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1. Introduction

Various methods for the analysis of wave propagation in the curved waveguides have been
studied in the literature. Two interesting methods of investigation of propagation along
the curved waveguides are based on the ray model and the mode model. A review of the
hollow waveguide technology [1-2] and a review of IR transmitting, hollow waveguides,
fibers and integrated optics [3] were published. The first theoretical analysis of the problem
of hollow cylindrical bent waveguides was published by Marcatili and Schmeltzer [4], where
the theory considers the bending as a small disturbance and uses cylindrical coordinates to
solve Maxwell equations. They derive the mode equations of the disturbed waveguide using
the ratio of the inner radius r to the curvature radius R as a small parameter (r/R ≪ 1). Their
theory predicts that the bending has little influence on the attenuation of a hollow metallic
waveguide. Marhic [5] proposed a mode-coupling analysis of the bending losses of circular
metallic waveguide in the IR range for large bending radii. In the circular guide it is found that
the preferred TE01 mode can couple very effectively to the lossier TM11 mode when the guide

undergoes a circular bend. For circular waveguides, the microwave approximation has been
used for the index of refraction and the straight guide losses, and the results indicate very
poor bending properties due to the near degeneracy of the TE01 and TM11 modes, thereby
offering an explanation for the high losses observed in practice.

Miyagi et al. [6] suggested an improved solution, which provided agreement with the
experimental results, but only for r/R ≪ 1. A different approach [5,7] treats the bending
as a perturbation that couples the modes of a straight waveguide. That theory explains
the large difference between the metallic and metallic-dielectric bent waveguide attenuation.
The reason for this difference is that in metallic waveguides the coupling between the TE
and TM modes caused by the bending mixes modes with very low attenuation and modes
with very high attenuation, whereas in metallic-dielectric waveguides, both the TE and TM
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modes have low attenuation. Hollow waveguides with both metallic and dielectric internal
layers were proposed to reduce the transmission losses. Hollow-core waveguides have two
possibilities. The inner core materials have relative refractive indices greater than one (namely,
leaky waveguides) or the inner wall material has a relative refractive index of less than one.
A hollow waveguide can be made, in principle, from any flexible or rigid tube (plastic, glass,
metal, etc.) if its inner hollow surface (the core) is covered by a metallic layer and a dielectric
overlayer. This layer structure enables us to transmit both the TE and TM polarization with
low attenuation [5,7].

A method for the electromagnetic (EM) analysis of bent waveguides [8] is based on the

expansion of the bend mode in modes of the straight waveguides, including the modes

under the cutoff. A different approach to calculate the bending losses in curved dielectric

waveguides [9] is based on the well-known conformal transformation of the index profile

and on vectorial eigenmode expansion combined with perfectly matched layer boundary

conditions to accurately model radiation losses. An improved ray model for simulating

the transmission of laser radiation through a metallic or metallic dielectric multibent hollow

cylindrical waveguide was proposed [10-11]. It was shown theoretically and proved

experimentally that the transmission of CO2 laser radiation is possible even through bent

waveguide.

The propagation of EM waves in a loss-free inhomogeneous hollow conducting waveguide

with a circular cross section and uniform plane curvature of the longitudinal axis was

considered [12]. For small curvature the field equations can be solved by means of an

analytical approximation method. In this approximation the curvature of the axis of the

waveguide was considered as a disturbance of the straight circular cylinder, and the perturbed

torus field was expanded in eigenfunctions of the unperturbed problem. An extensive survey

of the related literature can be found especially in the book on EM waves and curved

structures [13]. The radiation from curved open structures is mainly considered by using

a perturbation approach, that is by treating the curvature as a small perturbation of the

straight configuration. The perturbative approach is not entirely suitable for the analysis

of relatively sharp bends, such as those required in integrated optics and especially short

millimeter waves. The models based on the perturbation theory consider the bending as a

perturbation (r/R ≪ 1), and solve problems only for a large radius of curvature.

Several methods of investigation of propagation were developed for study of empty curved

waveguide and bends [14-17]. The results of precise numerical computations and extensive

analytical investigation of the angular propagation constants were presented for various

electromagnetic modes which may exit in waveguide bends of rectangular cross section [14].

A new equivalent circuit for circular E-plane bends, suitable for any curvature radius

and rectangular waveguide type was presented in Ref. [15]. An accurate and efficient

method of moments solution together with a mode-matching technique for the analysis

of curved bends in a general parallel-plate waveguide was described in the case of a

rectangular waveguides [16]. A rigorous differential method describing the propagation of

an electromagnetic wave in a bent waveguide was presented in Ref. [17].

Several methods of propagation along the toroidal and helical waveguides were developed,

based on Maxwell’s equations. The method for the analysis of EM wave propagation along
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the toroidal waveguide [18] has been derived with arbitrary profiles, and with rectangular

metal tubes. An improved approach has been derived for the propagation of EM field along a

toroidal dielectric waveguide with a circular cross-section [19]. The meaning of the improved

approach is that the method employs helical coordinates (and not cylindrical coordinate, such

as in the methods that considered the bending as a perturbation). Thus the Laplacian of

the wave equations is based on the metric coefficients in the case of the helical waveguide

with a circular cross section. The method for the propagation of EM field along a helical

dielectric waveguide with a circular cross section [20] has been proposed. The method for

the propagation of EM field along a helical dielectric waveguide with a rectangular cross

section has been proposed [21]. It is very interesting to compare between the mode model

methods for wave propagation in the curved waveguide with a rectangular cross section and

with a circular cross section. The methods [18-19] have been derived for one bending of the

toroidal waveguide (approximately a plane curve) in the case of small values of step angle of

the helix. The methods [20-21] have been derived for one bending of the helical waveguide

(a space curved waveguide) for an arbitrary value of the step’s angle of the helix. These

methods were generalized from a toroidal dielectric waveguide (approximately a plane curve)

with one bending to a helical waveguide (a space curved waveguide for an arbitrary value of

the step’s angle of the helix) with one bending. The two above methods employ toroidal or

helical coordinates (and not cylindrical coordinates, such as in the methods that considered

the bending as a perturbation (r/R ≪ 1)), and the calculations are based on using Laplace and

Fourier transforms, and the output fields are computed by the inverse Laplace and Fourier

transforms. Laplace transform on the differential wave equations is needed to obtain the

wave equations (and thus also the output fields) that are expressed directly as functions of the

transmitted fields at the entrance of the waveguide at ζ = 0+. Thus, the Laplace transform is

necessary to obtain the comfortable and simple input-output connections of the fields.

This chapter presents two improved methods for the propagation of EM fields along a helical

dielectric waveguide with a circular cross section and a rectangular cross section. The two

different methods employ helical coordinates (and not cylindrical coordinates, such as in the

methods that considered the bending as a perturbation). The calculations are based on using

Laplace and Fourier transforms, and the output fields are computed by the inverse Laplace

and Fourier transforms. Laplace transform on the differential wave equations is needed to

obtain the wave equations and the output fields that are expressed directly as functions of the

transmitted fields at the entrance of the waveguide. Thus, the Laplace transform is necessary

to obtain the comfortable and simple input-output connections of the fields. The output power

transmission and the output power density are improved by increasing the step’s angle or the

radius of the cylinder of the helix, especially in the cases of space curved waveguides. These

methods can be a useful tool to improve the output results in all the cases of the hollow helical

waveguides in medical and industrial regimes (by the first method) and in the microwave

and millimeter-wave regimes, for the diffused optical waveguides in integrated optics (by the

second method).

2. The derivation of the two different methods

This chapter presents two improved methods for the propagation of EM fields along a helical

dielectric waveguide with a circular cross section (by the first method) and a rectangular

195
Analyzing Wave Propagation in Helical Waveguides Using 

Laplace, Fourier, and Their Inverse Transforms, and Applications



4 Will-be-set-by-IN-TECH

cross section (by the second method). A general scheme of the helical coordinate system (r,

θ, ζ) is shown in Fig. 1(a) and the circular helical waveguide is shown in Fig. 1(b), where

0 ≤ r ≤ a + δm , and 2a is the internal diameter of the cross-section. A general scheme

of the helical coordinate system (x, y, ζ) is shown in Fig. 1(c) and the rectangular helical

waveguide is shown in Fig. 1(d), where 0 ≤ x ≤ a, 0 ≤ y ≤ b, and a and b are the dimensions

in the cross section. In these figures, R is the radius of the cylinder, and ζ is the coordinate

along the axis of the helical waveguide.

It is very interesting to compare between the mode model methods for wave propagation

in the helical waveguide with a circular cross section and in the helical waveguide with a

rectangular cross section. These the two kinds of the different methods enable us to solve

practical problems with different boundary conditions. The two methods employ helical

coordinates (and not cylindrical coordinates, such as in the methods that considered the

bending as a perturbation (r/R )). The calculations are based on using Laplace and Fourier

transforms, and the output fields are computed by the inverse Laplace and Fourier transforms.

Laplace transform on the differential wave equations is needed to obtain the wave equations

(and thus also the output fields) that are expressed directly as functions of the transmitted

fields at the entrance of the waveguide at ζ = 0+. Thus, the Laplace transform is necessary

to obtain the comfortable and simple input-output connections of the fields. The derivation for

a helical waveguide with a circular cross section is given in detail in [20]. The derivation for

a helical waveguide with a rectangular cross section is given in detail in [21]. Let us repeat

these difference methods, in brief.

2.1 Formulation of the problem for the helical coordinate system (r, θ, ζ) and for
the helical coordinate system (x, y, ζ).

We start by finding the metric coefficients from the helical transformation of the coordinates.

The helical transformation of the coordinates is achieved by two rotations and one translation,

and is given in the form:

⎛
⎝

X

Y

Z

⎞
⎠ =

⎛
⎝

cos(φc) −sin(φc) 0

sin(φc) cos(φc) 0

0 0 1

⎞
⎠

⎛
⎝

1 0 0

0 cos(δp) −sin(δp)
0 sin(δp) cos(δp)

⎞
⎠

⎛
⎝

r sin θ

0

r cos θ

⎞
⎠+

⎛
⎝

Rcos(φc)
Rsin(φc)
ζsin(δp)

⎞
⎠ , (1)

where ζ is the coordinate along the helix axis, R is the radius of the cylinder, δp is the step’s

angle of the helix (see Figs. (2(a))-(2(b))), and φc = (ζ cos(δp))/R. Likewise, 0 ≤ r ≤ a + δm ,

where 2a is the internal diameter of the cross-section of the helical waveguide, and δm is the

thickness of the metallic layer, as shown in Fig. 3(a).

Figure 2(a) shows the rotations and translation of the orthogonal system (X, ζ, Z) from point

A to the orthogonal system (X,Y,Z) at point K. Figure 2(b) shows the deployment of the helix

depicted in Fig. 2(a).

According to Equation (1), the helical transformation of the coordinates with a circular cross

section becomes

X = (R + r sin θ) cos(φc) + r sin(δp) cos θ sin(φc), (2a)

Y = (R + r sin θ) sin(φc)− r sin(δp) cos θ cos(φc), (2b)
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Figure 1. (a) A general scheme of the helical coordinate system (r, θ, ζ). (b) The circular helical
waveguide. (c) A general scheme of the helical coordinate system (x, y, ζ). (d) The rectangular helical
waveguide.
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Figure 2. (a) Rotations and translation of the orthogonal system (X, ζ, Z) from point A to the orthogonal
system (X,Y,Z) at point K. (b) Deployment of the helix.

Z = r cos θ cos(δp) + ζ sin(δp), (2c)

where φc = (ζ/R) cos(δp), R is the radius of the cylinder, and (r, θ) are the parameters of the

cross-section. Note that ζ sin(δp) = Rφc tan(δp).
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The metric coefficients in the case of the helical waveguide with a circular cross section,

according to Eqs. (2a)-(2c) are:

hr = 1, (3a)

hθ = r, (3b)

hζ =

√

(1 +
r

R
sin θ)

2
cos2(δp) + sin2(δp)(1 +

r2

R2
cos2θcos2(δp))

=

√

1 +
2r

R
sin θcos2(δp) +

r2

R2
sin2θcos2(δp) +

r2

R2
cos2θcos2(δp)sin2(δp)

≃ 1 +
r

R
sin θcos2(δp). (3c)

Note that the third and the fourth terms in the root of the metric coefficient hζ are negligible

in comparison to the first and the second terms when (r/R)2 ≪ 1.

The metric coefficients, and the helical transformation in the case of the helical coordinate

system (x, y, ζ) are given from the above equations for the helical coordinate system (r, θ, ζ)

and according to Fig. 1(a), where r sin θ = x, and r cos θ = y. Thus, the metric coefficients in

the case of the helical waveguide with a rectangular cross section are:

hx = 1, (4a)

hy = 1, (4b)

hζ ≃ 1 +
x

R
cos2(δp). (4c)

3. Solution of the wave equations for the helical coordinate system (r, θ, ζ)

and for the helical coordinate system (x, y, ζ).

The two kinds of the different methods enable us to solve practical problems with different

boundary conditions. The two methods employ helical coordinates (and not cylindrical

coordinates, such as in the methods that considered the bending as a perturbation (r/R ≪
1)). The calculations are based on using Laplace and Fourier transforms, and the output

fields are computed by the inverse Laplace and Fourier transforms. Laplace transform on the

differential wave equations is needed to obtain the wave equations (and thus also the output

fields) that are expressed directly as functions of the transmitted fields at the entrance of the

waveguide at ζ = 0+. Thus, the Laplace transform is necessary to obtain the comfortable and

simple input-output connections of the fields.

3.1 Solution of the wave equations for the helical coordinate system (r, θ, ζ).

The derivation is based on an arbitrary value of the step’s angle of the helix (δp). The

derivation is based on Maxwell’s equations for the computation of the EM field and the

radiation power density at each point during propagation along a helical waveguide, with

a radial dielectric profile. The longitudinal components of the fields are developed into the
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Fourier-Bessel series. The transverse components of the fields are expressed as a function

of the longitudinal components in the Laplace transform domain. Finally, the transverse

components of the fields are obtained by using the inverse Laplace transform by the residue

method, for an arbitrary value of the step’s angle of the helix (δp).

The derivation is given for the lossless case to simplify the mathematical expressions. In a

linear lossy medium, the solution is obtained by replacing the permitivity ǫ by ǫc = ǫ −
j(σ/ω) in the solutions for the lossless case, where ǫc is the complex dielectric constant, and

σ is the conductivity of the medium. The boundary conditions for a lossy medium are given

after the derivation. For most materials, the permeability μ is equal to that of free space (μ =
μ0). The wave equations for the electric and magnetic field components in the inhomogeneous

dielectric medium ǫ(r) are given by

∇2
E + ω2μǫE +∇

(
E · ∇ǫ

ǫ

)
= 0, (5a)

and

∇2
H + ω2μǫH +

∇ǫ

ǫ
× (∇× H) = 0, (5b)

respectively. The transverse dielectric profile (ǫ(r)) is defined as ǫ0(1 + g(r)), where

ǫ0 represents the vacuum dielectric constant, and g(r) is its profile function in the

waveguide. The normalized transverse derivative of the dielectric profile (gr) is defined as

(1/ǫ(r))(∂ǫ(r)/∂r).

From the transformation of Eqs. (3a)-(3c) we can derive the Laplacian of the vector E

(i.e., ∇2
E), and obtain the wave equations for the electric and magnetic fields in the

inhomogeneous dielectric medium. It is necessary to find the values of ∇ · E, ∇(∇ · E), ∇× E,

and ∇× (∇× E) in order to obtain the value of ∇2
E, where ∇2

E = ∇(∇ · E)−∇× (∇× E).
All these values are dependent on the metric coefficients (3a,b,c).

The ζ component of ∇2
E is given by

(∇2
E)ζ = ∇2Eζ +

2

Rh2
ζ

[
sin θ

∂

∂ζ
Er + cos θ

∂

∂ζ
Eθ

]
− 1

R2h2
ζ

Eζ , (6)

where

∇2Eζ =
∂2

∂r2
Eζ +

1

r2

∂2

∂θ2
Eζ +

1

r

∂

∂r
Eζ +

1

hζ

[
sin θ

R

∂

∂r
Eζ +

cos θ

rR

∂

∂θ
Eζ +

1

hζ

∂2

∂ζ2
Eζ

]
, (7)

and in the case of hζ = 1 + (r/R) sin θcos2(δp).

The longitudinal components of the wave equations (5a) and (5b) are obtained by deriving

the following terms [
∇(E · ∇ǫ

ǫ
)

]

ζ

=
1

hζ

∂

∂ζ

[
Er gr

]
, (8)

199
Analyzing Wave Propagation in Helical Waveguides Using 

Laplace, Fourier, and Their Inverse Transforms, and Applications



8 Will-be-set-by-IN-TECH

and [
∇ǫ

ǫ
× (∇× H)

]

ζ

= jωǫ

[
∇ǫ

ǫ
× E

]

ζ

= jωǫgrEθ . (9)

The longitudinal components of the wave equations (5a) and (5b) are then written in the form

(
∇2

E

)

ζ

+ k2Eζ +
1

hζ

∂

∂ζ

(
Er gr

)
= 0, (10)

(
∇2

H

)

ζ

+ k2Hζ + jωǫgrEθ = 0, (11)

where (∇2E)ζ , for instance, is given in Eq. (6). The local wave number parameter is k =

ω
√

μǫ(r) = k0

√
1 + g(r), where the free-space wave number is k0 = ω

√
μ0ǫ0.

The transverse Laplacian operator is defined as

∇2
⊥ ≡ ∇2 − 1

h2
ζ

∂2

∂ζ2
. (12)

The Laplace transform

ã(s) = L{a(ζ)} =
∫ ∞

ζ=0
a(ζ)e−sζdζ (13)

is applied on the ζ-dimension, where a(ζ) represents any ζ-dependent variables, where ζ =
(Rφc)/ cos(δp).

The next four steps are given in detail in Ref. [19], as a part of our derivation. Let us repeat

these four steps, in brief.

1). By substituting Eq.(6) into Eq.(10) and by using the Laplace transform (13), the longitudinal

components of the wave equations (Eqs. (10)-(11)) are described in the Laplace transform

domain, as coupled wave equations.

2). The transverse fields are obtained directly from Maxwell’s equations, and by using the

Laplace transform (13), and are given by

Ẽr(s) =
1

s2 + k2h2
ζ

{
− jωμ0

r

[
r

R
cos θcos2(δp)H̃ζ + hζ

∂

∂θ
H̃ζ

]
hζ + s

[
sin θ

R
cos2(δp)Ẽζ + hζ

∂

∂r
Ẽζ

]

+sEr0 − jωμ0Hθ0
hζ

}
, (14a)

Ẽθ(s) =
1

s2 + k2h2
ζ

{
s

r

[
r

R
cos θcos2(δp)Ẽζ + hζ

∂

∂θ
Ẽζ

]
+ jωμ0hζ

[
sin θ

R
cos2(δp)H̃ζ + hζ

∂

∂r
H̃ζ

]

+sEθ0
+ jωμ0Hr0 hζ

}
, (14b)

200 Wave Propagation Theories and Applications



Analyzing Wave Propagation in Helical Waveguides Using Laplace, Fourier, and Their Inverse Transforms, and Applications 9

H̃r(s) =
1

s2 + k2h2
ζ

{
jωǫ

r

[
r

R
cos θcos2(δp)Ẽζ + hζ

∂

∂θ
Ẽζ

]
hζ + s

[
sin θ

R
cos2(δp)H̃ζ + hζ

∂

∂r
H̃ζ

]

+sHr0 + jωǫEθ0
hζ

}
, (14c)

H̃θ(s) =
1

s2 + k2h2
ζ

{
s

r

[
r

R
cos θcos2(δp)H̃ζ + hζ

∂

∂θ
H̃ζ

]
− jωǫhζ

[
sin θ

R
cos2(δp)Ẽζ + hζ

∂

∂r
Ẽζ

]

+sHθ0
− jωǫEr0hζ

}
. (14d)

Note that the transverse fields are dependent only on the longitudinal components of the

fields and as function of the step’s angle (δp) of the helix.

3). The transverse fields are substituted into the coupled wave equations.

4). The longitudinal components of the fields are developed into Fourier-Bessel series, in order

to satisfy the metallic boundary conditions of the circular cross-section. The condition is that

we have only ideal boundary conditions for r=a. Thus, the electric and magnetic fields will be

zero in the metal.

5). Two sets of equations are obtained by substitution the longitudinal components

of the fields into the wave equations. The first set of the equations is multiplied by

cos(nθ)Jn(Pnmr/a), and after that by sin(nθ)Jn(Pnmr/a), for n 	= 0. Similarly, the second set of

the equations is multiplied by cos(nθ)Jn(P
′
nmr/a), and after that by sin(nθ)Jn(P

′
nmr/a), for

n 	= 0.

6). In order to find an algebraic system of four equations with four unknowns, it is

necessary to integrate over the area (r, θ), where r = [0, a], and θ = [0, 2π], by using the

orthogonal-relations of the trigonometric functions.

7). The propagation constants βnm and β
′
nm of the TM and TE modes of the hollow waveguide

[22] are given, respectively, by βnm =
√

k2
o − (Pnm/a)2 and β

′
nm =

√
k2

o − (P
′
nm/a)

2
, where the

transverse Laplacian operator (∇2
⊥) is given by −(Pnm/a)2 and −(P

′
nm/a)

2
for the TM and TE

modes of the hollow waveguide, respectively.

The separation of variables is obtained by using the preceding orthogonal-relations. Thus the

algebraic equations (n 	= 0) are given by

αn
(1)An + βn

(1)Dn =
1

π
(̂BC1)n, (15a)

αn
(2)Bn + βn

(2)Cn =
1

π
(̂BC2)n, (15b)

βn
(3)Bn + αn

(3)Cn =
1

π
(̂BC3)n, (15c)

βn
(4)An + αn

(4)Dn =
1

π
(̂BC4)n. (15d)
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Further we assume n
′
=n=1. The elements (αn

(1), βn
(1), etc), on the left side of (15a) for n=1 are

given for an arbitrary value of the step’s angle (δp) by:

α1
(1)mm

′
= π

(
s2 + β

2
1m′

)[(
s2 + k0

2

)
G
(1)mm

′

00 + k0
2G

(1)mm
′

01

]

+π
1

R4
k0

2s2

(
1

4
cos4(δp)G

(1)mm
′

02 +
1

2
cos4(δp)G

(1)mm
′

03

)

+πk0
2

{
s2G

(1)mm
′

01 +G
(1)mm

′

05 +
1

R2

(
G
(1)mm

′

00 +G
(1)mm

′

01

)
+

3

2R2
β2

1m′ cos4(δp)

(
G
(1)mm

′

02 +G
(1)mm

′

03

)

+
1

4R4
cos4(δp)

(
G
(1)mm

′

02 + G
(1)mm

′

03

)
+

1

8R4
cos8(δp)

(
G
(1)mm

′

06 + G
(1)mm

′

07

)}

+πs2

[
G
(1)mm

′

08 +
1

2R2
cos2(δp)G

(1)mm
′

00 +
1

4R2

(
cos4(δp)β2

1m′ G
(1)mm

′

02 + cos2(δp)G
(1)mm

′

09

)

+
1

2R2

P1m′

a
cos2(δp)

(
G
(1)mm

′

10 +
1

2
cos2(δp)G

(1)mm
′

11

)]

+πk0
4cos4(δp)

[
3

2R2

(
G
(1)mm

′

03 + G
(1)mm

′

04

)
+

1

8R4
cos8(δp)

(
G
(1)mm

′

07 + G
(1)mm

′

12

)]
, (16a)

β1
(1)mm

′
= −jωμ0πs

{
G
(1)mm

′

13 +

(
1

2
cos2(δp) +

3

4
cos4(δp)

)
1

R2
G
(1)mm

′

14

+

(
1

2
+ cos2(δp)

)
1

R2
G
(1)mm

′

15 − 1

2R2
G
(1)mm

′

00 − cos2(δp)
1

R2

P
′
1m′

a
G
(1)mm

′

16

}
, (16b)

where the elements of the matrices (G
(1)mm

′

00 , etc.) are given in [20]. Similarly, the rest of the

elements on the left side in Eqs. (15a)-(15d) are obtained. We establish an algebraic system of

four equations with four unknowns. All the elements of the matrices in the Laplace transform

domain are dependent on the step’s angle of the helix (δp), the Bessel functions; the dielectric

profile g(r); the transverse derivative gr(r); and (r, θ).

The elements of the boundary conditions (e.g., (̂BC2)1) at ζ = 0+ on the right side in (15b) are

dependent on the step’s angle δp as follows :

(̂BC2)1 =
∫ 2π

0

∫ a

0
(BC2) sin θ J1(P1mr/a)rdrdθ,

where

(BC2) =

[(
s2 + k2h2

ζ

)(
sEζ0

+ E
′
ζ0

)]
+ jωμ0Hθ0

sgrh2
ζ
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+
2

R
hζ sin θ

(
jωμ0Hθ0

s + k2Er0 hζ

)
+

2

R
hζ cos θ

(
− jωμ0Hr0 s + k2Eθ0

hζ

)
+ k2h3

ζ Er0 gr ,

and for hζ = 1 + (r/R) sin θcos2(δp).

The boundary conditions at ζ = 0+ for TEM00 mode in excitation become to:

(̂BC2)1 = 2π

{ ∫ a

0
Q(r)(k(r) + js)J1m(P1mr/a)rdr

}
δ1n

+
4jsπ

R2
cos2(δp)

{ ∫ a

0
Q(r)k(r)J1m(P1mr/a)r2dr

}
δ1n

+
9π

2R2
cos4(δp)

{ ∫ a

0
Q(r)k2(r)J1m(P1mr/a)r3dr

}
δ1n

+
3jsπ

2R2
cos4(δp)

{ ∫ a

0
Q(r)k(r)J1m(P1mr/a)r3dr

}
δ1n

+
8π

R2
cos2(δp)

{ ∫ a

0
Q(r)k2(r)J1m(P1mr/a)r2dr

}
δ1n (17)

where :

Q(r) =
E0

nc(r) + 1
gr exp (−(r/wo)

2).

Similarly, the remaining elements of the boundary conditions at ζ = 0+ are obtained. The

matrix system of Eqs.(15a)-(15d) is solved to obtain the coefficients (A1, B1, etc).

According to the Gaussian beams [23] the parameter w0 is the minimum spot-size at the plane

z=0, and the electric field at the plane z=0 is given by E = E0 exp[−(r/wo)
2]. The modes

excited at ζ = 0 in the waveguide by the conventional CO2 laser IR radiation (λ=10.6 μm) are

closer to the TEM polarization of the laser radiation. The TEM00 mode is the fundamental and

most important mode. This means that a cross-section of the beam has a Gaussian intensity

distribution. The relation between the electric and magnetic fields [23] is given by E/H =√
μ0/ǫ0 ≡ η0, where η0 is the intrinsic wave impedance. Suppose that the electric field is

parallel to the y-axis. Thus the components of Ey and Hx are written by the fields Ey = E0

exp[−(r/wo)
2] and Hx = −(E0/η0) exp[−(r/wo)

2].

After a Gaussian beam passes through a lens and before it enters to the waveguide, the waist

cross-sectional diameter (2w0) can then be approximately calculated for a parallel incident

beam by means of w0=λ/(π θ) ≃ (f λ)/(π w). This approximation is justified if the parameter

w0 is much larger than the wavelength λ. The parameter of the waist cross-sectional diameter

(2w0) is taken into account in our method, instead of the focal length of the lens (f). The initial

fields at ζ = 0+ are formulated by using the Fresnel coefficients of the transmitted fields [24]

as follows

E+
r0
(r) = TE(r)(E0e−(r/wo)

2

sin θ), (18a)
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E+
θ0
= TE(r)(E0e−(r/wo)

2

cos θ), (18b)

H+
r0

= −TH(r)((E0/η0)e
−(r/wo)

2

cos θ), (18c)

H+
θ0
= TH(r)((E0/η0)e

−(r/wo)
2

sin θ), (18d)

where E+
ζ0

= H+
ζ0

= 0, TE(r) = 2/[(n(r) + 1], TH(r) = 2n(r)/[(n(r) + 1], and n(r) = [ǫr(r)]1/2.

The index of refraction is denoted by n(r).

The transverse components of the fields are finally expressed in a form of transfer matrix

functions for an arbitrary value of δp as follows:

Er(r, θ, ζ) = E+
r0(r)e

−jkhζ ζ − jωμ0

R
hζ cos2 θcos2(δp)∑

m′
Cm

′

S1 (ζ)J1(ψ)

− jωμ0

R
hζ sin θ cos θcos2(δp)∑

m′
Dm

′

S1 (ζ)J1(ψ) +
jωμ0

r
h2

ζ sin θ ∑
m′

Cm
′

S1 (ζ)J1(ψ)

− jωμ0

r
h2

ζ cos θ ∑
m′

Dm
′

S1 (ζ)J1(ψ) +
1

R
sin θ cos θcos2(δp)∑

m′
Am

′

S2 (ζ)J1(ξ)

+
1

R
sin2 θcos2(δp)∑

m′
Bm

′

S2 (ζ)J1(ξ) + hζ cos θ ∑
m′

Am
′

S2(ζ)
dJ1

dr
(ξ)

+hζ sin θ ∑
m′

Bm
′

S2 (ζ)
dJ1

dr
(ξ), (19)

where hζ = 1 + (r/R) sin θcos2(δp), R is the radius of the cylinder, δp is the the step’s angle,

ψ = [P
′

1m′ (r/a)] and ξ = [P1m′ (r/a)]. The coefficients are given in the above equation, for

instance

Am
′

S1 (ζ) = L−1

{
A1m′ (s)

s2 + k2(r)h2
ζ

}
, (20a)

Am
′

S2 (ζ) = L−1

{
sA1m′ (s)

s2 + k2(r)h2
ζ

}
, (20b)

where

m
′
= 1, ...N, 3 ≤ N ≤ 50. (20c)

Similarly, the other transverse components of the output fields are obtained. The first fifty

roots (zeros) of the equations J1(x) = 0 and dJ1(x)/dx = 0 may be found in tables [25-26].

The inverse Laplace transform is performed in this study by a direct numerical integration in

the Laplace transform domain by the residue method, as follows

f (ζ) = L−1[ f̃ (s)] =
1

2π j

∫ σ+j∞

σ−j∞

f̃ (s)esζds = ∑
n

Res[esζ f̃ (s); Sn]. (21)

By using the inverse Laplace transform (21) we can compute the output transverse

components in the real plane and the output power density at each point at ζ=(R φc)/cos(δp).
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The integration path in the right side of the Laplace transform domain includes all the

singularities according to Eq.(21). All the points Sn are the poles of f̃ (s) and Res[esζ f̃ (s); Sn]
represent the residue of the function in a specific pole. According to the residue method, two

dominant poles for the helical waveguide are given by

s = ±j k(r)hζ = ±j k(r)

(
1 +

r

R
sin θcos2(δp)

)
.

Finally, knowing all the transverse components, the ζ component of the average-power

density Poynting vector is given by

Sav =
1

2
Re

{
Er Hθ

∗ − Eθ Hr
∗
}

, (22)

where the asterisk indicates the complex conjugate.

The total average-power transmitted along the guide in the ζ direction can now be obtained by

the integral of Eq.(22) over the waveguide cross section. Thus, the output power transmission

is given by

T =
1

2

∫ 2π

0

∫ a

0
Re

{
Er Hθ

∗ − Eθ Hr
∗
}

rdrdθ . (23)

3.2 Solution of the wave equations for the helical coordinate system (x, y, ζ).

The method is based on Fourier coefficients of the transverse dielectric profile and those

of the input wave profile. Laplace transform is necessary to obtain the comfortable and

simple input-output connections of the fields. This model is useful for the analysis of

dielectric waveguides in the microwave and the millimeter-wave regimes, for diffused optical

waveguides in integrated optics. The output power transmission and the output power

density are improved by increasing the step’s angle or the radius of the cylinder of the helical

waveguide, especially in the cases of space curved waveguides.

We assume that for most materials, the permeability μ is equal to that of free space

(μ = μ0). The wave equations for the electric and magnetic field components in the

inhomogeneous dielectric medium ǫ(x, y) are given by the wave equations (5a) and (5b),

respectively. The transverse dielectric profile (ǫ(x, y)) is defined as ǫ0(1 + χ0 g(x, y)),
where ǫ0 represents the vacuum dielectric constant, g(x, y) is its profile function in the

waveguide, and χ0 is the susceptibility of the dielectric material. The normalized transverse

derivatives of the dielectric profile g(x, y) are defined as (1/ǫ(x, y))[(∂/∂x)ǫ(x, y)] and

(1/ǫ(x, y))[(∂/∂y)ǫ(x, y)], respectively. From the helical transformation of Eqs. 1 we can

derive the Laplacian of the vector E (i.e., ∇2
E), and obtain the wave equations for the electric

and magnetic fields in the inhomogeneous dielectric medium. It is necessary to find the values

of ∇ · E, ∇(∇ · E), ∇ × E, and ∇ × (∇ × E) in order to obtain the value of ∇2
E, where

∇2
E = ∇(∇ · E) −∇× (∇× E). All these values are dependent on the metric coefficients

(4a,b,c).
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The components of ∇2
E are given by

(∇2
E)x = ∇2Ex −

1

R2h2
ζ

cos2(δp)Ex − 2
1

Rh2
ζ

cos2(δp)
∂

∂ζ
Eζ , (24a)

(∇2
E)y = ∇2Ey, (24b)

(∇2
E)ζ = ∇2Eζ −

1

R2h2
ζ

cos2(δp)Eζ + 2
1

Rh2
ζ

cos2(δp)
∂

∂ζ
Ex, (24c)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

1

h2
ζ

∂2

∂ζ2
+

1

Rhζ
cos2(δp)

∂

∂x
, (24d)

and for hζ = 1 + (x/R)cos2(δp) .

The wave equations (5a) and (5b) are written in the form

(∇2
E)i + k2Ei + ∂i(Exgx + Eygy) = 0, (25a)

(∇2
H)i + k2Hi + ∂i(Hxgx + Hygy) = 0, (25b)

where i=x, y, ζ. The local wavenumber parameter is given by k = ω
√

μǫ(x, y) =

k0

√
1 + χ0 g(x, y), and the free-space wavenumber is given by k0 = ω

√
μ0ǫ0. The expression

(∇2
E)x, for instance, is given according to Eq. (24a).

The transverse Laplacian operator is defined according to Eq. (12), where

h2
ζ = 1 +

2x

R
cos2(δp) +

(
x

R

)2

cos4(δp).

The metric coefficient hζ is a function of x, thus we defined

hζ = 1 + pζ (x) , pζ(x) = cos2(δp)(x/R), (26a)

h2
ζ = 1 + qζ(x) , qζ(x) = cos2(δp)(2/R)x. (26b)

The Laplace transform (Eq. (13)) is applied on the ζ-dimension, where a(ζ) represents any

ζ-dependent variables and ζ = (Rφc)/ cos(δp). Laplace transform on the differential wave

equations is needed to obtain the wave equations (and thus also the output fields) that are

expressed directly as functions of the transmitted fields at the entrance of the waveguide

at ζ = 0+. Thus, the Laplace transform is necessary to obtain the comfortable and simple

input-output connections of the fields.

By substitution of Eqs. (24a)-(24c) into Eqs. (25a), by using the Laplace transform (13), and

multiply by h2
ζ , Eqs. (5a) are described in the Laplace transform domain in the form

h2
ζ

(
∇2

⊥ +
s2

h2
ζ

+ k2

)
Ẽx + h2

ζ ∂x

(
Ẽxgx + Ẽygy

)
+ hζ

1

R
cos2(δp)∂x

(
Ẽx

)
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− 2

R
cos2(δp)sẼζ =

(
sEx0 + E

′
x0

)
− 2

R
cos2(δp)Eζ0

, (27a)

h2
ζ

(
∇2

⊥+
s2

h2
ζ

+ k2

)
Ẽy + h2

ζ∂y

(
Ẽxgx + Ẽygy

)
+ hζ

1

R
cos2(δp)∂x

(
Ẽy

)
=

(
sEy0 + E

′
y0

)
, (27b)

h2
ζ

(
∇2

⊥ +
s2

h2
ζ

+ k2

)
Ẽζ + sh2

ζ

(
Ẽxgx + Ẽygy

)
+ hζ

1

R
cos2(δp)∂x

(
Ẽζ

)
+

2

R
cos2(δp)sẼx =

(
sEζ0

+ E
′
ζ0

)
+

2

R
cos2(δp)Ex0 + h2

ζ

(
Ex0 gx + Ey0 gy

)
, (27c)

where the transverse Laplacian operator is defined according to (12), Ex0 , Ey0 , Eζ0 are

the initial values of the corresponding fields at ζ = 0, i.e. Ex0 = Ex(x, y, ζ = 0) and

E
′
x0

= ∂
∂ζ Ex(x, y, ζ)|ζ=0.

A Fourier transform is applied on the transverse dimension

ḡ(kx , ky) = F{g(x, y)} =
∫

x

∫

y
g(x, y)e−jkxx−jkyydxdy, (28)

and the differential equation (27(a)) is transformed to an algebraic form in the (ω, s, kx, ky)

space, as follows

k2
ζ

˜̄Ex + s2 ˜̄Ex + k2
oχo ḡ ∗ ˜̄Ex + jkx

(
ḡx ∗ ˜̄Ex + ḡy ∗ ˜̄Ey

)
− 2

R cos2(δp)s ˜̄Eζ + q̄ζ∗
(

k2
ζ

)
˜̄Ex +

k2
oχo q̄ζ∗

(
ḡ ∗ ˜̄Ex

)
+ jq̄ζ∗

[
kx

(
ḡx ∗ ˜̄Ex + ḡy ∗ ˜̄Ey

)]

+ 1
R cos2(δp)

(
jkx

)
˜̄Ex +

1
R cos2(δp)j p̄ζ∗

(
kx

˜̄Ex

)

=

(
sĒx0 + Ē

′
x0

)
− 1

sR cos2(δp)

(
sĒζ0

+ Ē
′
ζ0

)
, (29)

where kζ =
√

k2
o − k2

x − k2
y. Similarly, the other differential equations are obtained. The

asterisk symbol denotes the convolution operation ḡ ∗ Ē = F{g(x, y)E(x, y)}. The method

of images is applied to satisfy the conditions n̂ × E = 0 and n̂ · (▽× E) = 0 on the surface of

the ideal metallic waveguide walls, where n̂ is a unit vector perpendicular to the surface. The

metric coefficient hζ is a function of x (Eqs. (26a) and (26b)). Thus the elements of the matrices

P(0) and Q(0) are defined as:

p̄ζ
(o)
(n,m)

=
1

4ab

∫ a

−a

∫ b

−b
pζ(x) e−j(n π

a x+m π
b y) dxdy, (30a)

q̄ζ
(o)
(n,m)

=
1

4ab

∫ a

−a

∫ b

−b
qζ(x) e−j(n π

a x+m π
b y) dxdy, (30b)
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and the matrices P(1) and Q(1) are defined as:

P(1) =

(
I + P(0)

)
, Q(1) =

(
I + Q(0)

)
, (30c, d)

where I is the unity matrix.

Equation (29) and similarly, the two other equations are rewritten in a matrix form as follows

K(0)Ex +
k2

oχ0

2s
Q(1)GEx +

jkox

2s
Q(1)N

(
GxEx + GyEy

)

− 1

R
cos2(δp)Eζ + Q(0)K1(0)Ex +

1

2sR
cos2(δp)jkoxP(1)NEx = Êx0 −

1

sR
cos2(δp)Ēζ0

, (31a)

K(0)Ey +
k2

oχ0

2s
Q(1)GEy +

jkoy

2s
Q(1)M

(
GxEx + GyEy

)

+Q(0)K1(0)Ey +
1

2sR
cos2(δp)jkoxP(1)NEy = Êy0 , (31b)

K(0)Eζ +
k2

oχ0

2s
Q(1)GEζ +

1

2
Q(1)

(
GxEx + GyEy

)
+

1

R
cos2(δp)Ex

+Q(0)K1(0)Eζ+
1

2sR
cos2(δp)jkoxP(1)NEζ = Êζ0

+
1

sR
cos2(δp)Ex0 +

1

2s
Q(1)

(
GxEx0+GyEy0

)
,

(31c)
where the initial-value vectors, Êx0 , Êy0 , and Êζ0

are defined from the terms (sĒx0 + Ē
′
x0
)/2s,

(sĒy0 + Ē
′
y0
)/2s, and (sĒζ0

+ Ē
′
ζ0
)/2s, respectively.

The elements of the diagonal matrices K(0), M, N and K(1) are defined as

K(0)
(n,m)(n′,m′) =

{[
k2

o − (nπ/a)2 − (mπ/b)2 + s2
]

/2s
}

δnn′δmm′ , (32a)

M(n,m)(n′,m′) = mδnn′δmm′ , (32b)

N(n,m)(n′,m′) = nδnn′δmm′ , (32c)

K(1)
(n,m)(n′,m′) =

{[
k2

o − (nπ/a)2 − (mπ/b)2
]

/2s
}

δnn′δmm′ , (32d)

where δnn′ and δmm′ are the Kronecker delta functions.

The modified wave-number matrices are defined as

Dx ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G +

jkox

2s
Q(1)NGx +

1

2sR
cos2(δp)jkoxP(1)N, (33a)

Dy ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G +

1

2sR
cos2(δp)jkoxP(1)N +

jkoy

2s
Q(1)MGy, (33b)
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Dζ ≡ K(0) + Q(0)K1(0) +
k2

oχ0

2s
Q(1)G +

1

2sR
cos2(δp)jkoxP(1)N. (33c)

Thus, Eqs. (31a)-(31c) result in

DxEx = Êx0 −
jkox

2s
Q(1)NGyEy −

1

sR
cos2(δp)Eζ0

+
1

R
cos2(δp)Eζ , (34a)

DyEy = Êy0 −
jkoy

2s
Q(1)MGxEx, (34b)

DζEζ= Êζ0
+

1

2s
Q(1)

(
GxEx0+GyEy0

)
−1

2
Q(1)

(
GxEx+GyEy

)
+

1

sR
cos2(δp)Ex0−

1

R
cos2(δp)Ex.

(34c)

After some algebraic steps, the components of the electric field are formulated as follows:

Ex =

{
Dx + α1Q(1)M1Q(1)M2 +

1

R
cos2(δp)D

−1
ζ

·
(
− 1

2
Q(1)Gx +

1

2
α2Q(1)M3Q(1)M2 −

1

R
cos2(δp)I

)}−1

(
Êx0 −

1

sR
cos2(δp)Eζ0

− α3Q(1)M1 Êy0 +
1

R
cos2(δp)D

−1
ζ

(
Êζ0

+
1

sR
cos2(δp)Ex0+

1

2s
Q(1)(GxEx0 + GyEy0)−

1

2
Q(1)M3Êy0

))
, (35a)

Ey = Dy
−1

(
Êy0 −

jkoy

2s
Q(1)MGxEx

)
, (35b)

Eζ = D−1
ζ

{
Êζ0

+
1

2s
Q(1)

(
GxEx0 + GyEy0

)
− 1

2
Q(1)

(
GxEx + GyEy

)

− 1

R
cos2(δp)Ex +

1

sR
cos2(δp)Ex0

}
, (35c)

where:

α1 =
koxkoy

4s2
, α2 =

jkoy

2s
, α3 =

jkox

2s
, M1 = NGyDy

−1, M2 = MGx, M3 = GyDy
−1.

These equations describe the transfer relations between the spatial spectrum components of

the output and input waves in the dielectric waveguide. Similarly, the other components of

the magnetic field are obtained. The transverse field profiles are computed by the inverse
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Laplace and Fourier transforms, as follows

Ey(x, y, ζ) = ∑
n

∑
m

∫ σ+j∞

σ−j∞

Ey(n, m, s)ejnkoxx+jmkoyy+sζds. (36)

The inverse Laplace transform is performed in this study by a direct numerical integration on

the s-plane by the method of Gaussian Quadrature. The integration path in the right side of

the s-plane includes all the singularities, as proposed by Salzer [27-28]

∫ σ+j∞

σ−j∞

esζ Ey(s)ds =
1

ζ

∫ σ+j∞

σ−j∞

epEy(p/ζ)dp =
1

ζ

15

∑
i=1

wiEy(s = pi/ζ), (37)

where wi and pi are the weights and zeros, respectively, of the orthogonal polynomials of

order 15. The Laplace variable s is normalized by pi/ζ in the integration points, where

Re(pi) > 0 and all the poles should be localized in their left side on the Laplace transform

domain. This approach of a direct integral transform does not require as in other methods, to

deal with each singularity separately.

The ζ component of the average-power density of the complex Poynting vector is given by

Sav =
1

2
Re

{
Ex Hy

∗ − EyHx
∗
}

, (38)

where the asterisk indicates the complex conjugate. The active power is equal to the real part

of the complex Poynting vector. The total average-power transmitted along the guide in the

ζ direction is given by a double integral of Eq. (38). A Fortran code is developed using NAG

subroutines [29]. Several examples computed on a Unix system are presented in the next

section.

4. Numerical results

An example of the circular cross section of the helical waveguide is shown in Fig. 3(a). An

example of the rectangular dielectric slab of the helical waveguide is shown in Fig. 3(b), and

an example of the rectangular cross section with a circular dielectric profile of the helical

waveguide is shown in Fig. 3(c). The results of the output transverse components of the

fields and the output power density (|Sav|) (e.g., Fig. 4(a)) show the behavior of the solutions

for the TEM00 mode in excitation, for the straight waveguide (R → ∞). The result of the

output power density (Fig. 4(a)) is compared also to the result of published experimental

data [30] as shown also in Fig. 4(b). This comparison shows good agreement (a Gaussian

shape) as expected, except for the secondary small propagation mode. The experimental

result (Fig. 4(b)) is affected by the additional parameters (e.g., the roughness of the internal

wall of the waveguide) which are not taken theoretically into account. In this example with

the circular cross section (Fig. 3(a)), the length of the straight waveguide is 1 m, the diameter

(2a) of the waveguide is 2 mm, the thickness of the dielectric layer [d(AgI)] is 0.75 μm, and the

minimum spot-size (w0) is 0.3 mm. The refractive indices of the air, the dielectric layer (AgI)

and the metallic layer (Ag) are n(0) = 1, n(AgI) = 2.2, and n(Ag) = 13.5 − j75.3, respectively.
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The value of the refractive index of the material at a wavelength of λ=10.6 μm is taken from

the table compiled by Miyagi, et al. [6]. The toroidal dielectric waveguide is demonstrated

in Fig. 4(c). The experimental result is demonstrated in Fig. 4(d). This experimental result

was obtained from the measurements of the transmitted CO2 laser radiation (λ=10.6 μm)

propagation through a hollow tube covered on the bore wall with silver and silver-iodide

layers (Fig. 3(a)), where the initial diameter (ID) is 1 mm (namely, small bore size).
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Figure 3. (a) An example of the circular cross section of the helical waveguide. (b) An example of the
rectangular dielectric slab of the helical waveguide. (c) An example of the rectangular cross section with
a circular dielectric profile of the helical waveguide.

The output modal profile is greatly affected by the bending, and the theoretical and

experimental results (Figs. 4(c)-4(d)) show that in addition to the main propagation mode,

several other secondary modes and asymmetric output shape appear. The amplitude of the

output power density (|Sav|) is small as the bending radius (R) is small, and the shape is

far from a Gaussian shape. This result agrees with the experimental results, but not for all

the propagation modes. The experimental result (Fig. 4(d)) is affected by the bending and

additional parameters (e.g., the roughness of the internal wall of the waveguide) which are

not taken theoretically into account. In this example, a=0.5 mm, R=0.7 m, φ=π/2, and ζ=

1 m. The thickness of the dielectric layer [d(AgI)] is 0.75 μm (Fig. 3(a)), and the minimum

spot size (w0) is 0.2 mm. The values of the refractive indices of the air, the dielectric layer

(AgI) and the metallic layer (Ag) are n(0) = 1, n(AgI) = 2.2, and n(Ag) = 13.5 − j75.3,

respectively. In both theoretical and experimental results (Figs. 4(c)-4(d)) the shapes of the

output power density for the curved waveguide are not symmetric. The output modal profile

is greatly affected by the bending, and the theoretical and experimental results (Figs. 4(c)-4(d))

show that in addition to the main propagation mode, several other secondary modes and

asymmetric output shape appear. The amplitude of the output power density (|Sav|) is small

as the bending radius (R) is small, and the shape is far from a Gaussian shape. This result

agrees with the experimental results, but not for all the propagation modes. The experimental

result (Fig. 4(d)) is affected by the bending and additional parameters (e.g., the roughness

of the internal wall of the waveguide) which are not taken theoretically into account. In

this example, a=0.5 mm, R=0.7 m, φ=π/2, and ζ= 1 m. The thickness of the dielectric layer

[d(AgI)] is 0.75 μm (Fig. 3(a)), and the minimum spot size (w0) is 0.2 mm. The values of the
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refractive indices of the air, the dielectric layer (AgI) and the metallic layer (Ag) are n(0) = 1,

n(AgI) = 2.2, and n(Ag) = 13.5 − j75.3, respectively. In both theoretical and experimental

results (Figs. 4(c)-4(d)) the shapes of the output power density for the curved waveguide are

not symmetric.
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Figure 4. The output power density for R → ∞, where a=1 mm, w0 = 0.3 mm, and the length of the
straight waveguide is 1 m. (a) theoretical result; (b) experimental result. The output power density for
the toroidal dielectric waveguide, where a=0.5 mm, w0 = 0.2 mm, R = 0.7 m, φ = π/2, and ζ =1 m; (c)
theoretical result; (d) experimental result. The other parameters are: d(AgI)= 0.75 μm, λ = 10.6 μm, n(0) =
1, n(AgI) = 2.2, and n(Ag) = 13.5 - j 75.

Figures 5(a)-(b) show the results of the output power density as functions of the step’s angle

(e.g., δp =0.4, 0.8) and the radius of the cylinder (e.g., R=0.7 m). For these results ζ= 1 m,

where a=1 mm, w0 = 0.3 mm, nd =2.2, and n(Ag) = 13.5 - j 75.3 (Fig. 3(a)). Fig. 5(a) shows that

in addition to the main propagation mode, several other secondary modes appear, where δp =

0.4 and R=0.7 m. By increasing only the step’s angle from δp = 0.4 to δp = 0.8 where R = 0.7 m,

the amplitude of the output power density is greater (e.g., (|Sav| = 0.7 W/m2) and also the

output shape is changed (Fig. 5(b)).

Let us compare the second theoretical model (e.g., Eq. 35(b)) with the known analytical theory

[22] for the rectangular dielectric slab (Fig. 3(b)). For the given dimensions a and d, we find

the values Λ and Ω according to the next transcendental equation for a dielectric slab (Fig.

3(b)).

According to our theoretical model we can calculate Ey0(n, m) and g(n, m) as follows:

Ey0(n, m) =
1

4ab

∫ a

−a

∫ b

−b
Ey(x, y, z = 0)e−j(n π

a x+m π
b y)dxdy,
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Figure 5. The results of the output power density as functions of the step’s angle (δp) and the radius of
the cylinder (R), where ζ= 1 m, a=1 mm, w0 = 0.3 mm, nd =2.2, and n(Ag) = 13.5 - j 75.3: (a). δp = 0.4, and
R = 0.7 m; (b). δp = 0.8, and R = 0.7 m.

and

g(n, m) =
1

4ab

∫ a

−a

∫ b

−b
g(x, y)e−j(n π

a x+m π
b y)dxdy.

The known solution for the dielectric slab modes based on transcendental equation [22] is

given as follows

⎧
⎪⎪⎨
⎪⎪

Ey1 = j kz
ǫ0

sin(νx) 0 < x < t

Ey2 = j kz
ǫ0

sin(νt)
cos(μ(t−a/2))

cos [μ(x − a/2)] t < x < t + d

Ey3 = j kz
ǫ0

sin [ν(a − x)] t + d < x < a

, (39)

where ν ≡
√

k2
o − k2

z and μ ≡
√

ǫrk2
o − k2

z result from the transcendental equation

(
a

d
− 1

)
dμ

2
tan

(
dμ

2

)
− (tν) cot(tν) = 0.
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Figure 6. (a). A comparison between amplitude results of the theoretical model and the transcendental
equation (a=2b=2 cm, d=3.3 mm, ǫr= 9, and λ= 6.9 cm; (b). The convergence of our theoretical results.
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Eqs. (39) were substituted as the initial fields into the Eq. (35(b)) at z = 0+ in the practical case

of the straight waveguide (by letting R → ∞ or by taking δp = π/2) with the symmetrical slab

profile (Fig. 3(b)). The result of the comparison between the theoretical model with the known

solution [22] is shown in Fig. 6(a), where ǫr = 9, d=3.3 mm, and λ = 6.9 cm. The convergence

of the numerical results as a function of the matrix order is shown in Fig. 6(b). The comparison

is demonstrated for every order (N=1, 3, 5, 7, and 9). The order N determines the accuracy of

the solution, and the convergence of the solution is verified by the criterion

C(N) ≡ log

{
max(|SN+2

av − SN
av|)

|max(SN+2
av )− min(SN

av)|

}
, N ≥ 1, (40)

for the Ey component of the fields (instead of Sav), where the number of the modes is equal

to (2N + 1)2. The method of this model is based on Fourier coefficients, thus the accuracy of

the method is dependent on the number of the modes in the system. Further we assume N =

M. If the value of the criterion is less then -2, then the numerical solution is well converged.

When N increases, then Ey(N) approaches Ey. The value of the criterion between N=7 and

N=9 is equal to -2.38 ≃ -2, namely a hundredth part. The comparison between the theoretical

mode-model and the known model [22] has shown good agreement. Note that we have two

ways to compare between the results of our mode model with the other methods. The first

way is to compare between the results of the output fields for every order (N=1, 3, 5, 7, and 9)

with the final solution of the known method. The second way is to compare between the

results of the output fields (according to our model) for every two orders (N=1,3, N=3,5,

N=5,7, and N=7,9), until our numerical solution is well converged. This way is efficient in

the cases that we have complicated problems that we cannot compare with the final solution

of the known method.

The geometrical shape of a circular dielectric profile loaded rectangular waveguide is

demonstrated in Fig. 3(c) for an inhomogeneous dielectric profile in the cross section. The

radius of the circle is denoted as r1 and the dimensions of the waveguide in the cross-section

are denoted as a and b. The refractive index of the core (dielectric profile) is greater than that

of the cladding (air). The results of the solution in this case will demonstrate for r1 = 0.5 mm

and for a=b=2 cm. Let us assume that the center of the circle located at the point (a/2, b/2), as

shown in Fig. 3(c).

Figures 7(a)-(b) show the results of the output power density (Sav) as functions of the step’s

angle (δp=1) and the radius of the cylinder (R=0.5 m). The other parameters are: ζ = 15 cm,

a=b= 2 cm, r1 = 0.5 mm, and λ = 3.75 cm. The output fields are dependent on the input wave

profile (TE10 mode) and the circular dielectric profile of the rectangular cross section (Fig.

3(c)). Fig. 7(c) shows the output amplitude and the Gaussian shape of the central peak in

the same cross section of Figs. 7(a-b), where y=b/2 = 1 cm, and for five values of ǫr =2, 5,

6, 8, and 10, respectively. By changing the value of the parameter ǫr of the core in the cross

section (Fig. 3(c)) with regard to the cladding (air) from 2 to 10, the output transverse profile

of the power density (Sav) is changed. For small values of ǫr, the half-sine (TE10) shape of the

output power density appears, with a little influence of the Gaussian shape in the center of

the output profile.
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Figure 7. The results of the output power density as functions of the step’s angle (δp= 1) and the radius
of the cylinder (R=0.5 m), where ζ= 15 cm, a=b= 2 cm, r1 = 0.5 mm, λ = 3.75 cm: (a). ǫr = 6; (b). ǫr = 10.
(c). The output amplitude and the Gaussian shape of the central peak in the same cross section where

y=b/2 = 1 cm, and for different values of ǫr. (d). The output profile for N=1, 3, 5, 7 and 9, where ǫr = 10.

On the other hand, for large values of ǫr (e.g., ǫr=10) the Gaussian shape of the output power

density appears in the center of the output profile (Fig. 7(b)), with a little influence of the

half-sine (TE10) shape in the center of the output profile. By increasing only the parameter

ǫr from 2 to 10, the result of the output power density shows a Gaussian shape and the

amplitude of the output power density is changed from 1.6 W/m2 to 1 W/m2, as shown

in Fig. 7(c). In this case, the output Gaussian profile increases with increasing the value of

ǫr . These examples demonstrate the influence of the dielectric profile for an inhomogeneous

cross section, for arbitrary step’s angle and the radius of the cylinder of the helical waveguide.

Figure 7(d) shows an example for the output profiles with ǫr = 10, and for the same other

parameters of Figs. 7(a)-(c). The output results are demonstrated for every order (N=1, 3, 5,

7, and 9). By increasing only the parameter of the order from N=1 to N=9, then the output

profile approaches to the final output profile.

The other main contributions of the proposed methods are demonstrated in Fig. 8(a) and in

Fig. 8(b), in order to understand the influence of the step’s angle (δp) and the radius of the

cylinder (R) on the output power transmission, for helical waveguide with a circular cross

section (Fig. 3(a)) and with a rectangular cross section (Fig. (3(c)), respectively.
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Figure 8(a) shows the influence of the step’s angle (δp) and the radius of the cylinder (R) on

the output power transmission for helical waveguide with a circular cross section (Fig. 3(a)).

Six results are demonstrated for six values of δp (δp =0.0, 0.4, 0.7, 0.8, 0.9, 1.0), where ζ = 4 m,

a=1 mm, w0 = 0.06 mm, nd =2.2 and n(Ag) = 13.5 − j75.3. Figure 8(b) shows the influence of

the step’s angle (δp) and the radius of the cylinder (R) on the output power transmission for

helical waveguide with a rectangular cross section with a circular dielectric profile (Fig. 3(c)).

The output fields are dependent on the input wave profile (TE10 mode) and the dielectric

profile (Fig. 3(c). Six results are demonstrated for six values of δp (δp =0, 0.4, 0.7, 0.8, 0.9,

1.0), where ζ = 15 cm, a=b=2 cm, r1 = 0.5 mm, λ = 3.75 cm, and ǫr = 10. For an arbitrary

value of R, the output power transmission is large for large values of δp and decreases with

decreasing the value of δp. On the other hand, for an arbitrary value of δp, the output power

transmission is large for large values of R and decreases with decreasing the value of R. For

small values of the step’s angle, the radius of curvature of the helix can be approximated by

the radius of the cylinder (R). In this case, the output power transmission is large for small

values of the bending (1/R), and decreases with increasing the bending. Thus, these two

different methods can be a useful tool to find the parameters (δp and R) which will give us the

improved results (output power transmission) of the curved waveguide in the cases of space

curved waveguides.
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Figure 8. The results of the output power transmission of the helical waveguide as a function of 1/R,
where R is the radius of the cylinder. Six results are demonstrated for six values of δp (δp =0.0, 0.4, 0.7,
0.8, 0.9, 1.0) (a) for circular cross section (Fig. 3(a)), where ζ = 4 m, a=1 mm, w0 = 0.06 mm, nd =2.2, and
n(Ag) = 13.5 − j75.3. (b) for a rectangular cross section with a circular dielectric profile (Fig. 3(c)), where
a=20 mm, b=20 mm, r1 = 0.5 mm, λ = 3.75 cm, and ǫr = 10.

5. Conclusions

Two improved methods have been presented for the propagation of EM fields along a helical

dielectric waveguide with a circular cross section and a rectangular cross section. The two

different methods employ helical coordinates (and not cylindrical coordinates, such as in the

methods that considered the bending as a perturbation), and the calculations are based on

using Laplace and Fourier transforms. The output fields are computed by the inverse Laplace

and Fourier transforms. An example of the circular cross section of the helical waveguide is

shown in Fig. 3(a). An example of the rectangular dielectric slab of the helical waveguide is
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shown in Fig. 3(b), and an example of the rectangular cross section with a circular dielectric

profile of the helical waveguide is shown in Fig. 3(c).

The results of the output transverse components of the fields and the output power density

(|Sav|) (e.g., Fig. 4(a)) for the circular cross section (Fig. 3(a)) show the behavior of the

solutions for the TEM00 mode in excitation, for the straight waveguide. The result of the

output power density (Fig. 4(a)) is compared also to the result of published experimental

data [30] as shown also in Fig. 4(b). This comparison shows good agreement (a Gaussian

shape) as expected, except for the secondary small propagation mode. The experimental result

(Fig. 4(b)) is affected by the additional parameters (e.g., the roughness of the internal wall of

the waveguide) which are not taken theoretically into account.

The toroidal dielectric waveguide is demonstrated in Fig. 4(c), and the experimental result is

demonstrated in Fig. 4(d). This experimental result was obtained from the measurements of

the transmitted CO2 laser radiation (λ=10.6 μm) propagation through a hollow tube covered

on the bore wall with silver and silver-iodide layers (Fig. 3(a)), where the initial diameter (ID)

is 1 mm (namely, small bore size). The output modal profile is greatly affected by the bending,

and the theoretical and experimental results (Figs. 4(c)-4(d)) show that in addition to the main

propagation mode, several other secondary modes and asymmetric output shape appear. The

amplitude of the output power density (|Sav|) is small as the bending radius (R) is small,

and the shape is far from a Gaussian shape. This result agrees with the experimental results,

but not for all the propagation modes. The experimental result (Fig. 4(d)) is affected by the

bending and additional parameters (e.g., the roughness of the internal wall of the waveguide)

which are not taken theoretically into account. In both theoretical and experimental results

(Figs. 4(c)-4(d)) the shapes of the output power density for the curved waveguide are not

symmetric. Fig. 5(a) shows that in addition to the main propagation mode, several other

secondary modes appear, where δp = 0.4 and R=0.7 m. By increasing only the step’s angle, the

amplitude of the output power density is greater and also the output shape is changed (Fig.

5(b)).

Figure 6(a) shows the comparison between the theoretical model with the known solution[22]
for the rectangular dielectric slab (Fig. 3(b)), for every order (N=1, 3, 5, 7, and 9), where the

order N determines the accuracy of the solution. The comparison has shown good agreement.

Note that we have two ways to compare between the results of our mode model with the

other methods. The first way is to compare between the results of the output fields for every

order (N=1, 3, 5, 7, and 9) with the final solution of the known method. The second way is

to compare between the results of the output fields (according to our model) for every two

orders (N=1,3, N=3,5, N=5,7, and N=7,9), until our numerical solution is well converged. This

way is efficient in the cases that we have complicated problems that we cannot compare with

the final solution of the known method.

Figures 7(a)-(b) show the results of the output power density (Sav) as functions of the step’s

angle (δp=1) and the radius of the cylinder (R=0.5 m). The output fields are dependent on

the input wave profile (TE10 mode) and the circular dielectric profile of the rectangular cross

section (Fig. 3(c)). For small values of ǫr , the half-sine (TE10) shape of the output power

density appears, with a little influence of the Gaussian shape in the center of the output profile.

On the other hand, for large values of ǫr (e.g., ǫr=10) the Gaussian shape of the output power
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density appears in the center of the output profile (Fig. 7(b)), with a little influence of the

half-sine (TE10) shape in the center of the output profile. By increasing only the parameter ǫr

from 2 to 10, the result of the output power density shows a Gaussian shape and the amplitude

of the output power density is changed, as shown in Fig. 7(c). In this case, the output Gaussian

profile increases with increasing the value of ǫr. These examples demonstrate the influence

of the dielectric profile for an inhomogeneous cross section, for arbitrary step’s angle and the

radius of the cylinder of the helical waveguide. Figure 7(d) shows an example for the output

profiles with ǫr = 10. The output results are demonstrated for every order (N=1, 3, 5, 7, and

9). By increasing only the parameter of the order from N=1 to N=9, then the output profile

approaches to the final output profile.

The other main contributions of the proposed methods are demonstrated in Fig. 8(a) and in

Fig. 8(b), in order to understand the influence of the step’s angle (δp) and the radius of the

cylinder (R) on the output power transmission, for helical waveguide with a circular cross

section (Fig. 3(a)) and with a rectangular cross section (Fig. 3(c)), respectively. Six results are

demonstrated for six values of δp (δp =0.0, 0.4, 0.7, 0.8, 0.9, 1.0), in all case. For an arbitrary

value of R, the output power transmission is large for large values of δp and decreases with

decreasing the the value of δp. On the other hand, for an arbitrary value of δp, the output

power transmission is large for large values of R and decreases with decreasing the value of

R. For small values of the step’s angle, the radius of curvature of the helix can be approximated

by the radius of the cylinder (R). In this case, the output power transmission is large for small

values of the bending (1/R), and decreases with increasing the bending. Thus, these two

different methods can be a useful tool to find the parameters (δp and R) which will give us the

improved results (output power transmission) of the curved waveguide in the cases of space

curved waveguides.

The output power transmission and the output power density are improved according to the

two proposed methods by increasing the step’s angle or the radius of the cylinder of the helix,

especially in the cases of space curved waveguides. These methods can be a useful tool to

improve the output results in all the cases of the hollow helical waveguides in medical and

industrial regimes (by the first method) and in the microwave and millimeter-wave regimes

(by the second method), for the diffused optical waveguides in integrated optics.
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