and Linear Regression (down) analysis of the systolic peak velocity (102 samples) meas‐
ured by the ultrasound system and by the proposed methodology.

Systolic Peak Velocity (N=102)

Bias (m/s) sd (m/s)
rAB

(p<0.001)
Linear Regression Equation

0.02 0.05 0.9985 A = 0.9938*B – 0.0190

Table 3. Summary of systolic peak velocity statistics.
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Figure 9. Bland-Altman’s (left) and Linear Regression (right) analysis of the VTI (75 samples) measured by the ultra‐
sound system and by the proposed methodology.

VTI (N=75)

Bias (cm) sd (cm)
rAB

(p<0.001)
Linear Regression Equation

1.25 3.86 0.9984 A = 1.030*B – 0.9287

Table 4. Summary of VTI statistics.

4. Conclusion

Measurements of lumen diameter (LD) and intima-media thickness (IMT) of carotid, bra‐
chial and femoral arteries from B-mode ultrasound are defined as the average distance of
interfaces between vessel tissue layers. In order to determine the interfaces location, manual
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tracing is commonly used. However, this approach is a time consuming procedure and
based on subjective operator assessment. Besides, it inevitably results in inter and intra-ob‐
server variability due to the complex nature of the echogenic zones, especially at the lumen-
intima interface, which frequently present weak echoes, echo dropouts and irregularities
caused by scattering.

In this chapter, we have reviewed some methods for automatic or semi-automatic interface
detection and presented in detail an approach that uses the active contour technique. In this
technique, external forces are proportional to the local image gradient obtained from a mul‐
tiscale analysis. The automated measurements, when compared to those obtained by man‐
ual tracing, are equally accurate and the coefficients of variability between both methods are
below 1,0% for Lumen Diameter and 6,5% for IMT thickness measurements.

Vascular blood velocity can be measured by using Doppler effect, and if lumen diameter is
available the blood flow can also be estimated. However, commercial ultrasound systems
are primarily dedicated to get instantaneous data for individual patients, and they have, in
general, low flexibility to perform large-scale researches. Thus, to make this kind of study
easier in clinical protocols involving hundreds of patients, computational tools have to be
developed to extract quantitative data from spectral display of Doppler ultrasound images.

We briefly presented a methodology to extract automatically blood velocity and flow from
Doppler ultrasound images that permits extensive clinical studies. The small bias and high
correlation for both, peak velocity and VTI, indicate the reliability of this methodology and
these findings are better than those presented by Tschirren et al. [37] (bias: 0.40 m/s for peak
velocity and 7 cm for VTI), though their results refers to a dilatation study of the brachial
artery, where data values were about ten times higher than the present study.

It is important to note that for VTI statistics shown in Table 4, the threshold used to get the
binary image was 60, instead of the default 40 used to extract the systolic peak velocity. This
change was motivated by the higher bias (1.70 cm) and standard deviation (6.78 cm) ob‐
tained with the default value for VTI. Despite these numerical results, it is not possible to
conclude that the threshold of 60 is more appropriate than 40, since the human operation to
get measurements using the ultrasound equipment may also be subject to systematic errors
and deviations. For instance, visual results showing the envelopes drawn on the blood ve‐
locity graphics point that, by using the proposed methodology (Fig. 7), the envelope line is
more refined than that obtained by manual operation of an ultrasound system (Fig. 6). In the
latter case the user does not notice or simply disregards small image brightness variations,
which means that this procedure is highly dependent on the user’s subjective evaluation
and it is hardly reproducible.

By processing a diversity of common carotid, brachial and echocardiographic Doppler im‐
age samples, collected from four different commercial ultrasound systems, the proposed
methodology to measure peak velocity and VTI was validated by the Bland-Altman’s analy‐
sis and by the correlation coefficient. Visual analysis also confirmed that the spectrum enve‐
lope detection is very satisfactory.
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The methodology was implemented in a user friendly graphical interface that has a semi-
automatic characteristic. The delivery of this tool was intended to help clinicians in their
studies based on Doppler ultrasound images with the following advantages: to save opera‐
tional time, to lower subjective results, and to support measurement reproducibility.

However, ultrasound is still an observer-dependent modality in which the image quality de‐
pends on an experienced observer, appropriated technique and equipment. Automated sys‐
tems and algorithms which can improve measurement accuracy and reproducibility,
without the observers input, still remains an open area of study and research.

Acknowledgements

This work was supported in part by the National Institute of Science and Technology—
Medicine Assisted by Scientific Computing INCT MACC, and the Zerbini Foundation.

Author details

Marco Antonio Gutierrez1,2, Maurício Higa2, Paulo Eduardo Pilon2,
Marina de Sá Rebelo1 and Silvia Gelás Lage1

1 Heart Institute (InCor) - University of Sao Paulo Medical School, Brazil

2 Polytechnic School - University of Sao Paulo, Brazil

References

[1] Sonka, M., Stolpen, A., Liang, W., Stefancik, R. M. Vascular imaging and analysis. In:
Sonka, M., Fitzpatrick, J. M. (ed.) Handbook of medical imaging. Bellingham: SPIE
Press; 2000. p809-906.

[2] Richardson P. D. Biomechanics of plaque rupture: progress, problems, and new fron‐
tiers. Annals Biomedical Engineering 2002;30(4) 524-536.

[3] Ramnarine K. V., Hartshorne T., Sensier Y., Naylor M., Walker J., Naylor A. R., Pan‐
erai R. B., Evans D. H. Tissue Doppler imaging of carotid plaque wall motion: a pilot
study. Cardiovascular Ultrasound 2003;1(1) 17.

[4] van der Meer I. M., Bots M. L., Hofman A., del Sol A. I., van der Kuip D. A., Witte‐
man J. C.Predictive value of noninvasive measures of atherosclerosis for incident my‐
ocardial infarction: The Rotterdam Study. Circulation 2004;109(9) 1089-1094.

[5] Gerhard-Herman, M.; Gardin, J. M.; Jaff, M.; Mohler, E.; Roman, M.; Naqvi, T. Z.
Guidelines for noninvasive vascular laboratory testing: a report from the American

Quantitative Assessment of Peripheral Arteries in Ultrasound Images
http://dx.doi.org/10.5772/53310

249



Society of Echocardiography and the Society for Vascular Medicine and Biology.
Vascular Medicine 2006;11(3) 183-200.

[6] Nichols, W.; O’Rourke, M. Doppler ultrasound for arterial blood flow measurement.
In:. McDonald’s blood flow in arteries: theoretic, experimental and clinical principles.
3rd ed. Malvern, Philadelphia, USA: Lea & Febiger; 1990.

[7] Hoskins, P. R. Measurement of arterial blood-flow by Doppler ultrasound. Clinical
Physics and Physiological Measurement 1990;11(1) 1-26.

[8] Yao, J. S. T. Noninvasive studies of peripheral vascular disease. In: Hobson, R. W.;
Wilson, S. E.; Veith, F. J. (Eds.). Vascular surgery: principles and practice. 3rd ed.
Marcel Dekker, Inc.; 2004.

[9] Corretti, M. C.; Aanderson, T. J.; Benjamin, E. J.; Celermajer, D.; Charbonneau, F.;
Creager, M. A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Hierrington, D.; Val‐
lance, P.; Vita, J.; Vogel, R. Guidelines for the ultrasound assessment of endothelial-
dependent flow-mediated vasodilation of the brachial artery: A report of the
International Brachial Artery Reactivity Task Force. Journal of the American College
of Cardiology 2002; 39(2) 257-265.

[10] Lage, S. G.; Kopel, L.; Medeiros, C. C.; Carvalho, R. T.; Creager, M. A. Angiotensin II
contributes to arterial compliance in congestive heart failure. American Journal of
Physiology – Heart and Circulatory Physiology 2002;283(4) H1424-H1429. 

[11] Liang Q., Wendelahg I., Wikstrand J., Gustavsson T. A multiscale dynamic program‐
ming procedure for boundary detection in ultrasonic artery images. IEEE Transac‐
tions on Medical Imaging 2000;19:127-142.

[12] Gustavsson T., Liang Q., Wendelhag I., Wikstrand J. A dynamic programming proce‐
dure for automated ultrasonic measurement of the carotid artery. IEEE Computers in
Cardiology 1994;297-300.

[13] Molinari F., Zeng G., Suri J.S. A State of the art review on intima-media thickness
(IMT) measurement and wall segmentation techniques for carotid ultrasound. Com‐
puter Methods and Programs in Biomedicine 2010;100(3) 201-221.

[14] De Groot E., Zwinderman A.H., Van Der Steen A.F.W., Ackerstaff R.G.A., Van Swijn‐
dregt A.D.M., Bom N., Lie K.I., Bruschke A.V.G., Variance components analysis of
carotid and femoral intima-media thickness measurements. Ultrasound in Medicine
and Biology 1998;24(6) 825-832.

[15] Selzer R.H., Hodis H.N., Kwong Fu H., Mack W.J., Lee W.J., Liu W.J., Liu C.H., Eval‐
uation of computerized edge tracking for quantifying intima-media thickness of the
common carotid artery from b-mode ultrasound images. Atherosclerosis 1994;111 1–
11.

[16] Dwyer J.H., Sun P., Kwong-Fu H., Dwyer K.M., Selzer R.H., Automated intima-me‐
dia thickness: The Los Angeles atherosclerosis study. Ultrasound in Medicine and Bi‐
ology 1998;24(7) 981-987.

Medical Imaging in Clinical Practice250



[17] Liguori P., Paolillo A., Pietrosanto A. An automatic measurement system for the
evaluation of carotid intima-media thickness. IEEE Transactions on Instrumentation
and Measurement 2001;50(6) 1684-1691.

[18] Hangiandreou N.J., James E.M., McBane R.D., Tradup D.J., Persons K.R. The effects
of irreversible JPEG compression on an automated algorithm for measuring carotid
artery intima-media thickness from ultrasound images. Journal of Digital Imaging
2002;15(1) 258-60.

[19] Faita F., Gemignani V., Bianchini E., Giannarelli C., Demi M. Real-time measurement
system for the evaluation of the intima media thickness with a new edge detector.
Proceedings of the 28th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society 2006; 715-718.

[20] Ilea D.E., Whelan P.F., Brown C., Stanton A. An automatic 2D CAD algorithm for the
segmentation of the IMT in ultrasound carotid artery images. Proceedings of the 31st
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society: Engineering the Future of Biomedicine 2009; 515-519.

[21] Delsanto S., Molinari F., Giustetto P., Liboni W., Badalamenti S., Suri J.S. Characteri‐
zation of a completely user-independent algorithm for carotid artery segmentation in
2D ultrasound images. IEEE Transactions on Instrumentation and Measurement
2007;56(4) 1265-1274.

[22] Loizou C.P., Pattichis C.S., Pantziaris M., Tyllis T., Nicolaides A. Snakes based seg‐
mentation of the common carotid artery intima media. Medical and Biological Engi‐
neering and Computing 2007; 45(1) 35-49.

[23] Cheng D.C., Schmidt-Trucksäss A., Cheng K.S., Burkhardt H. Using snakes to detect
the intimal and adventitial layers of the common carotid artery wall in sonographic
images. Computer Methods and Programs in Biomedicine 2002;67(1) 27-37.

[24] Chan R.C., Kaufhold J., Hemphill L.C., Lees R.S., Karl W.C. Anisotropic edge-pre‐
serving smoothing in carotid B-mode ultrasound for improved segmentation and in‐
tima-media thickness (IMT) Measurement. Computers in Cardiology 2000;27 37-40.

[25] Shah J. A common framework for curve evolution, segmentation and anisotropic dif‐
fusion. Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 1996;136-142.

[26] Bastida-Jumilla M.C., Morales-Sánchez J., Verdú-Monedero R., Larrey-Ruiz J., San‐
cho-Gómez J.L. Detection of the intima and media walls of the carotid artery with ge‐
odesic active contours. Proceedings of the 17th International Conference on Image
Processing 2010; 2213-2216.

[27] Gutierrez M.A., Pilon P.E., Lage S.G., Kopel L., Carvalho R.T., Furuie S.S. Automatic
measurement of carotid diameter and wall thickness in ultrasound images. Comput‐
ers in Cardiology 2002; 359-362.

Quantitative Assessment of Peripheral Arteries in Ultrasound Images
http://dx.doi.org/10.5772/53310

251



[28] Cheng D.C., Jiang X. Detections of arterial wall in sonographic artery images using
dual dynamic programming. IEEE Transactions on Information Technology in Bio‐
medicine 2008; 12(6) 792-799.

[29] Molinari F., Zeng G., Suri J.S. An Integrated Approach to Computer-Based Automat‐
ed Tracing and Its Validation for 200 Common Carotid Arterial Wall Ultrasound Im‐
ages. Journal of Ultrasound in Medicine JUM 2010; 29(3) 399-418.

[30] Rocha R., Campilho A., Silva J., Azevedo E., Santos R. Segmentation of the carotid
intima-media region in B-mode ultrasound images. Image and Vision Computing
2010;28(4) 614-625.

[31] Destrempes F., Meunier J., Giroux M.F., Soulez G., Cloutier G. Segmentation in ultra‐
sonic B-mode images of healthy carotid arteries using mixtures of Nakagami distri‐
butions and stochastic optimization. IEEE Transactions on Medical Imaging 2009;
28(2) 215-229.

[32] Koenderink J. J. The structure of images. Biological Cybernetics 1984;50 363-370.

[33] Lindeberg T. Discrete derivation approximations with scale-space properties: a basis
for low-level feature extractions. Journal of Mathematical Imaging and Vision 1993;3
349-376.

[34] Lobregt S, Viergever M. A discrete dynamic contour model. IEEE Transactions on
Medical Imaging 1995;14:12-24.

[35] Higa M., Pilon, E., Lage, S.G., Gutierrez, M.A. A Computational tool for quantitative
assessment of peripheral arteries in ultrasound Images. Computers in Cardiology
2009: 41-44.

[36] Bland J.M., Altman D.G. Statistical methods for assessing agreement between two
methods of clinical measurement. The Lancet 1986; 327(8476) 307-310.

[37] Tschirren J, Lauer R.M., Sonka M. Automated analysis of Doppler ultrasound veloci‐
ty flow diagrams. IEEE Transactions on Medical Imaging 2001; 20(12) 1422-1425.

Medical Imaging in Clinical Practice252


