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Provisional chapter

Ant Colony Algorithm with
Applications in the Field of Genomics

R. Rekaya, K. Robbins, M. Spangler, S. Smith,
E. H. Hay and K. Bertrand

Additional information is available at the end of the chapter

1. Introduction

Ant colony algorithms (ACA) were first proposed by Dorigo et al. (1999) to solve difficult
optimization problems, such as the traveling salesman, and have since been extended to
solve many discrete optimization problems. As the name would imply, ACA are derived
from the process by which ant colonies find the shortest route to a food source. Real ant col‐
onies communicate through the use of chemicals called pheromones which are deposited
along the path an ant travels. Ants that choose a shorter path will transverse the distance at
a faster rate, thus depositing more pheromone. Subsequent ants will then choose the path
with more pheromone creating a positive feedback system. Artificial ants work as parallel
units that communicate through a cumulative distribution function (CDF) that is updated
by weights, determined by the “distance” traveled on a selected “path”, which are analo‐
gous to the pheromones deposited by real ants (Dorigo et al. 1999, Ressom et al. 2006). As the
CDF is updated, “paths” that perform better will be sampled at higher likelihoods by subse‐
quent artificial ants which, in turn, deposit more “pheromone”, thus leading to a positive
feedback system similar to the method of communication observed in real ant colonies. In
the specific application of feature selection, the “path” chosen by an artificial ant is a subset
of features selected from a larger sample space, and the “distance” traveled is some measure
of the features performance.

The idea of selecting a sub-set of features capable of best classifying a group of samples
can be,  and has been,  viewed as  an optimization problem. The genetic  algorithm (GA),
simulated annealing (SA), and other optimization and machine learning algorithms have
been  applied  to  the  problem  of  feature  selection  (Lin  et  al.,  2006;  Ooi  and  Tan,  2003;
Peng et al.,  2003; Albrecht et al.,  2003). Though these methods are powerful, when deal‐
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ing  with  thousands  of  features  across  multiple  classes,  the  computational  cost  of  these
methods can be prohibitive. Previous results obtained with these methods when dealing
with  large  numbers  of  features,  utilized  filters  to  reduce  the  dimension  of  the  datasets
prior to implementation (Lin et  al.,  2006;  Peng et  al.,  2006),  or have produced relatively
low  prediction  accuracies  (Hong  and  Cho,  2006).  For  ACA,  the  communication  of  the
ants through a common memory has a synergistic  effect  that,  when coupled with more
efficient searching of the sample space though the use of prior information, results in op‐
timal solutions being reached in far fewer iterations than required for GA or SA (Dorigo
and Gambardella,  1997).  The algorithm also lends itself  to  parallelization,  with ants  be‐
ing run on multiple  processors,  which can further reduce computation time,  making its
use more feasible with high dimension data sets.

2. General presentation of ant colony algorithm

The ACA employs artificial ants that communicate through a probability density function
(PDF) that is updated at-each iteration with weights or “pheromone levels”, which are anal‐
ogous to the chemical pheromones used by real ants. The weights can be determined by the
strength of the association between selected feature and the response of interest. Using the
notation in [Dorigo and Gambardella, 1997; Ressom et al., 2006], the probability of sampling
feature m at time t is defined as:
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where τm(t) is the amount of pheromone for feature m at time t; ηmis some form of prior
information on the expected performance of feature,α  and β  are parameters determining
the weight  given to  pheromone deposited by ants  and a  priori  information on the  fea‐
tures, respectively.

Using the PDF as defined in equation (1), each of j artificial ants will select a subset Sk  of n
features from the sample spaceS  containing all features. The pheromone level of each fea‐
ture m in Sk  is then updated according to the performance of Skas:

( 1) (1 ) * ( ) ( )m m mt t tt r t t+ = - + D (2)

where ρ is a constant between 0 and 1 representing the rate at which the pheromone trail
evaporates; Δτm(t)is the change in pheromone level for feature m based on the sum of accu‐
racy of all Sk  containing SNP m, and is set to zero if feature m was not selected by any of the
artificial ants.
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Although the general idea of the ACA is simple and intuitive, its application to solve re‐
al world applications requires some good heuristics in defining the pheromone functions
and their  updating.  In this  chapter,  we are presenting three applications of  the ACA in
the field of genetics and genomics based on previously published research by our group
[Robbins  et  al.,  2007,  Robbins  et  al.,  2008;  Spangler  et  al.,  2008;  Rekaya  and  Robbins,
2009; Robbins et al., 2011]. Specific implementation details for each application are added
in the appropriate sections of the chapter.

2.1. Ant colony algorithm for feature selection in high dimension gene expression data for
disease classification

The  idea  of  using  gene  expression  data  for  diagnosis  and  personalized  treatment
presents a promising area of medicine and, as such, has been the focus of much research
(Bagirov et al.,  2003; Golub et al.,  1999, Ramaswamy et al.,  2001). Many algorithms have
been developed to classify disease types based on the expression of selected genes,  and
significant gains have been made in the accuracy of disease classification (Antonov et al.,
2004;  Bagirov  et  al.,  2003).  In  addition  to  the  development  of  classification  algorithms,
many studies have shown that improved performance can be achieved when using a se‐
lected subset  of  features,  as opposed to using all  available data (Peng et  al.,  2003;  Shen
et al.,  2006; Subramani et al.,  2006). Increases in accuracy achieved through the selection
of predictive features can complement and enhance the performance of  classification al‐
gorithms, as well as improve the understanding of disease classes by identifying a small
set of biologically relevant features (Golub et al., 1999).

In this section the ACA was implemented using the high-dimensional GCM data-set (Ram‐
aswamy et al., 2001), containing 16,063 genes and 14 tumor classes, with very limited pre-
filtering, and compared to several other rank based feature selection methods, as well as
previously published results to determine its efficacy as a feature selection method.

A.1 Latent variable model: A Bayesian regression model was used to predict tumor type in the
form of a probability pic(yic=1), with yic = 1 indicating that sample i is from tumor class c. The
regression on the vector of binary responses yc was done using a latent variable model
(LVM), with lic being an unobserved, continuous latent variable relating to binary response
yic such that:

yic = {1 if lic ≥0

0 if lic <0

The liability lic was modeled using a linear regression model as:

lic =X icβc + eicE (lic)=X icβc eic ~ N (0, 1)

where Xic corresponds to row i of the design matrix Xc for tumor class c. The link function of
the expectation of the liability X icβcwith the binary response yic was constructed via a probit
model (West, 2003) yielding the following equations:

pic(yic =1)=Φ(X icβc) and pic(yic =1)=1−Φ(X icβc)

Ant Colony Algorithm with Applications in the Field of Genomics 3



where Φ is the standard normal distribution function. Subject i was classified as having tu‐
mor class c if pic(yic =1) was the maximum of the vector pi, containing all pic(yic =1) c=1,…, nc,
where nc is the number of tumor classes in the data set.

A.2 Gene Selection: Filter and wrapper based methods were used to select features to form
classifiers for each tumor class. Filter methods selected genes based on ranks determined by
the sorted absolute values of fold changes (FC), t-statistics (T), and penalized t-statistics (PT)
calculated for each gene for each tumor class. The wrapper method coupled the ACA with
LVM (ACA/LVM) such that groups of genes were selected using the ACA and evaluated for
performance using LVM.

A.3 Ant colony optimization: The general ACA presented in the previous section was used.
The prior information,ηmc , was assumed as:

ηmc =

f mc −min( f c)
max( f c)−min( f c)

+
tmc −min(tc)

max(tc)−min(tc)
+

ptmc −min(ptc)
max(ptc)−min(ptc)

3

where f cis  a  vector  of  all  fold change values for  tumor class  c;  tcis  a  vector  of  all  t-
statistic  values for  tumor class  c;  and ptc  is  a  vector  of  all  penalized t-statistic  values
for  tumor class  c.  After  several  trail  runs the parameters  α  and β  were set  to  1  and.3
respectively.

The ACA was initialized with all features having an equal baseline level of pheromone used
to compute Pm(0) for all features. Using the PDF as defined in equation (1), each of j artificial
ants will select a subset Sk  of n features from the sample space S  containing all features. The
pheromone level of each feature m in Sk  is then updated according to the performance of Sk

following equation (2).

The procedure can be summarized in the following steps:

1. Each ant selects a predetermined number of genes.

2. Training data is randomly split into two subsets for training (TDS) and validation
(VDS) containing ¾ and ¼ of the data, respectively (none of the original validation data
(VD) is used at any point in the ACA).

3. Using the spectral decomposition of TDS, principle components are computed to allevi‐
ate effects of collinearity and selected for TDS and VDS by removing components with
corresponding eigenvalues close to zero.

4. Using TDS, a latent variable model is trained for each tumor class, and pic(yic=1) is pre‐
dicted for every tumor class c for each sample i in VDS.

5. The accuracy for each tumor class c is calculated as:

Ant Colony Optimization4
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where Piccontains principle component values for sample i for tumor class c; βcis a vector of
coefficients estimated using TDS; nc is the number of samples in VDS having tumor class c;
and nr is the remaining number of samples in VDS.

6. The change in pheromone for each tumor class is calculated as:

Δτmc(t)=accc
(1−accc)

where accc is the accuracy for tumor type c as calculated using equation (3).

Following the update of pheromone levels according to equation (2), the PDF is updated ac‐
cording to equation (1) and the process is repeated until some convergence criteria are met.
As the PDF is updated, the selected features that perform better will be sampled at higher
likelihoods by subsequent artificial ants which, in turn, deposit more “pheromone”, thus
leading to a positive feedback system similar to the method of communication observed in
real ant colonies. Upon convergence the optimal subset of features is select based on the lev‐
el of pheromone trail deposited on each feature.

A.4 GCM data set: The data set contained 198 samples collected from 14 tumor types: BR
(breast adenocarcinoma), Pr (prostate adenocarcinoma), LU (lung adenocarcinoma), CO
(colorectal adenocarcinoma), LY (lymphoma), BL (bladder transitional cell carcinoma), ML
(melanoma), UT (uterine adenocarcinoma), LU (leukemia), RE (renal cell carcinoma), PA
(pancreatic adenocarcinoma), OV (ovarian adenocarcinoma), ME (pleural mesothelioma),
and CNS (central nervous system). The unedited data set contained the intensity values of
16063 probes generate using Affymetrix high density oligonucleotide microarrays, and cal‐
culated using Affymetrix GENECHIP software (Ramaswamy et al, 2001). Following the
thresholding of intensity values to a minimum value of 20 and a maximum value of 16000, a
log base 2 transformation was applied to the data set. Genes with the highest expression val‐
ues being less than two times the smallest were removed, leaving 14525 probes for analysis.

A.5 Results and discussions: The GCM data set has been a benchmark to compare the perform‐
ance of classification and feature selection algorithms. Table 1 shows the best prediction ac‐
curacies obtained by methods used in this study and several previous studies (GASS (Lin et
al., 2006), GA/MLHD (Ooi and Tan, 2003), MAMA (Antonov et al., 2004), and GA/SVM (Liu
et al., 2005)) using independent test, performed on the same training and validation data
sets originally formed by Ramaswamy et al., 2001 (GCM split), and leave one out cross vali‐
dation (LOOCV). The proposed ACA/LVM yielded substantial increases in accuracies over
all other methods, with a 6.5% increase in accuracy over the next best results obtained using
the GCM split (Antonov et al., 2004). Furthermore, the ACA/LVM achieved increases of
13.9%, 40%, and 16.6% in accuracy over the FC/LVM, T/LVM, and PT/LVM methods of fea‐
ture selection, respectively.

Ant Colony Algorithm with Applications in the Field of Genomics 5



GCM data set

GCM splita Replicated splits LOOCVb

ACA/LVM(14525c) 90.7 84.8 ____
FC/LVM(14525) 79.6 74.8 ____
T/LVM(14525) 64.8 ____ ____
PT/LVM(14525) 77.8 74.4 ____
AVGd/LVM(14525) 79.6 74.8 ____
GASS(1000) 81.5 ____ 81.3
GA/MLHD(1000) 76 ____ 79.8
MAMA 85.2 ____ _____
GA/SVM(1000) ___ ____ 81

aSplit used by Ramaswamy et al 2001; bLeave one out cross validation; cNumber of genes selected prior to the imple‐
mentation of feature selection algorithm; dWeighted average of scaled fold change, t-test, and penalized t-test values.

Table 1. Accuracy (%) of tumor class predictions using ant colony algorithm (ACA) and several previously published
methods.

Due to its poor performance, the confusion matrix of predictions using T/LVM is not includ‐
ed, but matrices for the predictions obtained by the ACA/LVM, FC/LVM, and PT/LVM us‐
ing the GCM split can be found in Tables 2-4. These tables show that the ACA/LVM
performs as good or better than the rank based methods for every tumor type. Additionally
the ACA/LVM correctly predicted 50% of the BR samples, a tumor class that has traditional‐
ly yielded very poor results (Bagirov et al., 2003; Ramaswamy et al., 2001). The ACA/LVM
also achieved 100% prediction accuracy for 10 of the 14 tumor classes, as compared to only 7
and 8 when using FC/LVM or PT/LVM, respectively.

True\
Predicted

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

BR 2 1 1 4
PR 1 5 6
LU 4 4
CO 4 4
LY 6 6
BL 1 2 3
ML 2 2
UT 2 2
LE 6 6
RE 3 3
PA 1 2 3
OV 4 4
ME 3 3
CNS 4 4

1 6 4 6 6 7 2 2 6 3 1 2 4 4 49/54

Table 2. Confusion matrix for predictions obtained for the GCM data set using genes selected by the ant colony algorithm.
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True\

Predicted

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

BR 0 3 1 4

PR 1 5 6

LU 3 1 4

CO 4 4

LY 6 6

BL 1 2 3

ML 2 2

UT 2 2

LE 6 6

RE 2 1 3

PA 1 1 1 3

OV 1 3 1 4

ME 3 3

CNS 4 4

1 6 4 6 6 7 2 2 6 3 1 2 4 4 43/54

Table 3. Confusion matrix for best predictions obtained for the GCM data set using genes selected by the fold change
(50 genes)

True\

Predicted

BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

BR 0 3 1 4

PR 1 5 6

LU 4 4

CO 4 4

LY 6 6

BL 1 2 3

ML 2 2

UT 2 2

LE 6 6

RE 2 1 3

PA 2 1 0 3

OV 1 2 1 4

ME 3 3

CNS 4 4

1 6 4 6 6 7 2 2 6 3 1 2 4 4 42/54

Table 4. Confusion matrix for best predictions obtained for GCM data set using genes selected by the penalized t-test
(10 genes)

Ant Colony Algorithm with Applications in the Field of Genomics 7



To further evaluate performance, each of the feature selection algorithms was tested using
four additional random splits of the data. The best classification accuracies obtained for each
algorithm can be found in Table 5. The ACA/LVM algorithm yielded the best prediction ac‐
curacies for all replicates, with increases in accuracies ranging from 6.7% to 14% over the
best accuracies obtained by filter methods. When looking at the three filter methods it can be
seen that the best method varied depending on the replication. These findings are in agree‐
ment with Jefferey et al. (2006).

Replication 1 2 3 4 5

ACA/LVM 90.7 83.3 79.6 81.5 88.9

FC/LVM 79.6 77.8 68.5 72.2 75.9

PT/LVM 77.8 77.8 66.7 68.5 81.5

AVGb/LVM 79.6 70.4 70.4 70.4 83.3

a Split used by Ramaswamy et al 2001; bWeighted average of scaled fold change (FC),

t-test (PT), and penalized t-test values (PT).

Table 5. Classification accuracies using several feature selection methods

Due  to  a  lack  of  any  good  criterion  for  determining  an  objective  cut-off  value  for  the
rank based methods, several values were used and evaluated. Since the use of fewer fea‐
tures  is  desirable  from  a  biological  standpoint,  an  upper  limit  of  50  genes  per  tumor
class was imposed on all  methods. Table 6 shows the number of genes needed for each
tumor type to achieve the best results, averaged across all replicates. It can be seen that,
for  10  of  the  14  tumor  classes,  the  ACA/LVM selects  fewer  genes  than  the  rank  based
methods.

The performance of the ACA/LVM model was superior, not only to the filter based methods
used in this study, but also several reported results using the GCM data set. The ACA/LVM
consistently yielded superior accuracies using fewer genes than the filter based methods, for
which ranks varied with each replication. The breaks in pheromone levels observed with the
most predictive genes also provided more objective selection criteria for identifying top fea‐
tures, unlike the filter methods in which truncation points were somewhat arbitrary. The ob‐
jective selection criteria and robustness of the ACA, within the confines of the GCM data set,
make it a superior method for clinical applications, as it could enable a single procedure to
be effectively applied to varied applications. The use of filter based methods in such scenar‐
ios would require different combinations of truncation points and scoring methods for each
data set, a highly impractical endeavor.

Ant Colony Optimization8



BR PR LU CO LY BL ML UT LE RE PA OV ME CNS

ACA 3.4 4.8 2 7.8 6.6 19.6 4.6 7.6 3.2 16 14.6 17.2 5 5.6

FC 18 18 18 18 18 18 18 18 18 18 18 18 18 18

PT 14 14 14 14 14 14 14 14 14 14 14 14 14 14

Averagea 18 18 18 18 18 18 18 18 18 18 18 18 18 18

a Weighted average of scaled fold change (FC), t-test, and penalized t-test (PT) values

Table 6. Number of genes selected for each tumor type using ACA and other feature selection methods.

The superiority of the ACA/LVM when compared to models using GA indicates the ACA’s
utility, as compared to other optimization methods, when working with high dimension da‐
ta sets. The ACA’s ability to incorporate prior information in the optimization process pro‐
vides several advantages over other optimization algorithms when dealing with large
numbers of features. The inclusion of prior information in the pheromone function focuses
the selection process on genes that should yield better results without the need for an explic‐
it truncation of the data, which was needed to achieve good results with the GA (Hong and
Cho, 2006; Lin et al., 2006; Liu et al., 2005; Ooi and Tan et al., 2003; Peng et al., 2003). Trunca‐
tion of large numbers of genes could a priori eliminate genes from consideration that,
though they may not have high predictive ability alone, could contribute to the predictive
power of an ensemble of genes. Additionally, depending on the method of truncation, the
reduced gene list could be highly redundant (Lin et al., 2006; Shen et al., 2006), further re‐
ducing the informativeness of pre-selected genes. Conversely, when removing a small num‐
ber of features in a large data set, the truncated data set may be too large for efficient
convergence of the algorithm (Lin et al., 2006). Additionally, the inclusion of prior informa‐
tion allows the ACA to be coupled with many other types of feature selection methods,
making the ACA a versatile feature selection tool.

For LU tumors, the ACA identified two genes capable of classifying LU tumor samples with
100%, in each of the five replicates. The selected genes, SP-B and SP-A, both encode pulmo‐
nary surfactant proteins which are necessary for lung function. Another tumor class, with
which the ACA was able to select a small number of highly predictive genes, was CNS. As
with the LU tumor type, the genes selected by the ACA were very consistent from replica‐
tion to replication. The gene encoding for APCL protein had the highest pheromone levels
in all five replicates and was the only gene required to achieve 100% accuracy in replicate
five. APCL protein is a homologue of APC, a known tumor suppressor that interacts with
microtubules during mitosis (Akiyama and Kawasaki, 2006). The gene encoding MAP1B, a
protein found to be important in synaptic function of cortical neurons, was also identified as
being highly predictive of CNS tumor types. Several other genes selected by the ACA, found
in supplemental materials, were identified in a previous study (Antonov et al., 2004).

In contrast to the LU and CNS tumor types, BR samples were consistently predicted with
low accuracies. These findings are in agreement with previous results (Bagirov et al., 2003;
Ramaswamy et al., 2001). Unlike the gene list obtained for BR and CNS tumor types, the
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gene lists for BR tumors were highly variable, suggesting potentially high heterogeneity in
these tumor samples. Despite dissimilarities between the genes selected across replications,
the ACA did identify SEPT9 as being highly predictive in four of the five replicates. The pro‐
tein encoded by this gene has been shown to be involved in mitosis of mammary epithelial
cells (Nagata et al., 2003) and has been associated with both ovarian and breast neoplasia
(Scott et al., 2006). The identification of this gene by the ACA demonstrates its ability to
identify biologically relevant features in challenging data sets.

2.2. The use of the ant colony algorithm for the detection of marker associations in the
presence of gene interactions

With the advent of high-throughput,  cost effective genotyping platforms, there has been
much focus on the use of  high-density  single  nucleotide polymorphism (SNP) genotyp‐
ing  to  identify  causative  mutations  for  traits  of  interest,  and  while  putative  mutations
have  been  identified  for  several  traits,  these  studies  tend  to  focus  on  SNP  with  large
marginal  effects  [Hugot  et  al.,  2001;  Woon et  al.,  2007].  However,  several  studies  have
found that gene interactions may play important roles in many complex traits [Coutinho
et al.,  2007;  Barendse et  al.,  2007].  Given the high density of SNP maker maps,  examin‐
ing all  possible  interactions  is  seldom possible  computationally.  As a  result,  studies  ex‐
amining gene interactions tend to focus on a small number of SNP, previously identified
as having strong marginal associations. Using an exhaustive search of all two-way inter‐
actions, Marchini et al.  achieved greater power to detect causative mutations than when
estimating only marginal effects.  Due to the high computational cost of this approach, a
two-stage model was proposed,  in which SNP were selected in the first  stage based on
marginal effects and then tested for interactions in the subsequent stage [Marchini et al.,
2005].  This approach could, however, result in the failure to detect important regions of
the genome in  the first  stage of  the model.  As such,  there  is  a  need for  methodologies
capable of identifying important genomic regions in the presence of potential gene inter‐
actions when large numbers of markers are genotyped.

One approach would be to view the identification of groups of interacting SNP as an optimi‐
zation problem, for which several algorithms have been developed. These algorithms are
designed to search large sample spaces for globally optimal solutions and have been applied
to a wide range of problems [Shymygelska and Hoos, 2005; Ding et al., 2005]. Through the
evaluation of groups of loci efficiently selected from different regions of the genome, optimi‐
zation algorithms should be able to account for potential interactions.

In this section, a modified ACA, enabling the use of permutation testing for global signifi‐
cance, was combined with logistic regression and implemented on a simulated binary trait
under the influence of interacting genes. The performance of the ACA was evaluated and
compared to models accounting for only marginal effects.

B.1 Logistic regression: Groups of SNP markers were evaluated based in haplotype genotype
effects estimated as log odds ratios (lor) using logistic regression (LR). The relationship be‐
tween the lor and the binary response can be expressed as:

Ant Colony Optimization10



yi = {1 if lori ≥0

0 if lori <0

The log odds ratio lori is modeled as:

lori = ln(
pi

1− pi
)=X iβ + ei (4)

where Pi = probability (yi = 1) and X is a matrix containing indicator variables for the haplo‐
types formed from the selected SNP. Groups of SNP markers with less than two correspond‐
ing observations were discarded, and analysis was conducted on all remaining marker
groups.

The link function of the log odds ratio X iβwith the binary response yi gives the following
equations:

pi(yi =0)=
1

1 + exp(X iβ) and pi(yi =1)=
exp(X iβ)

1 + exp(X iβ) (5)

yielding the following relationships:

yi = {1 if
exp(X iβ)

1 + exp(X iβ) ≥0.5

0 if
exp(X iβ)

1 + exp(X iβ) <0.5

B.2 Marginal effects model: The genotype and haplotype association methods were imple‐
mented using R functions developed by [Gonzalez et al., 2007; Sinnwell and Schaid, 2005].
The haplotype analysis was implemented using a sliding window approach which utilizes a
window of k SNP in width sliding across the genome h SNP at a time. Individual SNP scores
were determined as the maximum average of all haplotypes containing a given SNP.

B.3 Ant colony algorithm: While the algorithm, in the aforementioned form can be used to
subjectively identify markers, it is not well suited for the calculation of permutation p-val‐
ues. When updating the pheromone function, as previously described in equation (2), the fi‐
nal pheromone levels are relative not only to prediction accuracy, but the number of times a
SNP marker is selected. As a result, the amount of pheromone deposited on a feature de‐
pends greatly on the amount of pheromone deposited on all other SNP markers and can
vary wildly from permutation to permutation. One obvious solution to this problem is to
use the average accuracy of all Sk  containing genotypes for SNP m; however, this approach
substantially reduces the ACA’s ability to efficiently burn in on good solutions, an attribute
needed to detect unknown gene interactions in high-dimension data sets.

To overcome these limitations, a two-layer pheromone function was developed:

Ant Colony Algorithm with Applications in the Field of Genomics 11



2

2
1

( ) 2 ( )
( )

( ) 2 ( )
m m m

m nf
m m mm

t t
P t

t t

a a b

a a b

t t h

t t h
=

=
å

(6)

where τm(t) is the first pheromone layer updated using the sum of accuracies for all Sk  con‐
taining SNP m; τ2m(t)is the second pheromone layer updated using the average accuracy of
all Sk  containing genotypes for SNP m; andηm, α, βare as previously described. For the cur‐
rent study, αand α2 were set to 1, βwas set to.3 and the prior information (ηm) was the pre‐
diction the accuracy of SNP marker m, obtained using logistic regression on genotypes.

The pheromone for τm(t) was updated using equation (2) and τ2m(t) was updated using the
following equation:

2 ( 1) [ * 2( ) 2( )] / ( )m m mt t t t t nst t t+ = + D + (7)

where t is the iteration number; Δτm2(t)is the change in pheromone level for feature m based
on the sum of accuracy of all Sk  containing genotypes for SNP m, and is set to zero if feature
m was not selected by any of the artificial ants; and ns is the number of times SNP m was
selected at iteration t. Permutation p-values were calculated using τ2m(t) only.

The procedure can be summarized in the following steps:

1. Each ant selects a predetermined number of SNP markers.

2. Using the selected SNP markers, accuracies are computed using logistic regression on
haplotypes or genotypes.

3. The pheromone for each selected group of SNP, Sk , is calculated as:

(1 )acc
kpheromone acc -= (8)

1. The change in pheromone at time t is then calculated using equations (2) and (7).

2. Following the update of pheromone levels according to equations (2) and (7), the PDF is
updated according to equation (6) and the process is repeated until pheromone levels
have converged.

B.4  Data  simulation:  Genotype  data  on  90  unrelated  individuals  from  the  Japanese  and
Han Chinese  populations  were  downloaded from the HapMap ECODE project  website.
Each simulation scenario was replicated five times using two 500 Kbp regions on chro‐
mosome 2,  comprising 2047 polymorphic SNP. All  SNP haplotypes were assumed to be
known without error. The binary disease trait was simulated under a two locus epistatic
model as seen in Table 7.
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Scenario 1 Scenario 2

AB aB Ab ab AB aB Ab ab

AB 1 1 1 1 1 1 1 1

aB 1 1 1 1 1 1 1 1

Ab 1 1 1 1 1 1 1 1

Ab 1 1 1 15 1 1 1 10

Table 7. Relative risk for simulated trait (relative to the aa/bb genotype)

The loci of the causative mutations were selected at random; with the frequencies of the causa‐
tive mutations being.58 and.6. Although these frequencies might be considered high, it was
necessary to restrict selection to SNP with mutant allele frequencies greater than.5. This was
done to insure a reasonable simulated disease incidence of 15%. A plot illustrating the LD of all
SNP with the two causative mutations is shown in Fig (1). The plot shows a large peak of high
LD with rs2049736 (SNP 409), while the peak of high LD with rs28953468 (SNP 2041) is substan‐
tially narrower, and is preceded by a plateau of SNP in moderate LD with rs28953468.

Figure 1. Plots of each marker’s linkage disequilibrium (LD) with the two causative mutations. The light grey line rep‐
resents LD with the causative mutation located at position 409. The black line represents LD with the causative muta‐
tion located at position 2041.
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Permutation testing was used to access global significance for all models used in the study.
Statuses were randomly shuffled amongst subjects, with haplotype effects, genotype effects
and association p-values re-estimated for each new configuration of the response variables.
The largest estimated haplotype/genotype effect or the smallest haplotype/genotype associa‐
tion p-value from each permutation was saved to form an empirical distribution used for
calculation of p-values. One hundred permutations were performed, yielding p-values accu‐
rate to 1%. Power was calculated as the proportion of times a given method identified at
least one SNP marker in high LD (r2 ≥.80) with a causative mutation.

B.5 Results and discussions: Estimates of power for the three methods can be found in Table 8.
Methods employing the ACA showed substantial increases in power when compared to the
methods accounting for only marginal effects. Due to the fact that the trait was simulated
under a dominance model, analysis of genotypes yielded superior results when compared to
haplotype analysis. Despite the inherent advantage of genotype analysis using a dominance
model, the ACA using haplotypes (ACA/H) still showed greater power than RG/D in both
scenarios. For scenario 2, all models showed a reduction in power; however, the superiority
of the ACA methodologies remained constant, with the ACA using LG on genotypes assum‐
ing a dominance model (ACA/G/D) yielding 66.7% increase in power for both scenarios
when compared to the next best method, RG/D.

Scenario 1 Scenario 2

1 locus 2 locus 3 locus 1 locus 2 locus 3 locus

ACA/G/D ___ 1.00 0.90 ___ 0.50 0.40

ACA/G/C ___ 0.70 0.80 ___ 0.40 0.40

ACA/HAP ___ 0.60 0.70 ___ 0.50 0.40

RG/D 0.60 ___ ___ 0.30 ___ ___

RG/C 0.30 ___ ___ 0.30 ___ ___

SW/HAP ___ 0.10 0.20 ___ 0.00 0.00

a Power was calculated as the proportion of times at least one SNP in high linkage disequilibrium (>.8) with a causative
mutations was detected by the model at α=.05 for genome-wide significance

Table 8. Power calculationsa.

Plots of the associative effects, obtained using SW/H, ACA/G/D, and RG/D, are shown in
Fig. (2) and (3). When compared to the LD plot (Fig. (1)) all methods show good correspond‐
ence for scenario 1, though only the ACA/G/D was able to identify markers for both causa‐
tive mutations in all replicates. In scenario 2, where the genetic effect was greatly reduced,
plots of associative effects tended to be noisier for all models, with the ACA/G/D again
showing superior performance, identifying several SNP markers having only moderate LD
with causative mutation rs28953468.
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Figure 2. Association plots of SNP markers for the simulated trait under scenario 1. Plots were obtained using 2 SNP
haplotypes analyzed by a. SW/LR and b. ACA/LR. Vertical lines represent the position of the two causative mutations,
and horizontal lines represent the threshold at which associations are significant at α=. 05
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Figure 3. Association plots of SNP markers for the simulated trait under scenario 2. Plots were obtained using 3 SNP
haplotypes analyzed by a. SW/LR, b. ACA/LR, and c. RG. Vertical lines represent the position of the two causative mu‐
tations, and horizontal lines represent the threshold at which associations are significant at α=.05.
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To determine the effectiveness of the permutation on pheromone levels, the cumulative dis‐
tribution, based on LD with causative mutations, of SNP identified as being significantly as‐
sociated with simulated trait by ACA/G/D and RG/D were plotted and can be found in Fig.
(4). Despite similarities in the average number of SNP identified by ACA/G/D (15.4) and
RG/D (22), the distributions of these SNP, differed substantially. In contrast to RG/D, the
ACA/G/D identified a large number of SNP having LD between.35-.45. These SNP corre‐
sponded to the broad plateau of SNP in LD with SNP 2041. Unlike RG/D, the ACA/G/D also
identified several SNP (5.19%) having less than.10 LD with either of the causative mutations,
an unexpected result given the strict family-wise significance thresholds (α=0.05) imposed
on all models. Surprisingly, both methodologies identified a large number of SNP having
LD of approximately ~.2. Upon closer examination it was found that these SNP had LD of ~.
2 with both causative mutations, likely artifacts of the data resulting from the relatively
small sample size. The LD with both causative mutations imparted a portion of the epistatic
effect on these SNP, resulting in significant associations with the simulated traits.

 
 

 
(a)            (b) 
 

Figure 4. Plot of the cumulative distribution of SNP, identified as have significant associations when using a) ACA/G/D
using 2 loci model (5.19%) b) RG/D, based on linkage disequilibrium with the causative mutations

2.3. Ant colony optimization as a method for strategic genotype sampling

Interest  in  identifying QTL of  economic importance for  marker-assisted selection (MAS)
in livestock populations has increased greatly in the past decade. Yet, it may not be via‐
ble to genotype each animal due to cost,  time or lack of availability of DNA. A method
that would allow for a selected sample (e.g. 5%) of the population to be genotyped and
at the same time inferring with high probability genotypes for the remaining animals in
the population could be beneficial.  By using such a method, fewer animals in a popula‐
tion would be needed for genotyping which would decrease the time and cost of geno‐
typing.  Theoretically  the  problem  at  hand  is  simple  to  solve.  If  it  were  possible  to
evaluate every possible subset of animals equal to the desired size (e.g. 5%) then the op‐
timal  solution  could  be  found.  However,  this  is  computationally  impossible  at  the  cur‐
rent time. Consequently a more feasible solution is needed. An intuitive solution would
be  one  that  selects  animals  based on their  relationship  with  other  animals  in  the  pedi‐
gree. However, the heterozygosity and the structure of the pedigree play important roles
as well. Consequently, the problem is one of optimization.
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In the case of genotyping, the ACA should select a subset of animals that, when genotyped,
should give an optimal performance in terms of extrapolating the alleles of non-genotyped
animals. Therefore, the objectives were to investigate the usefulness of a search algorithm as
implemented by Ressom et al. (2006) to optimize the amount of information that can be ex‐
tracted from a pedigree while only genotyping a small portion. The results of the proposed
method are compared to other viable methods to ascertain any potential gain. The proce‐
dures were tested using simulated pedigrees and actual beef cattle pedigrees of varying
sizes and structures.

C.1 Ant colony optimization: The ACA is initialized with all features having an equal baseline
level of pheromone which is used to compute Pm(0) for all features. Using the PDF as de‐
fined in equation (1), each of j artificial ants will select a subset Sk  of n features from the
sample space S  containing all features.

Following the update of pheromone levels according to equation (2), the PDF is updated ac‐
cording to equation (1) and the process is repeated until some convergence criteria are met.
Upon convergence the optimal subset of features is select based in the level of pheromone
trail deposited on each feature.

In the specific case of selecting individuals for genotyping, the features are candidate ani‐
mals for genotyping from a full or partial pedigree. The pheromone of some feature, m, in
the current study was proportional to the sum of an animal’s number of mates and number
of offspring

( ) m mm t numoff nummatet = + (9)

where numoffm and nummatem were the number of offspring and number of mates for animal
m at time t, respectively. Consequently, the performance of a particular subset, Sk, is deter‐
mined the by the cumulative sum as described above for each of n animals in the subset.

1
( )

n
m mm

m
t numoff nummatet

=
= +å (10)

Outside of actual ant colonies, and with regard in particular to the current study, it is diffi‐
cult to assign a biological explanation to the evaporation rate orρ. Consequently, a relatively
small value of 0.01 was chosen in an attempt to reach convergence faster. For each of j artifi‐
cial ants, a subset of animals was chosen equal to approximately 5% of the pedigree size.

For the five replicates of simulated pedigrees, 100 ants were used for each of 30,000 iter‐
ations. The evaporation rate was set equal to 0.01. The criterion used for evaluating can‐
didates was a function of  their  number of  mates and number of  offspring.  Each animal
in  the  pedigree  was  randomly assigned to  be  either  homozygous  or  heterozygous.  The
probability  of  an animal  being assigned to  one of  these  two groups was  dependent  on
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the allelic frequencies such that if  the allele frequencies were assumed to be 0.7/0.3 then
approximately  58%  of  the  animals  would  be  categorized  as  homozygous  based  off  of
Hardy-Weinberg Laws of equilibrium. The assignment of homozygous/heterozygous sta‐
tus  was  performed  each  iteration.  If  a  selected  animal  2was  homozygous  then  his/her
number of  mates  and number of  offspring were corrected such that  for  every homozy‐
gous offspring he/she had the number of offspring was corrected accordingly so that the
number of offspring only reflected the number of heterozygous offspring. The same cor‐
rection was done for the number of mates.  Similarly,  if  a selected animal was heterozy‐
gous,  the  number  of  offspring  and  the  number  of  mates  reflected  a  count  of  only
homozygous  individuals.  An  animal’s  probability  of  being  selected  was  based  off  of
maximizing the corrected sum of the animal’s number of offspring and number of mates.
The accuracy for evaluating a selected group of animals was proportional to this correct‐
ed sum. The uncorrected or original sum of each animal was used as prior information.
Selected animals were chosen based off of their cumulative probability were assumed to
have known genotypes for the peeling procedure.  Simulated allele frequencies of 0.7/0.3
and 0.5/0.5 were used to assign genotypes to the animals in the pedigree.

In the case of the real pedigree the same parameters were used as in the simulated pedigrees
with the following exceptions; 100 ants were used for each of 5,000 iterations. The top 1,455
animals out of 29,101 were selected (5% of the total pedigree) based off of their cumulative
probability were assumed to have known genotypes for the peeling procedure. In the case of
the research beef cattle pedigree, 100 ants were used for each of 20,000 iterations. The top
434 out of 8,688 animals were selected (5% of the total pedigree) based on the same criteria.

C.2 Peeling: Given that genotypes in this study were assigned at random in the population, it
is possible to extract additional genotypic information from the pedigree. Animals with
missing genotypic information can be assigned one or both alleles given parental, progeny,
or mate information. Given this trio of information sources and following an algorithm simi‐
lar to Qian and Beckmann (2002) and Tapadar et al. (2000), imputation on missing geno‐
types were made and additional genotypic information was garnered. For the current study
it was assumed that there were no errors in the recorded pedigree resulting in all animals
having known paternity and maternity. Whenever possible, maternal and paternal alleles
were identified based on the inheritance. For the purpose of this study, the first allele was
inherited from the sire and the second allele was inherited from the dam. If the parental ori‐
gin of an allele was unclear, then allele was arbitrarily assigned as either the paternal or ma‐
ternal allele.

After the peeling process, the number of animals with one or two alleles known was com‐
puted. This was done by simply counting the number of animals that were assigned either
one or two alleles based on the peeling procedure described above. The percentage of alleles
known based on the peeling procedure (AKP) was then computed as follows:

1 2
P

( 2)
AK 100,

2a

n n
n

æ ö´ +
= ´ç ÷ç ÷´è ø

(11)
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where n1 and n2 were the number of animals with 2 and 1 allele(s) known and na was the
total number of animals in the population. Furthermore, n1and na were multiplied by two
since each animal has two alleles.

At the end of the peeling process those animals that had either one or two alleles known
were retained for further analysis to determine the remaining unknown alleles in the popu‐
lation. In other words, those animals having one or two known alleles were used as prior
information in the Gibbs sampling procedure for determining the remaining unknown al‐
leles in the population.

C.3 Gibbs sampling: After the known alleles were determined by the peeling process descri‐
bed above, these alleles were used as prior information in the Gibbs Sampler to assign geno‐
types to the remaining animals in the population. For the base population animals, the
unknown allele(s) were randomly sampled given the frequency of alleles in the population
and the assumption of Hardy-Weinberg equilibrium. Unknown alleles for non-base popula‐
tion animals were randomly sampled from the parent’s genotypes according to Mendelian
rules. An equal weight was assumed for inheriting either the first or second allele from a
parent. For a non-base population animal that had only one unknown allele, the unknown
allele was sampled approximately half of the time from the sire’s genotype and the remain‐
ing time from the dam’s genotype. This was to compensate for incorrect assignment of the
known allele as illustrated in the above example.

At the end of the sampling process, a benefit function that described the total number of al‐
leles known in the population was computed. This function was computed from a combina‐
tion of known alleles and the probability of unknown alleles assigned during the sampling
process. In order to be included in the benefit function, an allele in a particular position had
to be equal to the true allele of the same position (i.e., Bb and bB were not equal). The proba‐
bility of alleleai , j, (j = 1 or 2) being assigned as the true allele j for animal i was calculated as:

number of  times ,
,

  was assigned
( ) .

number of iterations
i j

i j

a
p a = (12)

Using p(ai , j) and the number of known alleles, the benefit function was then computed as
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wheren1, n2, and n3 were the number of animals with 2, 1 or 0 alleles known, respectively,
and p(ai , j) as previously defined. The percentage of alleles known after the Gibbs sampling
process, AKG, was such that
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where benefit  was the benefit function computed above and na was the total number of ani‐
mals in the population.

During each round of the sampling process only one genotype of a given animal was as‐
signed as the true genotype. Thus, at the end of the sampling process every animal had a
probability of having the true genotype,PTGig  , assigned as

number of times genotype  was assignedPTG ,
total number of samplesig

g
= (15)

where genotype g  was the true genotype for animali. The average probability of the true
genotype being identified for every animal in the population (APTG) was computed using
the following:

1
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where PTGig  was defined as above and na was the total number of animals in the popula‐
tion. In contrast to the benefit function, APTG only required that the animal have the correct
genotype—Bb was considered the same genotype as bB—and therefore was able to compen‐
sate for the incorrect allele position and sampling the correct unknown allele.

C.4 Simulation: A simulation using an animal model was carried out to investigate two meth‐
ods of selecting animals for genotyping and two methods of maximizing the genetic infor‐
mation of the population. A pedigree with four over-lapping generations was simulated.
The base population included 500 unrelated animals and subsequent generations consisted
of 1,500 animals with a total of 5,000 animals generated. For the simulated pedigrees as well
as the real pedigrees, one gene with two alleles was simulated for every animal in the pedi‐
gree file. Genotypes of the base population animals were assigned based on allele frequen‐
cies. For the subsequent generations, genotypes were randomly assigned using the parent’s
genotype, where an equal chance of passing either the first or second allele was assumed.
Five replicates of the simulated data were generated.

Two different frequencies for the favorable allele were used in the simulation and analyses.
The frequencies were 0.30, and 0.50. For the analyses using Gibbs sampling, a total chain
length of 25,000 iterations of the Gibbs sampler was run, where the first 5,000 iterations were
discarded as burn-in.
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C.5 Results of simulated pedigrees: Table 9 presents results of the ACO and alternative meth‐
ods for analysis of the simulated pedigrees (Spangler 2008). The ant colony optimization
method (ACO) appeared to be the most desirable method of those discussed in the current
study. Compared to selecting 5% of the animals at random, ACO showed gains in AKP,
AKG, and APTG ranging from 261.09 to 262.93%, 19.97 to 26.04%, and 23.5 to 29.6%, respec‐
tively. As compared to the favorable method of the alternative approaches, selecting males
and females based of off the diagonal element of the inverse of the relationship matrix, the
increase in AKP ranged from 4.98 to 5.16%. This gain is due to the amount of animals with
both alleles known after the peeling process which was between 20.74 and 21.07% larger in
favor of ACO. Admittedly, the gains in AKG were slight as compared to selecting males and
females based of off the diagonal element of A-1, yet ACO still performed better. The in‐
crease in APTG ranged from 1.6 to 1.8% in favor of ACO over selecting males and females
from their diagonal element.

ACO Random Males Males and females

Parameterb (0.30) (0.50) (0.30) (0.50) (0.30) (0.50) (0.30) ( 0.50)

No. of animals with

2 alleles known 811.20 787.20 258.20 259.60 250.00 250.60 670.00 652.00

1 allele known 2,166.80 2,063.00 527.80 485.60 2,939.80 2,793.00 2,262.60 2,152.80

Benefit function 8,055.01 7,550.36 6,713.56 6,007.02 7,943.67 7,401.57 8,019.88 7,497.70

AKP 37.89 36.29 10.44 10.05 34.40 32.94 36.03 34.57

AKG 80.55 75.71 67.14 60.07 79.44 74.02 80.20 74.98

APTG 0.63 0.57 0.51 0.44 0.59 0.52 0.62 0.56

a Random= 5% selected at random, Males= 5% of males selected from their diagonal element of A-1, Males and fe‐
males= 2.5% males and 2.5% females selected from their diagonal element of A-1. Numbers in parenthesis are the true
allele frequencies used in the simulation. b Descriptions of the parameters can be found in equations 5-10

Table 9. Number of animals with one or two alleles known, percentage of alleles known, and probability of assigning
the true genotype using other approachess

C.6  Real  beef  cattle  pedigree:  Results  from  the  ACO  analysis  can  be  found  in  Table  10
along  with  results  from  alternative  approaches.  The  largest  gains  were  seen  in  AKP

which  ranged  from  150.00  to  171.62%,  2.95  to  3.04%,  and  from  1.80  to  1.94%  as  com‐
pared  to  random  selection,  selection  of  males  and  females  from  A-1,  and  selection  of
males  from A-1,  respectively.  ACO also  showed gains  in  AKG and APTG over  random
selection  between  70.06  and  74.91%  and  between  14.3  and  15.4%,  respectively.  Table  3
shows advantages, although slight, of ACO over the methods using the diagonal element
of A-1 for the parameters of AKG and APTG.

C.7 Research beef  cattle  pedigree:  Results from the ACO analysis and other approaches us‐
ing the same pedigree can be found in Table 11. As compared to randomly selecting 5%
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of the animals,  ACO showed increases in AKP,  AKG,  and APTG ranging from 241.24 to
302.58%, 42.93 to 43.17%, and 20.9 to 38.0%, respectively. Realized gains in AKP  of ACO
over selecting males from A-1 or males and females from A-1 ranged from 8.78 to 10.15%,
and 2.04 to 3.40%, respectfully.

The  results  suggest  that  ACO is  the  most  desirable  method of  selecting  candidates  for
genotyping, particularly after peeling (AKP).  From these results it  appears that the num‐
ber of offspring and the number of mates along with the homozygosity of the genotyped
animals is critical in the selection process. Consequently, in application it will  be critical
to  have  good  estimates  of  allele  frequencies  prior  to  implementing  the  genotype  sam‐
pling strategy proposed in the current study. Differences in performance of ACO do ex‐
ist between the pedigrees explored in the current study. This is due to the proportion of
sires and dams that have large numbers of offspring and/or mates. In the dairy industry,
for example,  there may be only a small  number of sires in a pedigree but they may all
be  used heavily  as  in  the  case  of  the  simulated pedigrees  in  the  current  study.  In  con‐
trast, a pedigree from the beef industry may have a larger proportion of sires but a large
number of them may be used less frequently.

ACO Random Males Males and females

Parameterb (0.30) (0.50) (0.30) (0.50) (0.30) (0.50) (0.30) ( 0.50)

No. of animals with

2 alleles known 1,767.00 1,706.00 1,505.00 1,501.00 1,473.00 1,470.00 2,086.00 1,999.00

1 allele known 11,451.00 10,382.00 2,508.00 2,144.00 11,756.00 10,607.00 10,376.00 9,398.00

Benefit function 34,977.61 32,547.06 20,569.53 18,609.00 34,876.62 32,282.40 34,005.21 31,456.36

AKP 25.75 23.70 9.48 8.84 25.26 23.28 24.99 23.02

AKG 60.10 55.92 35.34 31.97 59.92 55.47 58.43 54.05

APTG 0.45 0.40 0.39 0.35 0.44 0.39 0.44 0.40

a Random= 5% selected at random, Males= 5% of males selected from their diagonal element of A-1, Males and fe‐
males= 2.5% males and 2.5% females selected from their diagonal element of A-1. Numbers in parenthesis are the true
allele frequencies used in the simulation. b Descriptions of the parameters can be found in equations 5-10.

Table 10. Number of animals with one or two alleles known, percentage of alleles known, and probability of
assigning the true genotype using other approaches from a real beef cattle pedigree a
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ACO Random Males Males and females

Parameterb (0.30) (0.50) (0.30) (0.50) (0.30) (0.50) (0.30) ( 0.50)

No. of animals with

2 alleles known 975.00 720.00 452.00 458.00 438.00 439.00 1,082.00 751.00

1 allele known 5,101.00 4,009.00 847.00 682.00 5,525.00 4,132.00 4,747.00 3,768.00

Benefit function 13,916.18 11,990.71 9,719.53 8,284.42 14,113.18 12,017.80 13,743.44 11,848.01

AKP 40.58 31.36 10.08 9.19 36.84 28.83 39.77 30.33

AKG 80.09 68.15 55.94 47.68 81.22 69.16 79.09 68.19

APTG 0.69 0.52 0.50 0.43 0.69 0.51 0.68 0.52

a Random= 5% selected at random, Males= 5% of males selected from their diagonal element of A-1, Males and fe‐
males= 2.5% males and 2.5% females selected from their diagonal element of A-1. Numbers in parenthesis are the true
allele frequencies used in the simulation. b Descriptions of the parameters can be found in equations 5-10.

Table 11. Number of animals with one or two alleles known, percentage of alleles known, and probability of
assigning the true genotype using other approaches from a real beef cattle research pedigreea

Furthermore, pedigrees from field data or from research projects will also have innate struc‐
tural differences. Research projects may be limited by the size of the population and thus
only use a small number of sires. In this scenario it would also be possible for higher rates of
inbreeding and larger numbers of loops in a pedigree due to a large number of full sibs.

In the current study, the simulated pedigrees are composed of approximately 10% sires,
while the large beef cattle pedigree and the small research beef cattle pedigree contain ap‐
proximately 16 and 7% sires, respectively. Intuitively, as the proportion of sires goes up, the
number of offspring per sire goes down. This explains the similarity of the results between
the simulated pedigrees and the small research pedigree. Thus, it is expected that the ACO
algorithm will be far superior to other alternatives when very small (few hundred animals)
pedigrees are considered or in situations where more than 5% of animals are genotyped due
to reduction in animal with large diagonal elements in A-1.

Ant colony optimization offers a new and unique solution to the optimization problem of
selecting individuals for genotyping. The heuristics used in the current study such as the
number of ants, number of iterations, and the evaporation rate are unique only to the pedi‐
grees used in the current study. Each pedigree will offer a different structure and thus re‐
quire a different set of parameters.

3. Conclusions

When applied to the high-dimensional data sets, the ant colony algorithm achieved higher
prediction accuracies than all other feature selection methods examined. In contrast to previ‐
ous applications of optimization algorithms, the ant colony algorithm yielded high accura‐
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cies without the need to pre-select a small percentage of genes. Furthermore, the ant colony
algorithm was able to identify small subsets of features with high predictive abilities and bi‐
ological relevance. In the presence of simulated epistasis, the proposed optimization meth‐
odology obtained substantial increases in power, demonstrating the effectiveness of
machine learning approaches for the analysis of marker association studies in which gene
interactions may be present. Although the ACA methods identified more SNP markers that
could be construed as false positives, the use of a more stringent threshold eliminated the
problem without greatly reducing the advantage of the ACA, in terms of power, when com‐
pared to other methods. The results of this study provide compelling evidence that the ACA
is capable of efficiently modeling complex biological problems, such as the model proposed
in this study.
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