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1. Introduction

In all nuclear reactors some neutrons can be absorbed in the resonance region and, in the
design of these reactors, an accurate treatment of the resonant absorptions is essential. Apart
from that, the resonant absorption varies with fuel temperature, due to the Doppler broad-
ening of the resonances (Stacey, 2001). The thermal agitation movement of the reactor core is
adequately represented in microscopic cross-section of the neutron-core interaction through
the Doppler Broadening function. This function is calculated numerically in modern sys-
tems for the calculation of macro-group constants, necessary to determine the power distri-
bution in a nuclear reactor. This function has also been used for the approximate
calculations of the resonance integrals in heterogeneous fuel cells (Campos and Martinez,
1989). It can also be applied to the calculation of self-shielding factors to correct the meas-
urements of the microscopic cross-sections through the activation technique (Shcherbakov
and Harada, 2002). In these types of application we can point out the need to develop pre-
cise analytical approximations for the Doppler broadening function to be used in the codes
that calculates the values of this function. Tables generated from such codes are not conven-
ient for some applications and experimental data processing.

This chapter will present a brief retrospective look at the calculation methodologies for the
Doppler broadening function as well as the recent advances in the development of simple
and precise analytical expressions based on the approximations of Beth-Plackzec according
to the formalism of Briet-Wigner.
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2. The Doppler broadening function

Let us consider a medium with a temperature where the target nuclei are in thermal move-
ment. In a state of thermal equilibrium for a temperature T, the velocities are distributed ac-
cording to Maxwell-Boltzmann distribution (Duderstadt and Hamilton, 1976),

3
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where N is the total number of nucleus, M is the mass of the nucleus and k is Boltzmann’s
constant.

Considering the neutrons as an ideal gas in thermal equilibrium, it is possible to write the
average cross-section for neutron-nucleus interaction taking into consideration the move-
ment of the neutrons and of the nucleus as:

&(v,T)z%JAd:iV(\;—;I)a(I;—;I)f(;), (2)

where f (17) is the distribution function of Maxwell-Boltzmann as given by equation (1) and
V=V () is the velocity of the target nuclei. Denoting v,=v—-V the relative velocity between

the movement of the neutron and the movement of the target nucleus and considering the
isotropic case, that is, with no privileged direction, it is possible to separate the integration
contained in equation (2) in the double integral:

o(0,T)= %I:dVsz[lﬁ/jJ;ﬂvyo'(vr)d;}. 3)

It is possible to see clearly in equation (3) that the cross-section depends of the relative veloc-
ity between the neutrons and the target nuclei. As the nuclei are in thermal movement, the
relative velocity can increase or decrease. This difference between relative velocities rises to
the Doppler deviation effect in cross-section behaviour. After integrating equation (3) in re-
lation to the azimuthal angle (¢) the average cross-section for neutron-nucleus interaction
can be written thus:

o(0,T)= z—; [Favv? f(\;)_[; v,0(v, )sin 6do. 4)

Denoting u=cosf so that du=-sin0d0, equation (4) takes the form of:

o(0,T)= %J-:dVsz(\;)flvra(vy M. 5)
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From the definition of the relative velocity one has the relation,
vf =0 +V? - 20V, (6)

and, as a result,

e v dv, ' (7)

oV

With the aid of a simple substitution, using relations (6) and (27), equation (5) is thus written as:
o(o,7) ——J’ dVVf(V)I‘ " 2 (0, Mo, (8)

In equation (8), the limits of integration are always positive due to the presence of the mod-
ule. As a result, one should separate the integral found in equation (8) into two separate in-
tegrals, as follows,

o(o,7)= {j V| oo (o, o, + [ avipn) [ )dvy}- )

It is possible to modify the limits of integration for equation (9) taking into account that the
mass of the target nucleus is much larger than the mass of the incident neutron. In terms of
relative velocity, equation (9) can be written as:

tvz

o (o, o, [~ VYR . (10)

(o, b0, |, dVVf(V)+I

In replacing the expression of the Boltzmann distribution function, equation (1), in equation
(10) one has:

(o)~ 22 [ e [ o [ e o [ ave (11)

M
where it was defined 2= =4 - Introducing the variables for reduced velocities @, =fv, and

@ =fv, equation (11) is written by:

— B 2ﬂ2 .
( ’T)_ z\/— (12)
|17 oo o, o [ avve ™ 4 [ oo (o, Yo, [ e |
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Integrating equation (12) in relation to V one gets to the expression:
B l © —(T-@ ’ —|m+m 5
U(U,T)=27\/>J'O wrza(mr)|:e (o= _ o) ]dwr. (13)
w T

For resonances (that is, for the energy levels of the composed nucleus) it is possible to de-
scribe the energy dependence of the absorption cross-section by a simple formula, valid for
T =0K, known as Breit-Wigner formula for resonant capture, expressed in function of the
energy of the centre-of-mass by,

1/2
Iy( E 1
o, (Eoy) =0, F(on A B (14)

where E is the energy where the resonance occurs and E,, is the energy of the centre-of-
mass of the neutron—-nucleus system. Apart from that, we find in equation (14) the term o,
that is the value of the total cross-section o,,,(E) in resonance energy E, that can be written

in terms of the reduced wavelength 7, by:

(A+1) T,
A’E(ev) T

r
0, =4k}~ g = 2608 x10° g (15)

where the statistical spin factor g is given by the expression:

_2)+1
g_2(21+1)’

(16)

where [ is the nuclear spin and ] is the total spin (Bell and Glasstone, 1970).

In replacing the expression (14) in equation (13) one finds an exact expression for the aver-
age cross-section, valid for any temperature:

i P
oy (v,T) =0, ?7 \/;Uz X
1/2
[, [EE] 4— [e_ﬁZ(v_v,)z ) } (17)
2
o) 1i 4 (k)

In a system with two bodies it is possible to write the kinetic energy in the centre-of-mass
system, by
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E,, =—2L, (18)

M
where M= rrin-l-iM is the reduced mass of the system.

For the problem at hand, of a neutron that is incident in a thermal equilibrium system with a
temperature T, it is a good approximation to assume that v=v,. Thus, the ratio between the

kinetic energy of the incident neutron and the kinetic energy of the centre-of-mass system is
thus written

EciM A+l
E, A (19)
where A is the atomic mass of the target core. Resulting:
y Z%(ECM _Eo) (@)
r (20)
x:F(E—EO) (b)

1
and denoting f2= 5p2 One finally obtains the expression for the cross-section of radioactive
Uth

capture near any isolated resonance with an energy peak E, as written by:

_ ry Eq "
UAEﬂ_%F[Ej W(x2), (21)
where
TR I A P 28
‘P( ,Lf) 2'[‘25/1_1+y2|: p[ 202th ] p[ 2212”, X (22)

where v, is the module for relative neutron-nucleus velocity, v is the module for neutron ve-

locity, and

f=—. (23)

—

The Doppler width for resonance I, is expressed by:
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r, =(4ekT/A)". (24)

All the other nuclear parameters listed below are well established in the literature,

A= mass number;

T'= absolute temperature;
E=energy of incident neutron;
E )= energy of centre-of-mass;

E,= energy where the resonance occurs;

I'=total width of the resonance as measured in the lab coordinates;
I',=(4ExT | A)'2= Doppler width of resonance;

v=neutron velocity module;

v,=lv-V | = module of the relative velocity between neutron movement and nucleus

movement;
2kT .
vy, =1 = module of the velocity for each target nucleus.

3. The Bethe and Placzek approximations

The expression proposed by Bethe and Placzek for the Doppler broadening function /(x, &)
is obtained from some approximations, as follows:

1.

one neglects the second exponential in equation (22), given that it decreases exponen-
tially and is negligible in relation to first integral in equation (22) given that
(0+9,)2>>(0-0,)>

it is a good approximation to extend the lower limit for integration down to —eo in
equation (22), given that the ratio between the energy of neutron incidence and the
practical width is big.

being E,, the energy of the system in the centre-of-mass system and E the energy of

the incident neutron, the following relation is always met:

FY2 _ 12 [1 . ECM _ E]]/Z _pn (1 ) 77)1/2 ) (25)

(&%) E
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Eoy-E
where it was denoted that 17=CMT. Equation (25) can be expanded in a Taylor series

and, to the first order, is written by

2
12 _ p1/2 n.n ol Eym—E
ECM =E (1+2—4+.4.]~E [1+ oF j (26)

In terms of the masses and velocities, equation (26) is written as follows:

M 2 1/2 ) 1/2 _
R mo 2 2

= 1+ , 27
[ ‘ J [} (27)

where My, is the reduced mass of the system. For heavy nucleus M =m and equation (27)

can be written as:

2 2
Z]r:vr+v / (28)
20
so that,
2 2 2 2
v—vr:v—v'ﬂj v —v,. (29)
2v 20

In replacing approximation equation (29) in the remaining exponential of equation (22) one
finally obtains the Doppler broadening function that will be approached in this chapter,

e B i (30)

= l+y2

The approximations made in this section apply in almost all the practical cases, and are not
applicable only in situations of low resonance energies (E <1eV') and very high tempera-
tures.

4. Properties of the Doppler broadening function ¢ (x, &)
The function ¢(x, &) as proposed by the approximation of Bethe and Placzek has an even

parity, is strictly positive and undergoes a broadening as that variable £ diminishes, that is,
varies inversely with the absolute temperature of the medium. For low temperatures, that is,

35
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when temperature in the medium tend to zero, the Doppler broadening function can be rep-
resented as shown below:

limy (x,¢) = \/—lr‘ilﬁjjljyy exl{i(xy)z} = 1)

Equation (31) is known as an asymptotic approximation of the Doppler broadening func-
tion. For high temperatures, that is, when the temperature of the medium tends to infinite,
the Doppler broadening function can be represented through the Gaussian Function, given
that:

g 2| ¢ &,
;lmgy x, &)= 2\/—;13;'[”1+y exp{ Z(x—y) }_2\/;6)(})[4)( ] (32)
E=0.50
£=0.15
£=0.05
100 40 B0 g0 100

Figure 1. The Doppler broadening function for £€=0.05, 0.15 and 0.5.

The area over the curve of the Doppler Broadening function is written as below and, as it
consists of separable and known integers it is possible to write:

JM dy jw Jixy) 2\/_( )(\/—2]: (33)

*°°1+y

[t an= 5
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From equation (33) once concludes that the area over the curve of the Doppler Broadening
function is constant for the intervals of temperature and energy of interest in thermal reac-
tors. This property is valid even for broadened resonances as shown in Figure 1, considering
the different values of variable &.

5. Analytical approximations for the Doppler broadening function

This section describes the main approximation methods for the Doppler broadening func-
tion, according to the approximation of Bethe and Placzek, equation (30).

5.1. Asymptotic expansion

A practical choice to calculate the Doppler broadening function is its asymptotic expression

resulting from the expansion of the term 1 in equation (30) in a Taylor series around

2
ty
y=x.

1 1 2x -1+ 3% 4x(—1+x2)

e T TR

=2 +... (34)

In replacing equation (34) in equation (30) and integrating term by term, one obtains the fol-
lowing the asymptotic expansion:

2 (31
= +
N I

vl 1 | g (520 100 1)

54 (1 +x° )4

(35)

Despite equation (35) being valid only for | x.&1>6, it is quite useful to determine the be-
haviour of the Doppler Broadening function in specific conditions. For high values of x, it is
possible to observe that function Y(x, &) presents the following asymptotic form:

(x,¢)

Q

(36)

5.2. Method of Beynon and Grant

Beynon and Grant (Beynon and Grant, 1963) proposed a calculation method for the Doppler
broadening function that consists of expanding the exponential part of the integrand of the
Doppler broadening function ¢(x, &) in the Chebyshev polynomials and integrate, term by
term, the resulting expression, which allows writing;:

37
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Y(a, b)=%{ﬁcos(ab)[1— E,(a)]e ”2+] (a,b)}e '%hz, (37)

1
where a= T‘E and b=¢& - x and still,

+13{£(ub)4 %(.w)ﬁ }+ (38)
1

and,
E ()%; dy. (39)

For values where the condition | x.& | >6 was met (Beynon and Grant, 1963) is recommend-
ed the use of the asymptotic expression of the function 1 (x, &), equation (36). It should be
pointed that the results obtained by this method have become a reference in several works
on the Doppler broadening function.

5.3. Method of Campos and Martinez

The core idea of the method proposed by (Campos and Martinez, 1987) is to transform the
Doppler broadening function from its integral form into a differential partial equation sub-
jected to the initial conditions. Differentiating equation (30) in relation to x one obtains:

6|//(x,§) 75)(
ox 2

Lo e [ ] S}

Acknowledging in equation (40) the very Doppler broadening function and the term of in-
terference as defined by the integral:

(40)

o) £ Mgl o) | @)

it is possible to write:

) &) 2 (2)
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Deriving equation (42) again in relation to x, after expliciting function x(x, &) in the same
equation, one has:

y(xe) 526"’(" €), £ (x(f +2) (x.¢)

axz ox

(43)

y*dy ¢ 2
8fj°°1+y Xp[_él(x_y) }
v 1
The right side of equation (43) can be written in another way, given that T+12° ] 15,2
Yy Yy

S 2V

e |26

In replacing the result obtained in (44) in equation (43) one obtains the differential equation
where Campos and Martinez based themselves to obtain an analytical approximation for the
broadening function ¢(x, &):

i (x ég) +dx a(//(x'é)+(§2x2+§2+2)(//(x,cf):cfz, (45)

£t ox

subjected to the initial conditions:

(46)
oy (x, & ) B
ox lx—o =0 (b)
Admitting that function ¢(x, £) may be expanded in series,
W(x,é:):ZC"(Cf) x" (4:7)

and in replacing-se equation (47) in the differential equation as given by equation (45), one
obtains after some algebraic manipulation the following polynomial equation:

8 24
|:§2c2+(§2 +2)C0}+{§2C3+(§2+6)61}x+
+Z|: (n+2)(11+1)cn+2 (4n+§ +2)C +éz c, Z:IXY =§2,

n=2

(48)
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where:
¢o=Yo

2
€1= %[5 2-(g2+ 2)1/’0}/

and all the other terms are calculated from the following relation of recurrence:

g2 (4n+&2+2)c,+&%,
1= 4 n+2)(n+1)

The representation in series for the Doppler broadening function, as given by equation (47),
is valid only for | x.& | <6. For the cases where | x.& | >6, (Campos and Martinez, 1987) used

the asymptotic form as given by equation (35), as well as proposed by Beynon and Grant.

5.4. Four order method of Padé

The Padé approximation is one of the most frequently used approximations for the calcula-
tion of the Doppler broadening function and its applications and can efficiently represent
functions, through a rational approximation, that is, a ratio between polynomials. For the
four-order Padé approximation (Keshavamurthy& Harish, 1993) they proposed the follow-

ing polynomial ratio:

a, +a, (hx)2 +a, (hx)4 +a, (hx)6
by +b, (hx)" +b, (hx)" +b, (hx)" + b, (hx)°

y(x&)=h , (49)

whose coefficients are given in Tables 1 and 2.

Jr(=9m +28)
=T =

Po=AT N Sl6n 220 + 32)

_ —15m°+88m-128 _ 36m*-195m +256
P1="l6n2—20m + 32) 9= 6l6n 2297 + 32)
_ Am(337-104) _ m(=337+104)
P2 elen2-20 + 32) 9= 66 2—20m + 32)
_ -9m?+69m-128 _ 9m?-69m +128
P3= 362201 + 32) 9= 36 2— 20 + 32)

Table 1. Coefficients p and g of the four-order Padé Approximation
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h ='5/2

aoz(po+ p:h —psh 2= psh 3)(1 —~qih —g,h 2+ qsh >+ quh 4)

azz(p2+3p3h)(1 —-q1h —g,h 2+ gsh >+ q4h 4 4 (po+ p:h —psh 2= psh 3)(q2—3q3h -6q,h 2),
(—p1 +2p,h +3psh 2)((71 +2g,h —3g3h °—4q,h 3)

342574(90 +p.h = psh 2_P3h 3) =k (pz +3psh )(Q2_3Q3h -6qg,h 2)—
p3(q1 +2g,h —3q3h *—4q,h 3) & (—/o1 +2p,h +3psh 2)(q3 +4q,h)

56:(74(/32 +3psh )—pg(% +4q,h )

bO:(1 ~q;h —q,h 2+ q3h 2+ quh 4)2

b2:2(1 -q,h —-g5h 2 +qgsh 3+q4h 4)(q2—3q3h -6q,h 2) + (q1 +2g,h —3g3h 2—4q4h 3)2

ba=(0,-305h ~60,h 2%+ 2q,(1-g;h —quh 2+ g5h * +quh 4)+
2(q1 +2q,h —3qsh 2~ 4q,h 3)(q3 +4q,h)

be=20,(q,-3qsh —60,h 2) + (g5 + 4g,h )2

b8:q42

Table 2. Coefficients h, a and b of the four-order Padé Approximation

From the coefficients of Tables 1 and 2, and of equation (49), one obtains in the end the fol-
lowing analytical approximation for function ¢(x, &), according to the four-order Padé ap-
proximation:

v(x€) (50)

where 71(x, &) and w(x, &) are the following polynomials:

n(x&)=2¢ (7, 089815404 - 10~ +1,146750844 - 10™ & + 8,399725059 - 107 &°

+3,622207053 - 107 & +9,957751740 - 10™ &* + 1,749067258 - 107 &°

+1,835165213 - 10” &° + 8,940072699 - 10" &7 — 2,539736657 - 107 &«

+2,069483991- 107 £°x” + 3,972393548 - 10™ &*x” +1,919319560 - 107 &7+ (51)
+3,670330426 - 10% £°x” + 2,682021808 - 10" ¢"x” +1,048748026 - 10" &*x*

+1,702523008 - 10 &x* +1,835165209 - 10 &°x* + 2,682021806 - 10" &7 x*

+8,940072688 - 10" £7x° )

and

41
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23 .2 23 .3

n(x,é) = (3,490642925 . 1023§ +3,464999381-107 &™ +2,050150991 - 107 &

19 .8 8

+7,933771118 - 107 &* + 3,670330427 - 10™ &”x° +1,788014539 - 10" £°x
+3,670330426 - 10™ &7 + 3,533894806 - 10° &° + 1,788014541-10" &°

+2,062859460 - 107 & + 3,426843796 - 107 £°x” + 5,586613630 - 107 &*x”

(52)

22 .5 2 21 .7 2

+2,649703323 - 107 &°x” + 6,613512625 - 107 £°x* +1,101099129 - 107 ¢ x

+7,301013353 - 10™ £°x” + 3,590774413 - 10° £*x* +1,101099125 - 10™ &”x*

21 .5 4 21 .6 _4 19 .8 2

+5,868438581-10" &7x" +4,000342261-10" &' x" +7,152058156 - 10 & x

+2,332237305 107 £°x° +1,072808721 - 10” £°x* +7,152058152 - 10" &°x°.

5.5. Frobenius method

In this method the homogeneous part of the differential equation that rules the Doppler
broadening function, equation (45), is solved using the Frobenius Method (Palma et. al.,
2005) that consists fundamentally of seeking a solution of the differential equation in the
form of series around the point x =x,, with a free parameter, that is, as follows:

v(x)=x e, (&) 2" = e, ()5, (53)

n=0 n=0

with ¢,#0 and where s is the parameter that grants the method flexibility.

Deriving equation (53) and replacing it in the homogeneous equation associated to equation
(45) one obtains, after grouping the similar terms:

w©

e, (n + s)(n +s-1) x4 icncfz |:(7/l + s) +<’82+2} X"

N - 4
n=0 , 0 (54)
i < n+s=2 0
= ;C" X" =0.
The initial equation of the problem, obtained when n =0, remembering that c,#0 is
Cos(s—l)zo. (55)

From equation (55), as ¢;#0, one obtains that s=0 or s=1. Using first s=0 and ¢,#0 one ob-

tains the following relations of recurrence:

) :_52(4n+§2—6)c

ST () e VAl for me2 or =3 (56)

& [cn_z (4n . 6) + cn_4§2}
= 4n(n + 1)

,valid forn > 4. (57)
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Considering the case where s=1, one obtains the other series linearly independent with the
first term, not null, denoted by ¢

) :_52(4n+§2—2)c

, 4n(n N 1) valid for n>4 (58)

n-27

e, ,(an+ &2 =2)+c, &2
c,=- [C 2( ! ) i J,validfornz4 (59)
4n(n+1)

With this the homogeneous solution assumes the following form:
v, (x,f) = (co +eo,x’ +oxt + ) + (on +Ex° +Ex" + ), (60)

where the coefficients are all known from the relations of recurrence, equations (56) to (59).
In writing function ¢, (x, &) as:

2.2\ x 2.2 4 4 0
1,//,1(x,‘§)=exp[—éZ a ZAnx":[l—g LI . +...]2Anx"

& > & s g, & 4
=A,+Ax+ AZ—IAO x° 4+ A3_ZA1 X7+ A4_ZA2+§A0 Xt 4+ (61)
&, s &g, & & e, & &
A ——A,+2—A | A - A A A A A A A |+
{5433219{ 67y a3 2T 3ga M0 77y 5T 3 T g

it is possible to determine all the coefficients A, equalling, term by term, equations (60) and

(61) so to write:

(62)

Acknowledging the expansion of the cosine and sine functions, one obtains an analytical
form to solve the homogeneous part of the differential equations that rule the Doppler

(X,@_exp[_ fzj][kl [i]k (iﬂ (63)

broadening function:
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In order to obtain the particular solutions of equation (45), and consequently its general sol-
ution, it is possible to apply the method of parameter variation from the linearly independ-

ent solutions:

§Zx2 §2x
v, (x,é) = exp[ . Jcos [ZJ (64)
gle ) §2x
v, (x,f) = exp( . )sm [ZJ (65)
Supposing a solution thus,
vy (1,6) =y (x,6) + iy, (x,€) (66)

where functions u,(x) and u,(x) are determined after the imposition of the initial conditions

expressed by equations (46a) and (46b) and of the imposition of the nullity of the expression:
() (x,€) + 1ty (x)y (2,6) =0, (67)
That, along with the condition,
0 (G, (08, () (0,6) =, (68)

Which results from the very equation (45), form a linear system whose solution is given by

the equations:

l gz §2x2 ) §2x §Z . ) §2x'2 ) ézx‘
ul(x)——zexp[ . ]sm[ZJSul (x):—?.l.o dx exp[ . ]sm(zj (69)
§2x‘2 gzx'

ol 22) -

2 2.2 2 2
i, (x)_iEXp[§: ]cos[ix]:uz (x):%joxdx‘ eXp[

Integrating equations (69) and (70),

u (x) = gf ew[%][ﬂf{iéxz_ 5} - f(%) + Zf(gﬂ (71)
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() -f\f exp[%][”f(i§x2—§)+erji(i§x2+ ;ﬂ (72)

it is possible to write the solution particular of equation (45) as follows:

= (jph( )wa(zgx oo 2]
ol o) o)

As the general solution of differential equation (45) is the sum of the solution of the homoge-

(73)

neous and particular equations, the initial conditions are imposed, as expressed by equa-
tions (46a) and (46b), to determine the constants:

o] 2

k, =0. (75)

Finally, according to the Frobenius Method, the Doppler Broadening function can be written
thus:

y(x.¢)= 5\2/; exp‘:—iéz (< -1)}05[%’{}

{HM(Y ;)Hm[i }mqs(v ;)}

(76)

1Ex— )

where ¢(x, &) erf(
5.6. Fourier transform method

In doing the transformation of variables u = %(x —y) in the full representation of the Doppler

broadening function, equation (30), one obtains the expression

e du

that can be mathematically interpreted as the convolution of the Lorentzian function with a
gaussian function, as exemplified by the equation below:

45
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+oo

V(E x)=f *g=[glu) Flr-u)du, 78)

—oo

1 1
where f(x-u)= A is the lorentzian function and g(u)=——e™ " the gaussian func-
1+ ix —Zz ’ ﬁ

tion. Function f(x -u) admits a full representation through the Fourier cosine transform

(Polyanin and Manzhirov, 1998), as being

f(x-u)= {e’m cos|:[x - 22) wi| dw. (79)

In replacing-se equation (79) in the integer of convolution, as given by equation (78), apply-

ing the properties of the integrals of convolution one gets to the following expression:

= +oo oo

Y& x)=f*g= Je'wJ.g(u) cos{ X -2% )w} du dw =J.e'w I(w) dw , (80)

0 —o0 0

where,

I(w) = \;;Ee”z Cos|:(x—22j w:| du
w? (81)
=\/1;C05(xw)£eu2cos|:[22] w:| du=e$ cos(xw).

In replacing equation (81) in the equation (80), one obtains a new full representation of the
Doppler broadening function, interpreted as a Fourier cosine transform (Gongalves et. al.,
2008):

© ,i,“, 0 ——2wa © —w—-—Zwb
PEX) = Ie £ cos(wx) dw = ;|: _[e £ w4 Ie £ dw ], (82)
0 0

1-1 1+1
where aE( 21x) and E( zzx).

The integrals on the right side of equations (3.25) and (3.26) are known as complementary
error functions, in which case one can conclude that:
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© 77"—272 wa (Xi'l)z 2 e

Je ¢ dw zﬁe i erfc (&—mx] (83)
0 2 2

0 7£72 wb c (Xiﬂ)z 2 .

Ie ¢ dw = L‘\/;e i erfc (EHEJ{]. (84)
0 2 2

In replacing equations (83) and (84) in equation (82) it is possible to write the following ex-
pression for the Doppler broadening function:

4

(xi+1)2§2 .
+#e 4 {1—erf (Z(’EJH—‘?H.

2

(xH)Z;2 .
y(eg)= S, [Wf (ézéﬂ
(85)

With some algebraic manipulation it is easy to prove that the Fourier transform method and
the Frobenius method, equations (85) and (76) respectively, provide identical results.

5.7. Fourier series method

From the representation of the Doppler broadening function in a Fourier cosine transform,
equation (82), it is possible to write

e cos(wy)dw = ];G(w)e’m cos(wx) dw, (86)

0

<=
=
o
X
<
Il

o —s

where function G(w)=¢ *" is even and can be expanded into a Fourier series in cosines:

G(w):%+iancos[$j, (87)
where
_er (L
we [:j (55)

el %) Pf (M]f [MH (89)

2L 2L 26L
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In replacing equation (87) in equation (86) and integrand, it is possible to write the following
expression for the Doppler broadening function in the form of Fourier series:

e O er{ L) S D e 2] ©0)

where

2 1y 2 7(%]2
F”(x,i,L); |:(mr) +L (1+x )}e , (91)

2 (1+5*) + (ne) (2 ~2¢* +(nx/ L)z)

Z(n,&,L)=erf [%j (92)

5.8. Representation of function y(x, &) using Salzer expansions

Although the formulations obtained for function 1 (x, &) from the Frobenius method, Fouri-
er transform and Fourier series methods only contain functions that are well-known in liter-
ature, it can be inconvenient to work with error functions that contain an imaginary
argument. One of the ways to overcome this situation is to calculate the real and imaginary
parts of function ¢(x, &) using the expansions proposed by Salzer (Palma and Martinez,
2009)

¢(x,§):erf[#j:Re¢(x,§)+1m¢(x,§)i, (93)

where:

Re¢(x,§) = —erf[ngr exp(i] X

| 94)
1 §2x o nmax exp(—n /4) (
{m:l:cos[z]—l}-#” ”Z:;’ an (x,‘f)}
. 62 1 §2x o nmax exp(—n2 /4)
Im¢(x,§):exp vy Esm - +; § W&x (x,é) ’ (95)

where auxiliary functions f,(x, &) and g,(x, &) are written by:

f,(x,6) ==&+ cosh ("i")cos["?j —nsinh ('@TXJ sin (ix] (96)
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2 2
8, (x, §) =& cosh (nixJ sin (ixj + nsinh [nixj cos (ﬁsz .

5.9. The Mamedov method

97)

Mamedov (Mamedov, 2009) put forward an analytical formulation to calculate function

1[)(x, &), based on its representation in the form of a Fourier transform, equation (82). Using

the expansions in series of the exponential and cosine functions,

-x _

cosx—blgrzciz[; (21)! ,

and the well-known binomial expansion

(x+y) = lim Z(H)m ( )x"fmym,

N~>wm 0

Mamedov proposed the following expressions for the Doppler broadening function:

for £>1and x>1

v(x¢)= 2\/‘1&‘021:( )(xz+11)i+1jlol:j(i)[l+(_l)j}
2y | aisja1 52(x2+1)

, (x +l) lim ZF( )

2i-j+1
g ] 2 4 M- k=0

92i+2 2 / 4

X[l_(_l)k]xk§2i+k+l r(_ 2i+k+1 ‘52("2 +1)2

for £<1 and x<15

(71)#/ x2j§2j+i+1 i+ 2j 1
v(xg)- (%‘ELZOJZO 2i1(2j1) r[ 2 ]

for £<1 and x=0

(98)

(99)

(100)

(101)

(102)
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y(e) =< 1~m§(‘1)i"fi”r[”1} (103)

1
o oo S 2l 2

where I'(x, &), y(x, &) and I'(x) are the well-know incomplete Gamma functions and F, (1)

are binomials coefficients defined by:

n(n-1).(n-m+1) integer n

AORS PRI (104)

, for non-integer n

6. Numerical calculation of function i (x, &)

The numerical calculation of the Doppler broadening function consists of calculating a de-
fined integral. There are many methods in the literature for this calculation, but in this chap-
ter we will describe a numerical reference method based on the Gauss-Legendre quadrature.
In basic terms, the Gauss-Legendre quadrature method consists of approximating a defined
integer through the following expression:

4

J.f(b;uﬂ+b;u}1x b—azwiftb—ani+b+a) (105)
where N is the order of the quadrature, 7;is the point of the quadrature and w; the weight

corresponding to the point of quadrature. The points of the Gauss-Legendre quadrature are
the roots of the polynomials of Legendre (Arfken, 1985) in the interval [ -1, 1], as generated
from the Rodrigues’ formula,

p(x)=Lt 7 {(xz 71)"}. (106)

for an isotope at a given temperature, that is, for a fixed value for variable &, the function
Y(x, &) decreases rapidly and a very high value is not necessary for what we will consider
our numerical infinite. This fact can be evidenced at Figure 1.

For that an adequate numerical infinite (x=5000) was considered, as well as a high-order
quadrature (N =15), whose points of Legendre and respective weights are found in Table 3.
The results obtained with this method, whose handicap is the high computing cost, can be
seen in Table 4.
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i X; w(x;)

1 0.9879925 0.0307532

2 0.9372734 0.0703660

3 0.8482066 0.1071592

4 0.7244177 0.1395707

5 0.5709722 0.1662692

6 0.3941513 0.1861610

7 0.2011941 0.1984315

8 0.0000000 0.2025782

9 -0.2011941 0.1984315

10 -0.3941513 0.1861610

11 -0.5709722 0.1662692

12 -0.7244177 0.1395707

13 -0.8482066 0.1071592

14 -0.9372734 0.0703660

15 -0.9879925 0.0307532

Table 3. Points of Legendre n; and respective w; weights.

§/x 0 0.5 1 2 4 6 8 10 20 40
0.01 0.00881 0.00881 0.00881 0.00881 0.00881 0.00880 0.00880 0.00879 0.00873 0.00847
0.02 0.01753 0.01753 0.01752 0.01752 0.01750 0.01746 0.01742 0.01735 0.01685 0.01496
0.03  0.02614 0.02614 0.02614 0.02612 0.02605 0.02594 0.02578 0.02557 0.02393 0.01836
0.04  0.03466 0.03466 0.03465 0.03461 0.03445 0.03418 0.03381 0.03333 0.02965 0.01857
0.05  0.04309 0.04308 0.04306 0.04298 0.04267 0.04216 0.04145 0.04055 0.03380 0.01639
0.10  0.08384 0.08379 0.08364 0.08305 0.08073 0.07700 0.07208 0.06623 0.03291 0.00262
0.15  0.12239 0.12223 0.12176 0.11989 0.11268 0.10165 0.08805 0.07328 0.01695 0.00080
0.20  0.15889 0.15854 0.15748 0.15331 0.13777 0.11540 0.09027 0.06614 0.00713 0.00070
0.25 0.19347 0.19281 0.19086 0.18325 0.15584 0.11934 0.08277 0.05253 0.00394 0.00067
0.30 0.22624 0.22516 0.22197 0.20968 0.16729 0.11571 0.07043 0.03881 0.00314 0.00065
035 0.25731 0.25569 0.25091 0.23271 0.17288 0.10713 0.05726 0.02816 0.00289 0.00064
040  0.28679 0.28450 0.27776 0.25245 0.17360 0.09604 0.04569 0.02110 0.00277 0.00064
0.45 0.31477 0.31168 0.30261 0.26909 0.17052 0.08439 0.03670 0.01687 0.00270 0.00064
0.50  0.34135 0.33733 0.32557 0.28286 0.16469 0.07346 0.03025 0.01446 0.00266 0.00063

Table 4. Reference values for Doppler Broadening Function g(x, ).
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7. Conclusion

A brief retrospective look at the calculation methodologies for the Doppler broadening func-
tion considering the approximations of Beth-Plackzec according to the formalism ofBriet-
Wigner was presented in this chapter.
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