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1. Introduction

Cardiac glycosides comprise a large family of naturally derived compounds, the core struc‐
tures of which contain a steroid nucleus with a five-membered lactone ring (cardenolides) or
a six-membered lactone ring (bufadienolides) and sugar moieties [1]. A few widely recognized
examples of cardiac glycosides are digoxin, digitoxin, ouabain, and oleandrin. The cardeno‐
lides digitoxin and digoxin, two well-known cardiac glycosides, are inhibitors of the plasma
membrane Na+/K+-ATPase that are clinically used for the treatment of heart failure. Their
positive inotropic effects help suppress the active counter-transportation of Na+ and K+ across
the cell membrane, leading to an increase in the intracellular Na+ concentration, a decrease in
the intracellular K+ concentration, and a consequent increase in cardiac contraction [2].
Epidemiologic evidence suggests that breast cancer patients who were treated with digitalis
have a significantly lower mortality rate, and their cancer cells had more benign characteristics
than those from patients not treated with digitalis [3,4]. Interestingly, the concentrations of
cardiac glycosides used for cancer treatment are extremely close to those found in the plasma
of cardiac patients treated with the same drugs, suggesting that the anticancer effects of these
drugs are exerted at non-toxic concentrations [5]. Furthermore, studies have suggested that
cardiac glycosides target cancer cells selectively [6]. These encouraging findings have gained
considerable attention in the field of anticancer research, and subsequent studies on the
anticancer properties of these compounds have been conducted. These studies investigated
not only digoxin and digitoxin but also other related cardiac glycosides, such as ouabain,
oleandrin, proscillaridin A, and bufalin [7-10]. Several mechanisms of action, including the
inhibition of cancer cell proliferation, the induction of apoptosis, and chemotherapy sensiti‐
zation, have been reported in a large number of published articles that support the potential
use of these compounds for cancer treatment [11-14]. However, further clinical studies are still
ongoing to better characterize the pharmacological and safety issues associated with these
compounds. This chapter provides an overview of the anticancer activities of cardiac glyco‐
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sides and describes the selectivity of these compounds, which could prove to be promising
treatments in cancer therapy.

2. The chemistry of cardiac glycosides and their biological activities

Cardiac glycosides from both plants and animals have been known for over one hundred years
[14]. Major plant-derived cardiac glycosides include digitoxin, digoxin, ouabain, oleandrin and
proscillaridin, which are extracted from the plant families Scrophulariaceae, Apocynaceae, and
Asparagaceae (Digitalis purpurea, Digitalis lanata, Strophanthus gratus, Nerium oleander and
Urginea maritima). These compounds consist of a steroidal nucleus linked with a sugar at
position 3 (C3) and a lactone ring at position 17 (C17) (Fig 1) [15]. The various types of sugar
moieties and lactones provide a large number of cardiac glycosides that, based on their lactone
moieties, can be divided into two sub-groups: cardenolides, which contain a five-membered
unsaturated butyrolactone ring, and bufadienolides, which contain a six-membered unsatu‐
rated pyrone ring. The core steroidal portion of each molecule has an A/B and C/D cis-
conformation, which has significant pharmacological relevance. The attached sugars, such as
glucose, galactose, mannose, rhamnose, and digitalose, determine the pharmacodynamic and
pharmacokinetic activities of each cardiac glycoside.

 

Bufadienolides Cardenolides 

Figure 1. Structural characteristics of cardiac glycosides

Cardiac glycosides have been found in animals as well as plants; for example, bufadienolide
was isolated from the venom of a toad species [16], and endogenous digitalis-like compounds
have been found in mammalian tissues [17,18]. Several studies have reported that ouabain and
proscillaridin A are found in human plasma, that digoxin and marinobufagenin are present
in human urine, and that 19-norbufalin exists in cataractous human lenses [18-22]. Table 1
presents a list of the cardiac glycosides found in plants and animals along with their chemical
structures.
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A digitalis preparation from Digitalis purpurea was first used for the treatment of congestive
heart failure by William Withering in 1785 [23]. Currently, digoxin is recognized as a primary
treatment for patients with heart failure. Its mode of action has been identified as the potent
inhibition of Na+/K+-ATPase. Na+/K+-ATPase, a ubiquitous transmembrane enzyme, is a p-type
cation transporter that actively drives two K+ ions into the cell and drives three Na+ ions out
of the cell using ATP as an energy source. This pump plays a vital role, acting as a secondary
transporter of nutrients such as glucose and amino acids and helping to maintain the electro‐
chemical gradient by keeping the intracellular Na+ concentration low [24]. The elevation of the
intracellular Na+ level in response to cardiac glycosides stimulates the Na+/Ca2+ exchanger
mechanism. As a result, the intracellular Ca2+ concentration is increased, consequently
promoting cellular events such as myocardial contractibility, accounting for the positive
inotropic effects of the cardiac glycosides.

Accumulating evidence has established that the Na+/K+-ATPase acts as a scaffold for signaling
molecules or for the formation of a signalosome complex that activates various signaling
cascades. Several signaling molecules, such as caveolin, SRC kinase, epidermal growth factor
receptor (EGFR), and the inositol 1,4,5-triphosphate (IP3) receptor, have been investigated
[25-27]. The inhibitory effects of cardiac glycosides on Na+/K+-ATPase activity might lead to
alterations in these downstream transduction pathways, which could account for the biological
properties of these compounds, including their anticancer activities.

Name Structure

• Digoxin (Cardenolide)

• From Digitalis purpurea

• Family: Scrophulariaceae

• Digitoxin (Cardenolide)

• From Digitalis purpurea

• Family: Scrophulariaceae
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Name Structure

Ouabain (Cardenolide)

From Nerium oleander

Family: Apocynaceae

• Oleandrin (Cardenolide)

• From Nerium oleander

• Family: Apocynaceae

• Proscillaridin (Bufadienolide)

• From Urginea maritima

• Family: Liliaceae
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Name Structure

• Cinobufagin (Bufadienolide)

• From Bufo bufo gargarizans

• Family: Bufonidae

• Bufalin (Bufadienolide)

• From Bufo gargarizans

• Family: Bufonidae

• Marinobufagenin (Bufadienolide)

• From Bufo marinus

• Family: Bufonidae

Table 1. The chemical structures of cardiac glycosides
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3. Clinical analysis of the effects of cardiac glycosides on cancers

Epidemiologic evidence for the anticancer effects of digitalis was first reported in 1980 by
Stenkvist and colleagues. Their study indicated that breast cancer tissue samples from
congestive heart failure patients treated with cardiac glycoside therapy exhibited more benign
characteristics than cancer tissue samples from control patients who were not treated with the
cardiac glycoside regimen [28]. In addition, 5 years after undergoing mastectomy, the recur‐
rence rate for the cardiac glycoside treated-group was 9.6 times lower than that for the control
group [28-29]. Four years later, Glodin and colleagues investigated the mortality in 127 cancer
patients who received digitalis therapy. These researchers reported that up to 21 patients in
the control group died from cancer, whereas only one member of the digitalis-treated group
died [30]. Interestingly, the long-term observations of Stenkvist and colleagues also supported
the previous finding that digitalis therapy significantly reduces the mortality rate of breast
cancer. Among 32 breast cancer patients treated with digitoxin, only two (6%) died, whereas
the control group of 143 patients had 48 cancer-related deaths (34%) [4]. Several types of cancer
other than breast cancer have also been examined. Recently, Haux and colleagues published
an analytical descriptive study on the antineoplastic effects of cardiac glycosides on leukemia
and cancers of the kidney/urinary tract [31]. This study indicated that the doses of cardiac
glycosides that are active against cancers are similar to the therapeutic plasma concentrations
found in cardiac patients treated with these drugs. These clinical observations have established
the benificial outcome of cardiac glycosides for cancer therapy. Although these agents seem
to be safe at the doses used for the treatment of cardiac disorders, further supporting evidence
is still needed before these compounds can be used clinically.

4. Anticancer properties and their mechanisms

At present, cancer is one of the major causes of death worldwide. Extensive research has been
conducted over the last decade in an attempt to identify promising compounds that have
anticancer effects. Cardiac glycosides are natural compounds that have been previously
documented to be antiarrhythmic agents, and their potential anticancer properties were
identified thereafter. Cardiac glycosides have been shown to have anticancer activities during
various stages of carcinogenesis. These activities include antiproliferative, pro-apoptotic, and
chemotherapy sensitization effects.

4.1. Antiproliferative effects

Aberrant cell growth is recognized as one hallmark of cancer [32]. Excessive cell replication is
the basic characteristic of cancer progression that facilitates tumor formation and expansion.
Defects in normal growth signals result in the inadequate regulation of cell division, which
drives quiescent cells to proliferate [33]. Cardiac glycosides have been demonstrated to have
antiproliferative activities via their regulation of the cell cycle. The extract from the skin glands
of Bufo bufo gargarizans, which contains bufalin, is able to induce arrest in human malignant
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melanoma cells in the G2/M phase of the cell cycle [34]. In lung cancer cells, bufalin upregulates
p21 WAF1 and suppresses cyclin D expression in response to the activation of p53 [35]. Because
the tumor suppressor p21 WAF1 acts as a potent inhibitor of cell cycle progression [36] and
because cyclin D1 is a subunit of cyclin dependent kinase (Cdk)-4 and Cdk-6, which are
responsible for cell cycle progression from G1 to S phase [37], these changes prevent cells from
entering the next phase of the cycle.

Likewise, digitoxin causes cell cycle arrest in G2/M in a dose-dependent manner, resulting in
a large increase in the number of cells in the sub-G0 phase [38]. A synthetic monosaccharide
analog of digitoxin, D6-MA, has 5-fold greater potency than digitoxin. The mode of action of
D6-MA has been reported to involve the downregulation of key elements required for cell
replication, including cyclin B1, cdc2 and survivin. It has been suggested that these events
might be downstream signaling events resulting from the modulation of second messengers,
such as tyrosine kinase Src, PI3K, phospholipase C and Ras/MAPK pathway components, by
cardiac glycoside-bound Na+/K+-ATPase [25-27].

An antiproliferative effect of ouabain against human breast and prostate cancer cells has also
been reported [39]. Ouabain mediates the depletion of the Na+/K+-ATPase through endocytosis
and a degradation-dependent pathway, which in turn elevates the level of the cell cycle
inhibitor p21. It has been suggested that the cellular level of Na+/K+-ATPase plays an important
role in determining the rate of cell growth. Additional mechanistic studies have demonstrated
that an increase in the intracellular Ca2+ concentration following treatment with digoxin,
digitoxin, or ouabain is associated with the antiproliferative effects of these compounds in
androgen-dependent and androgen-independent prostate cancer cell lines [40]. Because Ca2+

serves as a mediator in several signaling pathways, the elevation of the Ca2+ concentration may
stimulate cellular processes that switch the cells into a growth-retarded state. Several of the
antiproliferative effects of cardiac glycosides are summarized in Table 2.

4.2. Induction of apoptosis

Resistance to apoptosis in response to stress conditions is a basic feature of cancer cells and
results from the overactivation of survival pathways or the attenuation of cell death mecha‐
nisms. The primary readout for screens of anticancer agents is thus usually an apoptosis-
inducing effect. Cardiac glycosides have been established as cytotoxic agents that are active
against various types of cancers. As mentioned above, the inhibition of Na+/K+-ATPase by
cardiac glycosides triggers the formation of the signalosome complex, contributing to the
initiation of signaling cascades that favor cell death [25-27].

It is well documented that apoptosis generally occurs through two main pathways: the
mitochondrial-dependent and death receptor-dependent pathways [46]. Gan and colleagues
have reported that oleandrin induces cervical cell apoptosis through the mitochondrial cell
death mechanism [47]. This compound significantly stimulates the caspase-dependent
pathway by triggering the cleavage of caspase-3/7, -6, and -9 and by upregulating the proa‐
poptotic factor Bim. Similarly, data reported by Elbaz and colleagues support the hypothesis
that digitoxin mediates the induction of the mitochondrial apoptotic pathway via caspase-9
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activation [38]. This study demonstrated not only a cell growth inhibitory effect but also an
apoptotic induction effect for digitoxin.

Fas and TNF-related apoptosis-inducing ligand (TRAIL) are important mediators of the death
receptor pathway, and the deregulation of their expression is a major cause of chemoresistance
and immune escape in cancers [48]. Recently, Sreenivasna and colleagues investigated whether
oleandrin triggers the expression of the Fas receptor to potentiate apoptosis in cancer cells
without affecting normal primary cells [49]. Additionally, oleandrin has been found to be able
to attenuate the NF-kB pathway, which is a key pathway with antiapoptosis and pro-prolif‐
erative effects. Cardiac glycosides including oleandrin, bufalin, digitoxin, and digoxin also
initiate apoptosis through Apo2L/TRAIL by elevating the levels of death receptors 4 and 5 in
non-small cell lung cancer cells [50]. Interestingly, both Fas and Apo2L/TRAIL induce
apoptosis in cancer cells but have little to no effect on normal cells. Furthermore, our recent
work has demonstrated that ouabain was able to increse TRAIL-mediated lung cancer cell
death through anti-apoptosis Mcl-1 down-regulation [51]. Because of these results, cardiac
glycosides are of great interest in the field of cancer research.

A growing number of studies have indicated that the disruption of the oxidative state inside
cancer cells, due to either the suppression of the antioxidant system or the introduction of
reactive oxygen species, can lead to cell death [52]. In androgen-independent prostate cancer
cells, ouabain triggers apoptosis by interfering with mitochondrial function [53]. Because the
mitochondria are a major source of reactive oxygen species, the application of ouabain causes
a steady increase in the level of these species, which leads to apoptosis. This study also

Cardiac glycoside Mechanism

Digitoxin Induction of cell cycle arrest in G2/M phase through the downregulation of cyclin B1,

cdc2 and survivin [38]

Increase in the intracellular Ca2+ concentration [40]

Digoxin Increase in the intracellular Ca2+ concentration [40]

Inhibition of DNA topoisomerases I and II and an increase in the intracellular Ca2+

concentration [41]

Induction of cell cycle arrest through the upregulation of HIF-1α [42]

Ouabain Depletion of Na+/K+-ATPase and upregulation of p21 [39]

Increase in the intracellular Ca2+ concentration [40]

Inhibition of DNA topoisomerases I and II and increase in the intracellular Ca2+

concentration [41]

Oleandrin Attenuation of NF-kB, JNK and AP-1 (nuclear transcription factors) activation [43,44]

Bufalin Induction of cell cycle arrest in G2/M phase through the upregulation of p21 WAF1 and

p53 and the downregulation of cyclin D [34,35]

Inhibition of DNA topoisomerases I and II [45]

Proscillaridin A Inhibition of DNA topoisomerases I and II and an increase in the intracellular Ca2+

concentration [41]

Table 2. Antiproliferative effects of cardiac glycosides
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indicated that a low dose of ouabain was able to upregulate prostate apoptosis response 4,
which is required to reach the desired level of apoptotic cell death.

Other mechanisms of cardiac glycoside-induced apoptosis have also been reported (Fig 2).
Mitogen-activated protein kinases (MAPKs) have been reported to be targeted in bufulin-
induced human leukemia cell apoptosis [54]. JNK and AP-1 are transcription factors that
activate the transcription of various genes, including apoptosis-related genes [55,56]. In
response to bufalin treatment, the MAPK signaling pathway is triggered, leading to a notable
elevation in the activities of c-Jun N-terminal protein kinase (JNK) and AP-1.

Induction of 
mitochondrial 

pathway 
[38,47]

UpregulationInhibition of p g
of death 
receptor 

[49-50]

NF-kB
pathway 

[43-44,49]

Cardiac 
glycosides

Activation of 
MAPK pathway 

[54 57]

Induction or 
reactive 

oxygen species 
[54,57]

[53,58-59]

Figure 2. Molecular mechanisms of cardiac glycoside-induced apoptosis
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4.3. Sensitization to chemotherapy and enhancement of radiotherapy sensitivity

The susceptibility of a given cancer to chemotherapy often appears to decrease after several
rounds of chemotherapy. Resistance to drug-induced cell death is therefore a critical problem
in cancer therapy. Combination therapy may be initiated as an alternative approach to
overcome this problem. Furthermore, the use of combination therapy increases the cytotoxicity
of anticancer agents and reduces their serious side effects on normal cells by reducing the
dosage required for each individual agent. Cardiac glycosides have beneficial effects when
used as part of combination therapies. Felth and colleagues have investigated the cytotoxicities
of cardiac glycosides alone and in combination with various clinically relevant anticancer
drugs [60]. Of the glycosides tested, convallatoxin, oleandrin, and proscillaridin A have been
shown to be the most potent inducers of colon cancer cell death. Furthermore, co-treatment
with cardiac glycosides, including digoxin, digitoxin, oleandrin, and digitonin, and other
anticancer drugs, namely 5-fluorouracil, oxaliplatin, cisplatin, and irinotecan, was shown to
result in a substantial increase in cancer cell death. However, this study was only a primary
screen of the effects of these compounds, and the mechanisms responsible for these effects
have not been elucidated.

It is significant that the members of the ATP binding cassette family of transporters, including
ABCC7 (CFTR), ABCB1 (P-glycoprotein), and ABCC1 (MRP1), play critical roles in pumping
a broad range of drugs out of cells and that these transporters are obviously overexpressed in
several tumors [61]. Ouabain has been identified in a recent study to be able to regulate both
the expression and activity of ABCC1 in an embryonic kidney cell line. The impairment of
ABCC1 following ouabain treatment suggests that this compound might be able to prevent
the reduction of the therapeutic concentration inside target cells.

Radiotherapy is a traditional approach used to destroy localized and unresectable tumor cells
and to prevent these cells from metastasizing. The combination of chemotherapy and radiation
limits the aggressiveness of cancers and increases the patient survival rate. The basic concept
underlying chemoradiation is that chemotherapeutics are administered to make cancer cells
more susceptible to radiation. Unfortunately, most cancers develop chemoresistance, and
anticancer agents have serious side effects in normal cells. The administration of potent
anticancer agents with less toxicity against normal cells to sensitize the tumor cells to readio‐
therapy is a promising strategy. Cardiac glycosides are substances that exhibit selectivity and
significant activity against cancer cell lines; thus, the addition of these compounds to existing
chemoradiation regimens has been investigated. Huachansu, which is extracted from the skin
glands of Bufo bufo gargarizans, exhibits a radiosensitizing effect on human lung cancer cells
[62]. This Chinese medicine contains a group of steroidal cardiac glycosides and substantially
increases radiation-mediated cell death via a p53-dependent pathway. The underlying
mechanism involves the cleavage of caspase-3 and poly-(ADP-ribose) polymerase (PARP)
concurrent with the downregulation of the antiapoptotic protein Bcl-2 and the inhibition of
DNA repair.

The ability of ouabain to sensitize cancer cells to radiotherapy has also been established.
Transformed fibroblasts and tumor cells exposed to gamma radiation undergo apoptosis in
the presence of ouabain [63-65]. In addition, the recovery of cells is clearly delayed when the
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cells are exposed to ouabain after irradiation. These events are the results of the inhibitory
effect of ouabain on the G2/M phase of the cell cycle.

4.4. The selectivity and sensitivity of cardiac glycosides for cancer cells

The ideal anticancer agent would not only be effective but also selective against tumor cells.
As emphasized above, cardiac glycosides have beneficial anticancer effects but do not affect
normal cells. Oleandrin attenuates the activation of nuclear transcription factor-kB and
activator protein-1 and mediates ceramide-induced apoptosis [43]. These effects are apparently
specific to human tumor cells. Consistent with the above findings, bufalin selectively kills
leukemia cells, whereas normal leukocytes remain largely unharmed [66, 67]. Furthermore,
cardiac glycosides have also been shown to exhibit selectivity in sensitizing cancer cells to
apoptosis during radiation treatment. Large numbers of tumor cells and transformed cells die
in response to radiation following ouabain pretreatment, but normal cells do not [63, 65]. These
studies support the hypothesis that cardiac glycosides have selective anticancer effects,
suggesting that these compounds have potential clinical uses.

This selective killing effect has received attention in the search for the fundamental differences
between cancer cells and normal cells that modulate the survival pathway. One attempt to
identify such differences demonstrated that the subunit composition of Na+/K+-ATPase is
dissimilar in rodent and human cancer cells, affecting the sensitivity to apoptosis induced by
cardiac glycosides [68]. The Na+/K+-ATPase consists of two main subunits, the catalytic α
subunit and the glycosylated β subunit. It is well known that the α subunit serves as a binding
site for cardiac glycosides, Na+, K+ and ATP, whereas the β subunit plays a role in the regulation
of heterodimer assembly and insertion into the plasma membrane [69, 70]. Recent data indicate
that the α1 and α3 subunits are commonly expressed in human tumor cells, whereas only α1
can be found in rodent tumor cell lines [71,72]. It has also been suggested that the lack of the
α3 subunit in rodent cancer cells causes resistance to apoptosis mediated by cardiac glycosides.
This finding strengthens the hypothesis that normal cells might have lower α3 subunit
expression levels than cancer cells, accounting for the selective anticancer effects of cardiac
glycosides. Furthermore, it has been demonstrated that the biological activity of cardiac
glycosides results from the binding of these compounds with all α subunits, but the α3 subunit
is a favorable target [73]. Ouabain, for example, has a 1000-fold stronger interaction with the
α3 isoform than the α1 isoform [74].

Expanding on the above findings, that the expression of the α3 subunit has been shown to
increase concurrent with the decrease in α1 subunit expression in human colorectal cancer and
colon adenoma cell lines, whereas no significant alteration of α3 subunit expression is detected
in normal kidney and renal cells [75]. These results indicate that the overexpression of the α3
subunit is associated with responsiveness to cardiac glycosides. Because all α subunits are
commonly expressed at a basal level in cancers, the α3/α1 ratio might be a marker of cell
sensitivity to cardiac glycosides, and this ratio could be determined in tumor biopsy samples
taken prior to treatment with cardiac glycosides [76]. A lower α3/α1 ratio may indicate
unresponsiveness to cardiac glycosides; conversely, cardiac glycoside treatment may improve
the clinical outcomes of patients who have tumor tissues with higher ratios.

Anticancer Properties of Cardiac Glycosides
http://dx.doi.org/10.5772/55381

75



It has been established that the α1 isoform of the Na+/K+-ATPase plays a critical role in the
progression of non-small cell lung cancer. The suppression of α1 subunit expression by RNA
interference attenuates the invasiveness of cancer, reducing both migration and proliferation
[77]. In addition, an increase the α1 subunit level enhances sensitivity to cardiac glycosides. In
more than half of glioblastoma samples, the level of Na+/K+-ATPase α1 mRNA was markedly
elevated, up to 10 times greater than that in normal samples [78]. Similarly, significant
upregulation of the α1 isoform was observed in metastatic melanoma cell lines and melanoma
tissue samples [79, 80]. These results indicate that the responsiveness of either cancer cells or
normal cells to cardiac glycosides based on the α3/α1 ratio is tissue specific. It is important to
determine the differences in the expression levels of the α subunits between cancer cells and
normal cells. Furthermore, the characterization of the specificity of each cardiac glycoside for
each enzyme subunit is necessary to identify cancers with the appropriate α3/α1 expression
pattern for treatment and to reduce the effect on normal cells, thus optimizing the effectiveness
of cardiac glycosides as potent anticancer drugs.

5. Conclusion

Cancer remains a life-threating disease that is typically characterized by frequently related to
dysregulated cell growth and resistance to apoptosis. Within the past decade, cancer research
has provided interesting insights with the potential to define the exact causes of cancer and to
aid in the development of anticancer agents with enhanced effectiveness against and selectivity
for cancer. Several plant-derived compounds were once used as ingredients of treatments for
diseases without any established scientific evidence to support the claimed effects. Later, these
compounds were found to exhibit relevant biological activities. Numerous studies have
screened medicinal plants for compounds with anticancer activity, including cardiac glyco‐
sides. Generally, cardiac glycosides are recognized as antiarrhythmic drugs that function by
inhibiting Na+/K+-ATPase. These compounds have been reported to be therapeutically
beneficial for the treatment of various tumor types because of their antiproliferative effects,
ability to induce apoptosis, and ability to sensitize cells to chemo/radiotherapy-induced cell
death.

As already emphasized, cardiac glycosides have a narrow therapeutic index, which could
cause serious cardiovascular toxicity. Interestingly, it has been observed that the concentration
required to treat cancer was lower than of that used to treat cardiac disorders. Furthermore,
cardiac glycosides appear to exert a cancer-specific killing activity by targeting the Na+/K+-
ATPase α subunit in tumor cells. However, the expression pattern of the enzyme subunits and
the target specificity of cardiac glycosides must be optimized. Synthetic cardiac glycosides
have been designed to achieve the desired effects; these compounds include UNBS-1450
[81,82] and D6-MA [38 ,83]. Although cardiac glycosides have potential effects on cancer, at
present, evidence supporting their usefulness is still needed, and the safety profile of cardiac
glycosides as anticancer agents must be determined.
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