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Provisional chapter

Ant Algorithms for Adaptive Edge Detection

Aleksandar Jevtić and Bo Li

Additional information is available at the end of the chapter

1. Introduction

Edge detection is a pre-processing step in applications of computer and robot vision. It
transforms the input image to a binary image that indicates either the presence or the absence
of an edge. Therefore, the edge detectors represent a special group of search algorithms
with the objective of finding the pixels belonging to true edges. The search is performed
following certain criteria, as the edge pixels are found in regions of an image where the
distinct intensity changes or discontinuities occur (e.g. in color, gray-intensity level, texture,
etc.).

In applications domains such as robotics, vision-based sensors are widely used to provide
information about the environment. On mobile robots, images from sensors are processed
to detect and track the objects of interest and allow safe navigation. The purpose of edge
detection is to segment the image in order to extract the features and objects of interest. No
matter what method is applied, the objective remains the same, to change the representation
of the original image into something easier to analyze. Digital images may be obtained
under different lighting conditions and using different sensors. These may produce noise
and deteriorate the segmentation results.

In recent years, algorithms based on swarming behavior of animal colonies in nature
have been applied to edge detection. Swarm Intelligence algorithms use the bottom-up
approach; the patterns that appear at the system level are the result of local interactions
between its lower-level components [2]. The initial purpose of Swarm Intelligence algorithms
was to solve optimization problems [7], but recent studies show they can be a useful
image-processing tool. The emerging properties inherent to swarm intelligence make these
algorithms adaptive to the changing image patterns. This is a useful feature for real-time
image processing.

In this work, two edge-detection methods inspired by the foraging behavior of natural ant
colonies are presented. Ants use pheromone trails to mark the path to the food source. In
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digital images, pixels define the discrete space in which the artificial ants move and the edge
pixels represent the food. The edge detection operation is performed on a set of grayscale
images. The first proposed method extracts the edges from the original grayscale image. The
second method finds the missing broken-edge segments and can be used as a complementary
tool in order to improve the edge-detection results. Finally, the study on the adaptability of
the first edge detector is performed using a set of grayscale images as a dynamically changing
environment.

The chapter is organized as follows. Section 2 provides an overview of the state-of-the-art
edge detectors. Section 3 introduces the basic Ant System algorithm. In Section 4 the
proposed Ant System-based edge detector is described. The discussion of the simulation
results is also given in this section. Follows the description of the proposed broken-edge
linking algorithm and the simulation results in Section 5. The study on the adaptability of
the proposed Ant System-based edge detector is given in Section 6. Finally, in Section 7 the
conclusions are made.

2. Related work

Edges represent important contour features in the image since they are the boundaries where
distinct intensity changes or discontinuities occur. In practice, it is difficult to design an edge
detector capable of finding all the true edges in image. Edge detectors give ambiguous
information about the location of object boundaries for which they are usually subjectively
evaluated by the observers [30].

Several conventional edge detection methods have been widely cited in literature. The
Prewitt operator [25] extracts contour features by fitting a Least Squares Error (LSE) quadratic
surface over an image window and differentiate the fitted surface. The edge detectors
proposed in [31] and [3] use local gradient operators, sometimes with additional smoothing
for noise removal. The Laplacian operator [9] applies a second order differential operator to
find edge points based on the zero crossing properties of the processed edge points.

Although conventional edge detectors usually perform linear filtering operations, there are
various nonlinear methods proposed. In [23], authors proposed an edge detection method
based on the Parameterized Logarithmic Image Processing (PLIP) and a four directional
Sobel detector, achieving a higher level of independence from scene illumination. In [10], an
edge detector based on bilateral filtering was proposed, which achieves better performance
than single Gaussian filtering. In [21], authors proposed using Coordinate Logic Filters (CLF)
to extract the edges from images. CLF constitute a class of nonlinear digital filters that are
based on the execution of Coordinate Logic Operations (CLO). An alternative method for
calculating CLF using Coordinate Logic Transforms (CLT) was introduced in [4]; the authors
presented a new threshold-based technique for the detection of edges in grayscale images.

In recent years, Swarm Intelligence algorithms have shown its full potential in terms of
flexibility and autonomy, especially when it comes to design and control of complex systems
that consist of a large number of agents. Metaheuristics such as Ant Colony Optimization
(ACO) [6], Particle Swarm Optimization (PSO) [17] and Bees Algorithm (BA) [24] include sets
of algorithms that demonstrate emergent behavior as a result of local interactions between
the members of the swarm. They tend to be decentralized, self-organized, autonomous and
adaptive to the changes in the environment. The adaptability and the ability to learn are very
important for systems that are designed to be autonomous.
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ACO is a metaheuristic that exploits the self-organizing nature of real ant colonies and their
foraging behavior to solve discrete optimization problems. The learning ability, in natural
and artificial ant colonies, consists in storing information about the environment by laying
pheromone on the path that leads to a food source. The emerging pheromone structures
serve as the swarm’s external memory that can be used by any of its members. Although a
single ant can only detect the local environment, the designer of a swarm-based system can
observe the emergent global patterns that are a result of the cooperative behavior.

ACO algorithms have been applied to image processing. Some of the proposed applications
include image retrieval [28] and image segmentation [11, 14, 18]. Several ACO-based edge
detection methods have also been proposed in literature. Among others, these include
modifications to Ant System (AS) [22] or Ant Colony System (ACS) algorithms [1, 8, 32] for
a digital image habitat, combined with local gray-intensity comparison for different pixel’s
neighborhood matrices. Some studies showed that an improved detection can be obtained
using a hybrid approach with an artificial neural network classifier [26].

In order to apply artificial ant colonies to edge detection one needs to set the rules for local
interactions between the ants and define the "food" that ants will search for. For the edge
detection problem, the food are the edge pixels in digital images.

3. Ant System algorithm

Artificial ants, unlike their biological counterparts, move through a discrete environment
defined with nodes, and they have memory. When traversing from one node to another, ants
leave pheromone trails on the edges connecting the nodes. The pheromone trails attract other
ants that lay more pheromone, which consequently leads to pheromone trail accumulation.
Negative feedback is applied through pheromone evaporation that, importantly, restrains the
ants from taking the same route and allows continuous search for better solutions.

Ant System (AS) is the first ACO algorithm proposed in literature and it was initially applied
to the Travelling Salesman Problem (TSP) [5]. A general definition of the TSP is the following.
For a given set of cities with known distances between them, the goal is to find the shortest
tour that allows each city to be visited once and only once. In more formal terms, the goal is
to find the Hamiltonian tour of minimal length on a fully connected graph.

AS consists of a colony of artificial ants that move between the nodes (cities) in search for the
minimal route. The probability of displacing the kth ant from node i to node j is given by:

pk
ij =











(τij)
α(ηij)

β

∑h/∈tabuk , (τih)α(ηih)β if j/∈tabuk

0 otherwise

(1)

where τij and ηij are the intensity of the pheromone trail on edge (i, j) and the visibility of the
node j from node i, respectively, and α and β are control parameters (α, β > 0; α, β ∈ ℜ). The
tabuk list contains nodes that have already been visited by the kth ant. The definition of the
node’s visibility is application-related, and for the TSP it is set to be inversely proportional
to the node’s Euclidean distance:

ηij =
1

dij
(2)
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It can be concluded from the equations (1) and (2) that the ants favor the edges that are
shorter and contain a higher concentration of pheromone.

AS is performed in iterations. At the end of each iteration, pheromone values are updated
by all the ants that have built a solution in the iteration itself. The pheromone update rule is
described with the following equation:

τij(new) = (1 − ρ)τij(old) +
m

∑
k=1

∆τ
k
ij (3)

where ρ is the pheromone evaporation rate (0 < ρ < 1, ρ ∈ ℜ), m is the number of ants in
the colony, and ∆τk

ij is the amount of pheromone laid on the edge (i, j) by the kth ant, and is

given by:

∆τk
ij =







Q
Lk

if edge (i, j) is traversed by the kth ant

0 otherwise

(4)

where Lk is the length of the tour found by the kth ant, and Q is a scaling constant (Q > 0,
Q ∈ ℜ).

The algorithm stops when the satisfactory solution is found or when the maximum number
of iterations is reached.

4. Ant System-based edge detector

In this section, the AS-based edge detector proposed by [15] is described. The method
generates a set of images from the original grayscale image using a nonlinear image
enhancement technique called Multiscale Adaptive Gain [19], and then the modified AS
algorithm is applied to detect the edges on each of the extracted images. The resulting set
of pheromone-trail matrices is summed to produce the output image. Threshold and edge
thinning, which are optional steps, are finally applied to obtain a binary edge image. The
block diagram of the proposed method is shown in Figure 1.

4.1. Multiscale Adaptive Gain

Image enhancement techniques emphasize important features in the image while reducing
the noise. Multiscale Adaptive Gain is applied to obtain contrast enhancement by
suppressing pixels with the grey intensity values of very small amplitude and enhancing
only those pixels with values larger than a certain threshold within each level of the transform
space. The nonlinear operation is described with the following equation:

G(I) = A[sigm(k(I − B))− sigm(−k(I + B))] (5)
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where

A =
1

sigm(k(1 − B))− sigm(−k(1 + B))
(6)

where I = I(i, j) is the grey value of the pixel at (i, j) of the input image and sigm(x) is
defined as

sigm(x) =
1

1 + e−x
(7)

and B and k control the threshold and rate of enhancement, respectively. (0 < B < 1, B ∈ ℜ;
k ∈ ℵ). The transformation function (5) relative to the original image pixel values is shown in
Figure 2. It can be observed that G(I) is continuous and monotonically increasing; therefore,
the enhancement will not introduce new discontinuities into the reconstructed image.

4.2. Ant System algorithm for edge detection

The generic Ant System algorithm described in Section 3 was used as a base for the proposed
edge detector. In digital images, discrete environment in which the ants move is defined by
pixels, i.e. their gray-intensity values, 0 ≤ I(i, j) ≤ Imax, i = 1,2,. . . ,N; j = 1,2,. . . ,M. Possible
ant’s moves to the neighboring pixels are shown in Figure 3.

Input image

Multiscale adaptive gain

AS AS AS AS

Threshold

Thinning

Binary edge image

I1 I2
IN-1 IN

. . .

. . .

. . .

O1
O2 ON-1 ON

Figure 1. Block diagram of the proposed edge detection method
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Figure 2. Transformation function G(I) in respect to the original image pixel values: (a) B = 0.45; k = 10, 20 and 40; (b) B =
0.2, 0.45 and 0.7; k = 20.

Unlike the cities’ visibility in the TSP, the visibility of the pixel at (i, j) is defined as follows:

ηij =
1

Imax
· max









|I(i − 1, j − 1)− I(i + 1, j + 1)|,
|I(i − 1, j + 1)− I(i + 1, j − 1)|,
|I(i, j − 1)− I(i, j + 1)|,
|I(i − 1, j)− I(i + 1, j)|









(8)

where Imax is the maximum gray-intensity value in the image (0 ≤ Imax ≤ 255). For the
pixels in regions of distinct gray-intensity changes the higher visibility values are obtained,
which makes those pixels more attractive to ants.

The AS algorithm is an iterative process which includes the following steps:

1. Initialization: the number of ants proportional to
√

N · M is randomly distributed on the
pixels in the image. Only one ant is allowed to reside on a pixel within the same iteration.
Initial non-zero pheromone trail value, τ0, is assigned to each pixel, otherwise the ants
would never start the search.

I I I

I I

I I I

i-1,j-1 i-1,j i-1,j+1

i,j-1

i+1,j-1 i+1,j

i,j+1

i+1,j+1

Figure 3. Proposed pixel transition model
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2. Pixel transition rule: Unlike their biological counterparts, artificial ants have memory.
Tabuk represents the list of pixels that the kth ant has already visited. If ant is found
surrounded by the pixels that are either in the tabu list or occupied by other ants, it is
randomly displaced to another unoccupied pixel that is not in the tabu list. Otherwise,
the displacement probability of the kth ant to a neighboring pixel (i, j) is given by:

pk
(i,j)

=











(τij)
α(ηij)

β

∑u ∑v (τuv)α(ηuv)β (i,j) and (u,v) are allowed nodes

0 otherwise

(9)

where τij and ηij are the intensity of the pheromone trail and the visibility of the pixel at
(i, j), respectively, and α and β are control parameters (α, β > 0; α, β ∈ ℜ).

3. Pheromone update rule: Negative feedback is implemented through pheromone
evaporation according to:

τij(new) = (1 − ρ)τij(old) + ∆τij (10)

where

∆τij =
m

∑
k=1

∆τk
ij (11)

and

∆τk
ij =







ηij if ηij ≥ T and kth ant displaces to pixel (i,j)

0 otherwise.
(12)

T is a threshold value which prevents ants from staying on the background pixels hence
enforcing the search for the true edges. The existence of the pheromone evaporation rate,
ρ, prevents the algorithm stagnation. Pheromone trail evaporates exponentially from the
repeatedly not-visited pixels.

4. Stopping criterion: The steps 2 and 3 are repeated in a loop and algorithm stops executing
when the maximum number of iterations is reached.

4.3. Simulation results and discussion

The proposed method was tested on four different grayscale images of 256 × 256 pixels
resolution: "Cameraman", "Lena", "House" and "Peppers". As seen from the block diagram
in Figure 1, first the Multiscale Adaptive Gain defined in (5) is applied to the input image:
0 ≤ I(i, j) ≤ Imax, i = 1, 2, . . . , N; j = 1, 2, . . . , M. (N = M = 256.) The values of B and k were
varied to obtain a set of nine enhanced images: B = {0.2, 0.45, 0.7}; k = {10, 20, 40}.
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(a) (b) (c) (d)

Figure 4. Effects of the transformation function G(I); "Cameraman", 256 × 256 pixels: (a) original image; (b) B = 0.2, k = 10;

(c) B = 0.45, k = 20; (d) B = 0.7, k = 40.

The effects of the transformation function on the image "Cameraman" are shown in Figure 4.
It can be observed that, by changing the transformation function’s parameters, some features
in the image become highlighted while others get attenuated.

Afterwards, the AS-based edge detector is applied to each of the nine enhanced images. The
algorithm’s parameters are set as proposed in [22]: τ0 = 0.01, α = 1, β = 10, ρ = 0.05 and T =

0.08. The number of ants equal to
√

N · M = 256 was randomly distributed over the pixels in
the image with the condition that no two ants were placed on the same pixel. The memory
(tabu list) length for each ant was set to 10. The algorithm was stopped after 100 iterations
generating a pheromone-trail matrix of the same resolution as the original image. After
each of the nine enhanced images was processed, the sum of the pheromone-trail matrices
produced the final pheromone-trail image (Figure 5(e)–(h)). The parameters values such as
the number of ants, the memory length, and the number of iterations were obtained as a
result of trial and error and their further optimization will be a part of future work.

The effectiveness of the proposed method was compared with the ant-based edge detectors
proposed by Tian et al. [32] and Nezamabadi-pour et al. [22], and the results are
shown in Figure 6. To provide a fair comparison, the threshold and morphological
edge-thinning operations are neglected. The simulation results show that the proposed
method outperforms the other two methods in terms of visual quality of the extracted edge
information and sensitivity to weaker edges. The qualitative results of the edge detector
proposed in [8] were presented after applying the thinning step, hence a fair comparison
with the here-presented results could not be made. It is worth mentioning that the number
of iterations used in experiments in [8] was much higher (1000 iterations) than required by
our algorithm. The performance evaluation is given in Subsection 4.3.1.

The main contribution of the proposed edge-detection method is the preprocessing step and
the parallel execution of the Ant System-based edge detector on a set of images that finally
produce the output edge image. The execution time of the proposed method is high for
real-time image processing, which would require additional algorithm’s code optimization
in a different programming environment. The presented experiments were performed in
Matlab software that offers an easy high-level implementation but is ineffective in terms of
speed.

Search Algorithms8



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Qualitative results of the proposed method, 256 × 256 pixel images: (a) "Cameraman" original image; (b) "House"
original image; (c) "Lena" original image; (d) "Peppers" original image; (e) "Cameraman" pheromone trail image; (f) "House"

pheromone trail image; (g) "Lena" pheromone trail image; (h) "Peppers" pheromone trail image.

4.3.1. Performance evaluation

In the complexity-performance trade-off, it was found that varying the values of algorithm’s
parameters can affect its performance. A set of experiments was performed on a synthetic
test image (Figure 7) to show how the number of ants and iterations will be related to the
number of detected edge points. The results of this analysis are shown in Figure 8. The

number of ants is proportional to the square root of the image resolution n =

√
N · M. The

number of edge points was 780.

It can be observed that when the number of ants was increased, the required number of
iterations was reduced to achieve a similar performance. Figure 8 shows that the algorithm
needs more than 130 iterations to reach good performance when the number of ants was

(a) (b) (c) (d)

Figure 6. Comparative results with other ant-based edge detectors, "Lena" 256 × 256 pixels: (a) original image; (b) Tian et al.;
(c) Nezamabadi-pour et al.; (d) the proposed method.
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(a) (b)

Figure 7. Test image, 256 × 256 pixels: (a) original image; (b) ground-truth edge image.

set to 1 · n. However, the results not presented here showed that the algorithm was able to
detect the maximal number of edge pixels after 400 iterations. Future work may include the
optimization of parameters with respect to the computation time.

5. Ant System-based broken-edge linking algorithm

Conventional image edge detection always results in missing edge segments. Broken-edge
linking is an improvement technique that is complementary to edge detection. It is used to
connect the broken edges in order to form the closed contours that separate the regions of
interest. The detection of the missing edge segments is a challenging task. A missing segment
is sought between two endpoints where the edge is broken. The noise that is present in the
original image may limit the performance of edge-linking algorithms.

Many broken-edge linking techniques have been proposed to compensate the edges that
are not fully connected by the conventional edge detectors. [16] applied morphological
image enhancement techniques to detect and preserve thin-edge features in the low contrast
regions of an image. [33] applied Sequential Edge-Linking (SEL) algorithm that provided
full connectivity of the edges but for a rather simplified two-region edge-detection problem.
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Figure 8. Extracted features vs. number of iterations for different ant-colony size.
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Authors proposed this method to extract the contour of a breast as the region of interest
in mammogram. [29] applied adaptive structuring elements to dilate the broken edges
along their slope directions. [20] proposed improvement to the traditional Ant Colony
Optimization (ACO) based method for broken-edge linking to reduce the computational
cost.

In this section, the Ant System-based broken-edge linking algorithm proposed by [13] is
presented. As inputs are used: the Sobel edge image and the original grayscale image. The
Sobel edge image is a binary image obtained after applying the Sobel edge operator [31] to
the original grayscale image. From this image the endpoints are extracted that will be used
afterwards as the starting pixels for the ants’ routes.

The original image is used to produce the grayscale visibility matrix, which for the pixel at
(i, j) is calculated as follows:

ξij =
1

Imax
· max









|I(i − 1, j − 1)− I(i + 1, j + 1)|,
|I(i − 1, j + 1)− I(i + 1, j − 1)|,
|I(i, j − 1)− I(i, j + 1)|,
|I(i − 1, j)− I(i + 1, j)|









(13)

where Imax is the maximum gray value in the image, so ξij is normalized (0 ≤ ξij ≤ 1).
For the pixels in regions of distinct gray intensity changes the higher values are obtained.
The matrix of grayscale visibility will be the initial pheromone trail matrix. It is also used
to calculate the fitness value of a route chosen by ant. The resulting image will contain the
routes (connecting edges) with the highest fitness values found as optimal routes between
the endpoints. In order to discard non-optimal routes, a fitness threshold is applied. Finally,
the output image is the improved image that is a sum of the Sobel edge image and the
connecting edges. The block diagram of the proposed method is shown in Figure 9.

The proposed AS-based algorithm for broken-edge linking includes the following steps:

1. Initialization: The number of ants equals the number of endpoints found in the Sobel edge
image, and each endpoint will be a starting pixel of a different ant. Initial pheromone trail
for each pixel is set to its grayscale visibility value.

2. Pixel transition rule: Possible ant’s transitions to the neighboring pixels are defined by
8-connection pixel transition model shown in Figure 3. The admissible neighboring pixels
for the kth ant to move to are the ones not in the tabuk list. The probability for the kth ant
to move from pixel (r, s) to pixel (i, j) is calculated as follows:

pk
(r,s)(i,j)

=



























(τij)
α(ηij)

β

∑u ∑v (τuv)α(ηuv)β if(i, j) and (u, v) /∈ tabuk

r − 1 ≤ i, u ≤ r + 1,
s − 1 ≤ j, v ≤ s + 1

0 otherwise

(14)
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Input grayscale image

Ant System edge linking

Edge image

Compensated edges

Improved image

Grayscale visibility matrix

Figure 9. Block diagram of the proposed edge linking method

where τij and ηij are the intensity of the pheromone trail and the visibility of the pixel at
(i, j), respectively, and α and β are control parameters (α, β > 0; α, β ∈ ℜ). The visibility
of a pixel should not be misinterpreted as its grayscale visibility, and for the pixel at (i, j)
it is defined as:

ηij =
1

dij
(15)

where dij is the Euclidean distance of the pixel at (i, j) from the closest endpoint.

3. Pheromone update rule: Negative feedback is demonstrated through the pheromone trails
evaporation according to:

τij(new) = (1 − ρ)τij(old) + ∆τij (16)

where ρ is the pheromone evaporation rate (0 < ρ < 1; ρ ∈ ℜ), and

∆τij =
m

∑
k=1

∆τk
ij (17)

where
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(a) (b) (c) (d)

Figure 10. Qualitative results of the proposed edge-linking method, "Peppers" 256 × 256 pixels: (a) original image; (b) Sobel
edge image; (c) resulting image of the proposed method; (d) improved edge image.

∆τk
ij =

{

fk
Q if kth ant displaces to pixel (i, j)

0 otherwise.

(18)

The fitness value of a pixel, fk, is equal to the fitness value of the route it belongs to. The
proposed fitness function is given by:

fk =
ξ̄

σξ · Np
(19)

where ξ̄ and σξ are the mean value and the standard deviation of the grayscale visibility
of the pixels in the route, and Np is the total number of pixels belonging to that route.
Pheromone evaporation prevents algorithm stagnation. From the repeatedly not-visited
pixels the pheromone trail evaporates exponentially.

4. Stopping criterion: The steps 2 and 3 are repeated in a loop and algorithm stops executing
when the maximum number of iterations is reached. An iteration ends when all the ants
finish the search for the endpoints, by either finding one or getting stuck and being unable
to advance to any adjacent pixel.

5.1. Simulation results and discussion

The simulation results of the proposed algorithm applied to the "Peppers" image of 256× 256
pixels are shown in Figure 10. The algorithm detects the missing edge segments (Figure 10(c))
as the optimal routes consisted of the edge pixels. The initial pheromone trail for each pixel
was set to its grayscale visibility value. In this manner, the pixels belonging to true edges have
a higher probability of being chosen by ants on their initial routes, which shortens the time
needed to find a satisfactory solution, or improves the solution found for a fixed number of
iterations. The results were obtained after 100 iterations; this number was chosen on trial
and error basis.

Designated values α = 10 and β = 1 were determined on trial and error basis. A large α/β
ratio forces the ants to choose the strongest edges. The existence of the control parameter
β is important since it inclines the ant’s route towards the closest endpoint. Experimental
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results showed that, by setting the β value to zero, it took more steps for the ants to find
the endpoints which made the computation time longer. In some cases, ants were not even
able to find the satisfactory solution for a reasonable number of steps, or they just got stuck
between already visited pixels.

The effect of the α/β parameter ratio on the resulting image is best presented in Figure 11. It
can be observed that the endpoint in the upper-left corner of the ROI image (Figure 11(c)–(e))
was not connected to any of the closer endpoints, and that the ants successfully found the
more remote endpoint which was the correct one. The existence of the β parameter keeps
the ants away from the low-contrast regions, such as the region of low gray-intensity pixels
between two closer endpoints.

The ant’s memory, i.e. the length of the tabu list, was set to 10. Larger ant’s memory
values would improve the quality of the resulting binary image but would as well lead to the
prolonged computation time. The designated value was large enough to keep the ants from
being stuck in small pixel circles.

The fitness value of a route is dependent on the mean value and the standard deviation of
the grayscale visibility of the pixels in the route, and the total number of pixels belonging to
that route, as defined in (19). The routes that have higher grayscale visibility mean value
are the stronger edges as the gray level contrast of their adjacent pixels is higher. The
smaller standard deviation of the grayscale visibility of the pixels in the route results in a
higher fitness value. By this, more importance is given to the routes consisted of pixels
belonging to the same edge, thus avoiding the ants crossing between the edges and leaving
pheromone trails on non-edge pixels. Finally, the shorter routes are more favorable as a
solution, therefore by keeping the total number of pixels in the route smaller, the higher
fitness values are obtained.

The number of iterations was set to 100, which gave satisfactory results within an acceptable
computational time of execution. The lower resolution images, for example 128 × 128 pixels,
allowed a larger number of iterations to be used, since a smaller number of ants was
processed for a smaller number of relatively closer endpoints. The execution time of the
algorithm was not optimal, and it was measured in minutes. One of the reasons is that
the algorithm code was not written in an optimal manner since Matlab as a programming
environment is not intended for a fast code execution, but rather for an easy high-level
algorithm implementation.

In order to test the proposed method on different input images, simulations were performed
on "House", "Lena" and "Cameraman" images of size 256 × 256 pixels. The results confirm
the effectiveness of the method, as shown in Figure 12. It can be noticed that the found
edge segments are often not unidirectional, which indicates that the fitness function was
adequately defined and the ants found the true edges. The main contribution of the proposed
broken-edge-linking method is in using a bottom-up approach that avoids using a global
threshold to find the missing segments.

6. Adaptability of the proposed edge detector

The adaptability and the ability to learn are important features of autonomous systems.
In ant colonies, natural and artificial, learning consists in changing the environment by
laying the pheromone trails while searching for food. The structures that emerge from the
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(c) (d) (e)

(f)

Figure 11. Effect of the control parameters on correct connection of the endpoints: "Peppers" 256 × 256 image: (a) original
image with marked region of interest (ROI); (b) Sobel edge image with marked ROI; (c) enlarged ROI: Sobel edge image; (d)

enlarged ROI: pheromone trails image; (e) enlarged ROI: improved edge image; (f) improved edge image with marked ROI.

accumulated pheromone represent the stored information about the environment that can be
used by any member of the swarm. Although a single ant has no knowledge of the global
pattern, the designer of such a swarm-based system is a privileged observer of the emergence
that comes as a result of the cooperative behavior.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. Qualitative results of the proposed method, 256 × 256-pixel images: (a) "House" original image; (b) "House": Sobel
edge image; (c) "House": result of the proposed method; (d) "House": improved edge image; (e) "Lena": original image; (f)

"Lena": Sobel edge image; (g) "Lena": result of the proposed method; (h) "Lena": improved edge image; (i) "Cameraman":

original image; (j) "Cameraman": Sobel edge image; (k) "Cameraman": result of the proposed method; (l) "Cameraman":

improved edge image.

The resulting mass behavior in swarms is hard to predict. Although the adaptability can
be demonstrated on a variety of applications such as in image segmentation [27], a general
theoretical framework on design and control of swarms does not exist. Artificial swarms
use bottom-up approach, meaning that the designer of such distributed multi-agent system
needs to set the rules for local interactions between the agents themselves and, if required,
between the agents and the environment. The indirect communication via environment is
referred to as stigmergy, and in case of ant colonies, it consists in pheromone-laying and
pheromone-following. For each specific application, the food that ants search for must also
be defined.

This section presents a study on the adaptability of the algorithm proposed in Section 4
[12]. Experiments with two different sets of grayscale images were performed. In the
first experimental setup, a set of three different grayscale images was used to test the
adaptability of the proposed AS-based edge detector. The images were obtained by applying
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(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 13. Adaptive edge detection on enhanced "Cameraman" images, 256 × 256 pixels: (a) enhanced image 1; (b) t=5

iterations; (c) t=10 iterations; (d) t=50 iterations; (e) t=100 iterations; (f) enhanced image 2; (g) t=105 iterations; (h) t=110

iterations; (i) t=150 iterations; (j) t=200 iterations; (k) enhanced image 3; (l) t=205 iterations; (m) t=210 iterations; (n) t=250

iterations; (o) t=300 iterations.

a Multiscale Adaptive Gain contrast enhancement to the 256× 256 pixel "Cameraman" image
(see Figure 4). Every Ni = 100 iterations one image from the set was replaced by another.
The response of the artificial ant colony to the change in the environment was a different
distribution of pheromone trails. The number of 100 iterations per image was enough for
the new pheromone structure to be established. The algorithm parameters used in the
experiments were determined empirically: τ0 = 0.01, ρ = 0.5, α = 1, β = 10, T = 0.08
and the tabu list length was set to 10. Parameters could be optimized for a better edge
detection, but it is of no importance for this study. It would not affect the adaptability of
the algorithm since every image change would result in a change of the pheromone trail
structure. Simulation results are shown in Figure 13.

The results show that the Ant System-based edge detector was capable of detecting the
changes that occurred as a result of replacing one image from the set with another. The
experiments were repeated for a set of four widely used test grayscale images: "Cameraman",
"Lena", "House", and "Peppers". The images were used as inputs to the algorithm in that
order. Every Ni = 100 iterations one image was replaced by the next one from the set.
Again, the change in the environment produced by the change of input image resulted in
different pheromone patterns, which is shown in Figure 14.

It can be observed that the new pheromone trails accumulated on the pixels belonging to the
newly-emerged edges, while the pheromone trails where the edges were no longer present
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 14. Adaptive edge detection on four test images, 256 × 256 pixels: (a) "Cameraman"; (b) t=5 iterations; (c) t=10

iterations; (d) t=50 iterations; (e) t=100 iterations; (f) "House"; (g) t=105 iterations; (h) t=110 iterations; (i) t=150 iterations; (j)

t=200 iterations; (k) "Peppers"; (l) t=205 iterations; (m) t=210 iterations; (n) t=250 iterations; (o) t=300 iterations; (p) "Lena";

(q) t=305 iterations; (r) t=310 iterations; (s) t=350 iterations; (t) t=400 iterations.

gradually disappeared. In order to obtain a quicker transition between different pheromone
distributions, the evaporation rate ρ was set to a higher value than for the edge-detection
simulations (ρ = 0.5). This resulted in disappearing of the "weakest" edges and introduced
slightly poorer overall performance of the proposed edge detector. The experimental results
show that the algorithm is able to adapt to a dynamically changing environment resulting in
different pheromone trail patterns. Even though the images were used in the experiments,
the study could be extended to any other type of digital habitat which can lead to a new set
of applications for the adaptive artificial ant colonies.

One of the possible applications for the adaptive edge detector could be real-time image
processing where online image preprocessing could be used to obtain better image
segmentation. By applying various image enhancement techniques, such as contrast
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enhancement, certain features in the image could be amplified while others could be reduced
or even removed. This would enable easier detection of the regions of interest in the image.

7. Conclusions

Two edge-detection methods inspired by the ants foraging behavior were proposed. The first
method uses a grayscale image as input and as output produces a pheromone image marking
the location of the edge pixels. The second method finds the missing edge segments after the
edge detection was applied and can be used as a complementary tool to any edge detector.
In our work, the Sobel edge detector was used to produce the binary edge image.

The first method combines a nonlinear contrast enhancement technique, Multiscale Adaptive
Gain, and the Ant System algorithm inspired by the ants foraging behavior. The set of
enhanced images was obtained after applying the Multiscale Adaptive Gain and the Ant
System algorithm generated pheromone patterns where the true edges were found. The
experiments showed that our method outperformed other ACO-based edge detectors in
terms of visual quality of the extracted edge information and sensitivity in finding weaker
edges. The quantitative analysis showed that the performance could further be optimized by
varying the number of ants and iterations.

The adaptability of the proposed edge detector was demonstrated in a dynamically changing
environment made of a set of digital grayscale images. The algorithm responded to the
changes by generating pheromone patterns according to the distribution of the newly-created
edges. It also proved to be robust since even an ant colony of a smaller size could detect the
edges, even though the number of detected edge pixels was reduced.

The second proposed method uses the ant colony search for the edge segments that connect
pairs of endpoints. A novel fitness function was proposed to evaluate the found segments. It
depends on two variables: the pixels grayscale visibility and the edge-segment length. The
fitness function produces higher values for the segments that consisted of smaller number of
pixels, which had grayscale visibility of a higher mean value and a lower variance. Another
novelty was to apply the grayscale visibility matrix as the initial pheromone trails matrix so
that the pixels belonging to true edges have a higher probability of being chosen by ants
on their initial routes, which reduced the computational load. The proposed broken-edge
linking method was tested as a complementary tool for the Sobel edge detector, and it
significantly improved the output edge image.

Future research will include optimization and automatic detection of the proposed methods’
parameters for an improved edge detection results. Until now these parameters were
experimentally obtained. An exhaustive analysis of the edge detection method’s adaptability
will be performed in order to apply it to other digital habitats. Also, the methods
optimization for faster execution would make them suitable for real-time image processing.
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8. Acronyms

❆❈❖ Ant Colony Optimization

❆❈❙ Ant Colony System

❆❙ Ant System

❇❆ Bees Algorithm

❈▲❋ Coordinate Logic Filters

❈▲❖ Coordinate Logic Operations

❈▲❚ Coordinate Logic Transforms

▲❙❊ Least Square Error

P▲■P Parameterized Logarithmic Image Processing

P❙❖ Particle Swarm Optimization

❘❖■ Region Of Interest

❙❊▲ Sequential Edge-Linking

❚❙P Traveling Salesman Problem
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