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1. Introduction

1.1. Glioblastoma

Glioblastoma (GBM) with their invasive and aggressive nature, are the most common pri‐
mary brain tumours. GBM accounts for about 60% of all gliomas and 12–15% of all brain
tumors, and it is per se the most frequent primary brain tumor [1,2]. Although advances
in therapies, clinicians and researchers fail to arrive at overcoming poor prognosis with a
median  survival  of  only  one  year  from  the  time  of  diagnosis.  In  Europe  and  North
America, the incidence is three new cases per 100.000 inhabitants per year [3]. Although
GBM can manifest  itself  at  any age,  it  preferentially occurs in adults,  with a wide peak
age of incidence between 45 and 70 years [4].

GBMs arised from glial cells which are the building-block cells of the connective and suppor‐
tive, tissues in the central nervous system. Diffuse gliomas defined as astrocytomas, oligo‐
dendrogliomas, and oligoastrocytomas are the common gliomas which infiltrate throughout
the brain parenchyma. They are graded on a World Health Organization (WHO) classification
system scale of I to IV according to their degree of malignancy based on different histological
features and genetic alterations. Grade I tumors are pilocytic astrocytomas and they are benign
and can be cured if they can be surgically resected; grade II tumors are low grade astrocytomas
(LGAs) which are incurable with surgery because of their early diffuse infiltration of the
surrounding brain, and long treatment regimens are needed to treat this disease completely;
grade III tumors are anaplastic astrocytomas and they have increased anaplasia and proliferate
over grade IV tumors and are more rapidly fatal; grade IV tumors are GBMs which possess
advanced features of malignancy, and are resistant to radio/chemotherapy [5].

Important  characteristics  of  GBMs are  aberrant  cellular  proliferation,  diffuse  infiltration,
prospensity for  necrosis,  robust  angiogenesis,  high resistance to  apoptosis,  and genomic
instability.  The  intratumoral  heterogenity  combined  with  a  putative  cancer  stem  cell
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(CSC)  subpopulation and incomplete  atlas  of  epigenetic  lesions  are  the  reasons  of  poor
prognosis/high  tumoral  resistance  against  chemotherapeutics  and  recurrence  [1,2,5-8].
Studies showing crosstalks between genetics  and epigenetics  in GBM are highlighted to
solve mystery [5-7]. There are two types of GBM: Type 1 GBM typically shows inactiva‐
tion of the TP53 tumor suppressor gene but no amplification of the EGFR oncogene. Mu‐
tations  of  p53,  mostly  associated  with  loss  of  heterozygosity  (LOH)  in  the  17p
chromosome region,  can be observed in GBM originating from a less  malignant  glioma
precursor. TP53 inactivation does not occur together with amplification of the EGFR on‐
cogene, which is only identified in GBM without TP53 mutation More than 70% of ma‐
lignant  gliomas  show  a  deregulated  TP53  pathway  not  only  by  mutation  of  TP53  but
also amplification of MDM2, homozygous deletion/mutation, or promoter hypermethyla‐
tion-mediated silencing of CDKN2A. Type 2 GBM shows overexpression or amplification
of the EGFR without mutations of TP53, and it appears de novo, that is, in patients with‐
out a less malignant precursor neoplasm such as grade II or III astrocytoma [6,7].

Two independent GBM pathways were also identified [9]. Moreover, epidermal growth factor
receptor (EGFR) amplification is almost always consistent with LOH in chromosome region
10q [16]. The tumor suppressor gene Phosphatase and tensin homolog (PTEN), mapping the
10q23 region, is mutated in approximately 30% of type 2 GBM [6,10]. Mutations in this gene
have been described only in malignant gliomas and are rarely associated with p53 mutations.
Other frequent mutations in type 2 GBM affect the cyclin dependent kinase (CDK) cell-cycle-
regulator genes. Amplification of CDK4 and CDK6 was observed in 15% of type 2 GBMs [6,7].
Mutations of the cell-cycle-regulator genes CDKN2A/CDKN2B have been observed in 40% of
all GBM. Moreover, a functional loss of expression of the CDKN2A gene by promoter hyper‐
methylation was found in 15% of GBM [6,7]. Mutations of the Isocitrate dehydrogenase 1
(IDH1) gene have been frequently observed in those GBM progressing from a less malignant
precursor lesion, that is in type 1 GBM, mostly of them affecting young patients. Interestingly,
these IDH1 mutations were associated with a better outcome [6]. In addition to type 1 and type
2 GBMs, there are other forms, whose molecular profiles do not identify them as belonging to
either of the two classic pathways [6,7].

The methylation signature of gliomas is also rather associated with tumor lineage and
malignancy grade. Thus, astrocytomas grades WHO II and III and GBM grade IV show
different methylation status of several genes. Even though, primary and secondary GBMs were
found to differ concerning methylation of genes which was associated with decreased mRNA
levels. In this context, methylation of methyl guanine methyl transferase (MGMT) is more
frequently observed in 75% of secondary GBM than in primary GBMs (36%). Moreover, MGMT
methylation has been observed to be associated with TP53 mutations in secondary GBMs.
Cellular pathways deregulated in gliomas and associated epigenetic events through promoter
hypermethylation, CpGs hypomethylation, and histone alterations leading to modified
chromatin states are Ras signaling (RASSF1A, RRP22, DIRAS3), Cell migration and adherence
(NECL1, E-cadherin, SLIT2, EMP3, TIMP3), Wnt signaling (WIF1, FZD9, IGFBP-3, SFRP
family, PEG3), Tyrosine kinase pathways (KIT, SYK, c-ROS),Transcription factors (SOX2,
KLF4, GATA 6, ATOH1), Homeobox genes (HOXA 9, HOXA10, HOXA11), Sonic hedgehog
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signaling (PTCH1, Cyclin D2, Plakoglobin, PAX6, NKX2.2), Notch signaling (NEURL1, HES1,
HEY1), bone morphogenic protein (BMP) developmental pathway (BMPR1B), Hypermutator
pathways (hMLH1, hPMS2, MGMT,WRN), Apoptosis (TMS1, DAPK1, CASP8, DR4, DR5),
TP53/cell cycle (HIC-1, CDKN2A, RB1, p16INK4a), MicroRNAs (miR-124a, miR-21, miR-7,
miR-137, miR12) [6,7,11].

MGMT can be given for instance for these pathways MGMT, which has been observed to be
hypermethylated in low-grade gliomas (grade II) further evolving to gliomas grade III and
GBM [6,7]. Furthermore, this biomarker allows neurooncologists to predict patient’s response
to current chemotherapy with temozolomide [12]. Second instance can be microsatellite
instability (MSI) which was observed to be more frequent in those GBMs evolving from less
malignant gliomas grade II or III, which typically display TP53 mutations without EGFR
amplification, as well as in relapse GBM [5,6]. Third instance can be given as epigenetic
inactivation ofone of the apoptosis-related genes (TMS1/ASC and DAPK1, WIF-1, SFRP1 and
CASP8 ) as proapoptotic gene CASP8 which is an epigenetic silenced during progression of
primary-to-recurrent GBM. GBM can change its epigenetic profile quickly, therefore its
adaptation (heterogenity) to novel therapies is big obstacle [6,7,11].

Because of incomplete atlas of genetic and epigenetic pathways, gene therapies and chemo‐
therapies have limited efficacy and they are under investigation [6,7,13,14]. Researchers and
clinicians are trying to fight this monster following products of these genes [15-17]. Many
"Trojan horse" approaches, based on potential applications in the pharmacological therapy of
GBMs which blood-brain barrier (BBB) represents an obstacle are being proposed day by day
[18,19]. The passage of drugs across the BBB limits the efficacy of chemotherapy in brain tumors
[18-21]. Many anti-neoplastic drugs evaluated as “magic bullets” that is effective against
glioblastoma in vitro, has poor efficacy in vivo or has both efficacy in vitro and in vivo, has
poor efficacy in clinic because it is extruded by P-glycoprotein (Pgp/ABCB1), multidrug
resistance-related proteins (MRPs) and breast cancer resistance protein (BCRP/ABCG2) of BBB
cells [20,21]. Although these proteins are commonly studied in order to overcome drug
resistance for several decades, GBM attack with other weapons in order to win this war and
it continues to surprise researchers and clinicians [20,21]. Other weapons of GBM can be
defined as aquaporins (AQPs) [22,23].

2. AQPs

AQPs, water channels, have been proposed as novel targets in cancer and oedema and are
associated with a surprising array of important processes in the brain and body, such as
angiogenesis, cell migration, development and neuropathological diseases. In both cancer and
brain oedema, current therapies are limited and new pharmacological approaches focused on
AQPs offer exciting potential for clinical advances [23]. The expression of six isoforms of AQP
protein (AQP1, 3, 4, 5, 8, 9) has been reported in the glial cells [in astrocytes (AQP1, 3, 4, 5, 8,
9), oligodendrocytes (AQP8), tanycytes (AQP9) and ependymal cells (AQP1, 4, 9) [24]. As
astrocytes are the most numerous glial cell type and account for one third of brain mass [25]
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and they are involved in the maintenance of the blood–brain barrier (BBB), and as the GBM is
the most malignant form astrocytic brain tumor [1,2], we focused on the AQPs on the astrocytes
related to GBM. Previous reports showed that AQPs 1, 4, and 9 have significant roles in the
pathogenesis of malignant brain tumours [24].

3. AQP1

AQP1 plays an important role in water transport in expressed in various organs and cells
(microvascular endothelial cells, kidney, central nervous system, eye, lacrimal and salivary
glands, respiratory apparatus, gastrointestinal tract, hepatobiliary compartments, female and
male reproductive system, inner ear, skin) [26]. Previous reports sowed that brain astrocytes
express AQP1 under pathologic conditions as the early stage of Alzheimer disease, subarach‐
noid hemorrhage, cerebral infarction [27-29]. Monzani and coworkers showed a role for AQPs
in facilitating cell migration at the first time for AQP1 in human endothelial and melanoma
cell lines in vivo [30].

Hypoxia stimulates astrocytic migration it is possible that hypoxic conditions after spinal cord
injury (SCI) trigger AQP1 synthesis in astrocytes, as an attempt of injured spinal cords to
facilitate astrocytic migration to the lesion site [31,32]. Hypoxic conditions may contribute to
chronic accumulation of water within neurons and cytotoxic edema in chronically injured
spinal cords [33]. AQP1 expression in spinal cord may have a role in axonal remodeling and
plasticity, necessary for normal sensory processing [34]. Abreu-Rodríguez and coworkers
showed that HIF-1α participates in the hypoxic induction of AQP1 in 9L glioma cells. They
also demonstrated that the activation of AQP1 promoter by hypoxia is complex and multifac‐
torial and suggested that in addition to HIF-1α other transcription factors might contribute to
this regulatory process [35].

GBMs express increased aquaporin AQP1. AQPs may contribute to edema, cell  motility,
and shuttling of H2O and H+  from intracellular to extracellular space [36]. In comparison
to  normal  brain,  GBMs have  different  vascular  structures  and metabolic  changes.  GBM
cells make higher aerobic glycolysis under hypoxia than under normoxia leading to inva‐
sion of cancer cell [37,38].

4. AQP4

AQP4, the most important water channel in the brain, is found in supporting cells as astrocytes
(astrocyte endfeet abutting microvessels), ependyma and its also found in retina [39, 40]. AQP4
expression is polarized in astrocytes and AQP4 redistributes throughout the astrocyte cell
membrane, suggesting that endothelial cells signal astrocytes to polarize AQP4 expression in
the cell membrane [41]. Previous study showed that AQP4 is involved in the formation and
resolution of brain and spinal cord edemas. In the absence of AQP4, brain edema is decreased
and neurologic improvement following ischemic brain injury is increased [42].
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AQP4 expression is commonly up-regulated in astrocytes associated with brain edema [42]. It
was showed that an up-regulation and redistribution of AQP4 accompanied by a loss of its
polarized expression pattern and so the evidence for a role of it in vasogenic edema formation
in GBM [43, 44]. Altered expression levels of AQP4 and redistribution of the protein through‐
out the membranes of cells are found in GBM and this leads to development of the oedema
often found surrounding the tumour mass. AQP4 also facilitates the elimination of excess brain
water. Excess water is eliminated primarily through the glia limiting membranes into the CSF
that vasogenic edema fluid is eliminated by an AQP4-dependent route. AQP4 pumps out
excess fluid assembled in the brain parenchyma after BBB disruption [43,44]. Wang and
coworkers suggested that HIF-1α plays a role in brain edema formation and BBB disruption
via a molecular signaling pathway involving AQP4 and matrix metalloproteinase 9 (MMP-9)
[45]. HIF-1α binds the promoter of AQP4 resulting in the increase in its’ expression [46].

It was shown that in human immunodeficiency virus (HIV) infected patients, AQP4 expression
was increased indicating the role of AQP4 in a protective and/or maladaptive response to CNS
inflammation [47,48].

Recent study have found changes in astroglia Kir and AQP4 water channels in temporal lobe
epilepsy specimens [49]. Dysregulation of AQP4 also occurs in hippocampal sclerosis and
cortical dysplasia in patients with refractory partial epilepsy [50]. These are clue for both AQP4
and Kir4.1 participate in clearance of K+ following neural activity. Othe report suggested that
AQP4 and Kir4.1 may also act in concert in K+ and H2O regulation [51]. K+ re-uptake into glial
cells might be AQP4-dependent, as water influx coupled to K+ influx is thought to underlie
activity-induced glial cell swelling [52]. Further studies are required to clarify the expression
and functional interaction of AQP4 and Kir4.1 in the hippocampus and their changes during
epileptogenesis.

Recent reports have also suggested a role of AQP4 for neuroglial activation in autism and more
studies are also needed as epileptogenesis to confirm its spesific role in autism [53].

AQP4 is highly expressed in the basolateral membrane of the ependyma and glia limitans. This
meaning of this distribution feature can be evaluated that AQP4 provides a highly efficient
pathway to transport the redundant water from parenchyma to ventricle system and subar‐
achnoid space [42]. The highly polarized expression of AQP4 may be involved in the structural
and functional integrity of the ependyma maintance [42,54,55]. AQP4 is highly related with
the gap junction protein connexin43 (Cx43), which is the main gap-junction protein in
astrocytes as well as ependymal cells [53,55].

Previous report showed that reactive microglial cells expresses AQP4 mRNA and protein in
in vivo [56]. All cells which are expressing AQP4 in microglial cells may represent a molecular
adaptation to maintain ion water homeostasis in the injured brain. Activated microglia is
important in the clearance of K+ and restoration of osmotic equilibrium in absence of astro‐
cytes. It is well known that glial cells play an important role in regulating the homeostasis to
ensure an appropriate neuronal environment [24,56,57]. AQP4 seems to play an essential role
because of the possible role of astrocytes in pomping out excess K+ around active neuron
[24,56,57].
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5. AQP9

AQP9 transports glycerol, mannitol and urea. It was firstly found in human leukocytes, and
it is also expressed in liver, testis, and brain [58,59]. In the brain, AQP9 is expressed in tanycytes
(they possess no cilia). The tanycytes are found in circumventricular organs of the third
ventricle lacking a BBB [60, 61]. More studies are needed to confirm AQP9 expression in the
subset of ciliated ependymal cells [60]. AQP9 is also expressed in astrocytes and spinal cord
of the glia limitans and white matter tracts. Its expression is throughout the astrocyte cell bodies
and processes in the brain [62]. AQP9 may play a role in extracellular water homeostasis/
oedema and it also helps glycerol and monocarboxylate diffusion [63].

In addition, it is proposed that AQP9 plays a role in clearing lactate from the extracellular space
in pathological ischemic conditions. Most glioma cells throughout the tumour revealed a
strong AQP9 expression across the whole surface of the cells in human GBM. AQP9 expression
is increased in all grades of human astrocytic tumours and this expression is increased from
low-grade tumours to high-grade tumours [64]. The increase of AQP9 expression is essential
for the clearance of glycerol and lactate from the extracellular space at the glioma-associated
lactic acidosis [65]. AQP9 expression may account for GBM resistance to hypoxic and ischemic
situations, by facilitating clearance of lactate and glycerol resulting from hypoxia and cellular
damage, respectively [66-69]. HIF-1α binds AQP4 promoter, consequently it increases the
expression of AQP4 [70].

It might, therefore, play a role in both the energy metabolism of normal brain tissue and
provide increased tolerance for hypoxia under pathological conditions. AQP9 may play an
important role in the malignant progression of brain tumours and it can be used as a biomarker
for molecular diagnosis and as a new target for gene therapy.

6. AQPs 1,4,9 in stem cells

In the study of Fussdal and coworkers at biopsies from GBMs, they analyzed the expression
of AQPs 1, 4, and 9 in isolated tumour stem cells grown in a tumoursphere assay and analyzed
the progenitor and differentiated cells from these cultures. They compared these expressions
to the situation in normal rat brain, its stem cells, and differentiated cells. They concluded that
AQP 9 is markedly more highly expressed in the tumour progenitor population, whilst AQP4
is downregulated in tumour-derived differentiated cells. They proposed that AQP 9 may have
a central role in the tumorigenesis of GBM [71].

7. Midkine

Midkine (MK) with the molecular weight of MK is 13 kDA is a heparin-binding growth factor/
an angiogenic factor with cytokine actions. MK binds to oversulfated structures in heparan
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sulfate and chondroitin sulfate. MK and pleiotrophin (known as PTN and HB-GAM) are
belonging to same family [72]. MK is 50% homologous to PTN at the amino acid level and
shares with PTN the genomic organization and predicted protein structure [72-73].

MK is mainly composed of two domains which are linked by disulfide bonds [74]. The C-
domain has basic heparin-binding activity and this is responsible for the mechanism of action
[75]. Each domain of MK has also homology to the thrombospondin Type I repeat [76]. Two
domains are composed of three anti-parallel β-sheets [77]. The C-domain has two clusters of
basic amino acids named as Cluster-1 and -2. These clusters are required for heparin-binding
activity [78]. MK forms dimers via spontaneous association and transglutaminase stabilize
dimers through crosslinking process. MK is seemed to require dimerization for its activity [79].
After dimerization, Cluster-2 forms a fused strong binding site [77].

MK was originally reported to be the product of a retinoic acid-responsive gene during
embryogenesis [80]. its expression was high during embryogenesis, but interestingly, MK is
not detectable in healthy adults and only re-appears in the body as a part of the pathogenesis
of diseases [81]. MK promotes proliferation, migration, anti-apoptotic manner, mitogenesis,
transforming, and angiogenesis various cells [82-87]. It has significant roles in reproduction,
repair and in epidemiology of many diseases as rheumatoid arthritis, multiple sclerosis,
hypertension and renal disease and cancer [88-90]. It’s very important data that the expression
of MK is increased in advanced tumors with high frequency [84, 91]. Previous reports showed
that the blood MK level is frequently elevated with advance of human carcinomas, decreased
after surgical removal of the tumors [91,92].

Human MK recognizes glycosaminoglycans through its C-domain as heparan sulfate trisul‐
fated unit and chondroitin sulfate E unit is important in its mechanism of action. The compo‐
nent of the MK receptor is a chondroitin sulfate proteoglycan protein tyrosine phosphatase-z
(PTPz). Low density lipoprotein receptor-related protein (LRP), α4β1-integrin and α6β1-
integrin are also MK receptors [93,94].These proteins and PTPz form a receptor complex of
MK. After the complex formation with PTPz and integrins, MK starts downstream signaling
systems as Src family kinases and tyrosine phosphorylation,respectively. Increased tyrosine
phosphorylation of paxillin leads to migration at osteoblast like cells and followed by sup‐
pression of caspases, activation of PI3 kinase and MAP kinase takes part in survival [83, 93,
95]. The previous report showed that when MK binds to a6b1-integrin and tetraspanin, and
induces tyrosine phosphorylation of focal adhesion kinase (FAK) followed by activation of
paxillin and signal transducer and activator of transcription (STAT) 1 alpha pathway, it
increases migration and invasion at human head and neck squamous cell carcinoma cells in
vitro [96]. Due to phosphorylation of STAT3 by MK, the proliferation of postconfluent 3T3-L1
cells are stimulated and this leads to adipogenesis [97]. Notch2 reserves an another receptor
for MK and acting through the janus kinase 2 (Jak2)/STAT3 signalling pathway, MK leads to
epithelial-mesenchymal transition (EMT) in immortalized keratinocytes. Both MK and PTN
plays important role in EMT and neurogenesis during organogenesis process in embryonal
development [96]. Previous reports proposed that anaplastic lymphoma kinase (ALK) can be
included in the receptor group of MK [98]. Muramatsu and coworkers suggested that, ALK
also involves in the MK complex with LRP and integrins that it is recruited to the receptor
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complex and plays roles in MK signaling [99]. After activation by MK, ALK phosphorylates
insulin receptor substrate-1, activates MAP kinase and PI3 kinase leading to transcriptional
activation of Nuclear Factor-KappaB (NF-κB) [98].

MK binds to nucleolin, a nuclear protein which is also located at the cell surface and functions
as a shuttle to the nucleus [85]. A component of the MK receptor LRP has major function as
endocytose and delivering its ligands to lysosomes for degradation or catabolism [100]. LRP
takes part in internalization of MK [101]. MK is not internalized in LRP-deficient cells, whereas
transfection of a LRP expression vector can restore MK internalization and subsequent nuclear
translocation, suggesting that LRP binds to MK and mediates nuclear targeting by MK. After
this internalization, nucleolin transfer cytoplasmic MK to the nucleus [101]. With respect to
nuclear targeting by MK, laminin-binding protein precursor (LBP) binds to MK and is
cotranslocated with MK into nuclei [102]. MK may use both nucleolin and LBP precursor as
shuttle proteins, revealing a novel role of LRP in intracellular signaling by its ligand, and the
importance of nucleolin and LBP in the process of nuclear target of MK. MK transferred to the
nucleolus is involved in the synthesis of ribosomal RNA [85]. Muramatsu and coworkers
observed, however didn’t publish that translation initiation factor (eIF3) can be an MK-binding
protein in the embryonic brain [31].

8. MK and GBM

In the central nervous system, MK is expressed by astrocytes in the fetal brain and its ex‐
pression is  developmentally regulated,  decreasing progressively to an undetectable level
as the fetus matures [103,104].  Previous reports showed that  increased levels of  MK ex‐
pression correlate with the progression of human astrocytomas, MK mRNA and protein
expression levels were higher in high-grade astrocytomas as anaplastic astrocytomas and
GBMs  than  in  low-grade  astrocytomas  (oligodendroglioma,  ependioma,  schwannoma,
meningioma  and  pituitary  adenoma)  [105].  These  reports  conclude  that  MK  correlates
with the poor prognosis of GBM.

One of the report showed that MK activates PI3-kinase and MAP kinase signal transduc‐
tion in U87MG human glioblastoma cells which express ALK protein [98]. In this report
it was shown that MK is also unable to stimulate Akt phosphorylation upon reduction of
ALK. In their report they revealed that in contrast with the diminished PTN and MK sig‐
nals  after  reduction of  ALK, Akt phosphorylation in the same cells  via a different tyro‐
sine  kinase  receptor,  the  platelet-derived  growth  factor  receptor  (PDGF-R),  was  not
altered by the reduction of ALK levels [107]. Interestingly, in the U87MG cells MAPK is
activated  constitutively  and  remains  unaffected  by  the  ALK reduction  or  by  MK addi‐
tion. In contrast to other report showed that no mRNA levels of ALK and RPTP β/ς lev‐
els, but high mRNA levels of MK and PTN were determined in another human GBM cell
lines named T98G [98, 107]. This condition is also same for human glioblastoma cell lines
named G55T2. U118 GBM cells possess high mRNA levels of ALK, low mRNA levels of
MK and RPTP β/ς but no mRNA levels of PTN are detected. All cell lines derived from
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human GBMs are different. Autophagy can both lead to cell death (autophagic cell death
or  apoptotic  cell  death)  and  cell  survival  (survival/recurrence/resistance).  This  means  it
becomes sometimes foe sometimes friend. Lorente and coworkers showed that activation
of the tyrosine kinase receptor ALK by its ligand MK interferes with the signaling mech‐
anism by which Δ9-tetrahydrocannabinol  (THC) which is  the main active component of
marijuana, promotes cancer cell death via autophagy stimulation [108].

GBM has a complex tumor structure consisting of accumulating tumors cells, abnormal vessel
and necrotic debris. The increasing tumor mass leads to increased capillary and venous
collapse [109]. The new formed vessels are structurally and functionally abnormal, and leaky,
leading to edema, and low oxygen tension [110]. High O2 tension degrades HIF-1α and
consequently promotes differentiation or apoptosis, HIF-1α maintains at lower O2 tension this
augments signal transduction pathways leading to promote self-renewal [111]. Hypoxia
induces MK expression through the binding of to a hypoxia responsive element in the MK
promoter.

Notch2 has been suggested to lead embryonic brain tumor growth, however Notch3 has been
implicated in choroid plexus tumors [112]. The frequency and the intensity of Notch2 expres‐
sion is higher than that of Notch1 in GBM and in medulloblastoma [113]. As a consequence of
local genomic amplifications at the Notch2 locus in both brain tumor types, this may also be
linked to the later persistence of Notch2 expression in postnatal mouse brain [114]. Previous
report showed that Notch1 regulates transcription of the epidermal growth factor receptor
gene EGFR, known to be overexpressed or amplified in GBM, through TP53 [115]. Reports
showed that there is a direct correlation between p53 and MK levels. Consistently, transcription
of Notch signaling mediator genes are significantly overexpressed in the molecular subset of
GBM with EGFR amplification [116]. Notch signaling pathway activates the major GBM
signalling pathway. Glioma subsets with impaired Notch signaling have slower progression.

The most frequent genetic alteration occurring in GBM is genomic amplification of EGFR [117].
Consistently, EGF is the major proliferation pathway in GBM, mediated by activation of the
RAS-RAF-MEK-ERK and the PI3K-AKT-mTOR cascades [58]. Interestingly, mTOR has
recently been shown to activate Notch signaling in lung and kidney tumor cells through
induction of the STAT3/p63/Jagged signaling cascade [118]. Lino and coworkers proposed this
cross-talk for GBM that this suggests potential creation of a positive feedback loop between
Notch and EGF signalling [119]. The most frequent GBM subset consists of the association of
EGFR amplification, homozygous deletions at the cyclin dependent kinase 2A (CDKN2A)
locus, and TP53 mutations [120]. Notch activates expression of EGFR via TP53 thus Notch is
expected to stimulate the main GBM proliferation pathway [116]. In addition, Notch also
transactivates the gene for the EGFR-related ERBB2 in a DTX1-dependent manner [121].
Notch-2 serves another receptor for MK and so cross-talk between MK and Notch-2 has been
also shown to be a mediator of chemotherapy resistance to neighboring cells in GBM [122].

When a subset of cells overexpress drug transport proteins, possess receptor changes for the
commitment of drug bounding and lack of ability to commit apoptosis, this situation leads to
tumors resistance during chemotherapy. Mirkin and coworkers investigate the cytoprotective
relationship between resistant and nonresistant cells in tumors which both accomplish to
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survive against drug cytotoxicity in human neuroblastoma and osteosarcoma [123]. They
hypothized that drug-resistant cells may secrete in their culture medium factors able to protect
sensitive cells from cytotoxicity of drug. They showed that expression of MK was only detected
in drug resistant cells and MK-enriched fractions exert a significant cytoprotective effect
against doxorubicin (DXR) in the wild-type drug-sensitive cells. In addition, they transfected
these cells with MK gene resulting in decreased response to DXR due to activation of AKT
pathway and supression of caspase pathway. They concluded that the existence of intercellular
cytoprotective signals such as the one mediated by MK, originating from cells with acquired
drug resistance to protect neighboring drug-sensitive cells and thus contribute to development
of resistance to chemotherapy. They didn’t show anything aout direct effect of MK on drug
efflux transporters.

Report by Hu and coworkers showed that the possible effects of MK gene on the chemother‐
apeutic drugs efflux. They concluded that there was powerful drug efflux ability in lympho‐
blastic leukemia cells with high MK gene expression [124]. They proposed that MK gene
expression regulates drug efflux upstream of the p-gp and the other transporter proteins in
this cell line. Previous reports showed that the expression of MRP-1 is higher than expression
of p-gp in T98G [125]. In our study, we investigated whether the combination of an antineo‐
plastic imatinib mesylate (IM) and an antitussive noscapine (Nos) with new identified
chemotherapeutic effects, can be an effective GBM treatment and the role of MK in this
treatment by using T98G cells [126]. The lowest MRP-1 levels, but highest MK levels were
detected in the combination group. The lowest MK levels were detected in IM group especially
at the 72nd hr (p<0.05) but IM takes second place at MRP-1 inhibition. The highest and the lowest
p-170 levels were detected at IM group (p<0.05) and Nos group (p<0.05), respectively. Thus,
we can conclude that drug efflux ability was not correlated with MK levels in this experiment.

Suppression of PTN and ALK expression has already been employed as means to treat GBM,
and promising results have been obtained in animal experiments [107].

9. MK and GBM stem cells

Previous publication showed that MK is expressed in mouse embryonic stem cells (mESCs),
human embryonic stem cells (hESCs) and mouse embryonic fibroblasts (MEFs) [127]. In their
study, MK promotes proliferation and self-renewal of both mESCs and hESCs. Another study
showed that the promoted growth of mESCs by MK is occured through inhibiting apoptosis
while accelerating the progression toward the S phase, and MK leads to enhancement of mESC
self-renewal through PI3K/Akt signaling pathway. They concluded that MK plays profound
roles in ESCs and MK/PTPzeta signaling pathway is a novel pathway in the signal network
maintaining pluripotency of ESCs. Their results gives more detailed information about the
pluripotency control of ESCs and the relationship between ESCs and cancers. Huang and
coworkers showed that a highly tumorigenic subpopulation of cancer cells named GBM stem
cells (GSCs) promotes therapeutic resistance [127]. In their study, they showed that GSCs
stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor
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growth. In addition, cancer stem cells have been shown to promote metastasis. MK was found
to be expressed in neural precursor cells, which consist of neural stem cells and the progenitor
cells which has been translated into a useful therapeutic strategy in the treatment of recurrent
or progressive GBMs [128].

10. MK and AQPs

Hypoxia is the intersection point for AQP and MK. Hypoxia increases all these protein levels
as I mentioned above: their levels are all increased under hypoxic conditions. HIF-1α binds
promoter of MK and AQP, then it increases its expression. In addition, HIF-1α serves as an
upstream regulator of cerebral glycerol concentrations and brain edema via a molecular
pathway involving AQP4 and AQP9 [70].

In our previous study published in Oncology Letter, we investigated the combination of
imatinib (IM) and roscovitine (ROSC) to overcome resistance and whether or not MK had an
effect on this combination in the treatment of GBM with other anti-apoptotic factors such as
AQP4 in T98G human GBM cells. These cells are expressing high MK and AQP4 levels. In this
study, all applications decreased the cell proliferation index and increased the apoptotic index,
but ROSC was the most efficient drug and the second most efficient drug was IM to decrease
cell proliferation and induce cell death. Combination therapy showed antagonist manner.
Notably, ROSC increased AQP-4 levels, however it decreased MK levels. The combination
group induced highest decrease in p170 levels (p<0.05), the second one was determined as the
IM group (p<0.05). All drug applications decreased MRP-1 levels (p<0.05), but the highest
decrease was determined in the combination group and the latter was IM (p<0.05). IM
decreased AQP-4 levels, however the combination group and ROSC increased AQP4 levels in
T98G GBM cells. This increase was higher in the combination group.

In our other study, we combined IM with lithium chloride (LiCl) in T98G cells [unpublished
data]. This shows combination also showed antagonist effect. MRP-1 levels were decreased by
LiCl, the combination group and IM, respectively. Firstly the combination group and secondly
IM decreased p170 levels efficiently, but LiCl didn’t make any change on these levels. Firstly
LiCl and secondly the combination group induced highest decrease in AQP4 levels for 72 h.
For MK levels, the decrease rate from highest to lowest were IM, LiCl and the combination
group [unpublished data].

In this studies, you can see that we only searched for correlation between MK and AQP4 and
there were no hypoxic conditions or no three dimensional cell culture model which hypoxic
center is formed without hypoxic conditions. This means that we might have different results
if 1) we used this model, 2) investigated other types of AQPs as AQP9, 3) use different GBM
cell lines for these novel combinations.
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