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1. Introduction 

In manufacturing practice, actual dimensions are impossible as well as unnec-

essary to determine exact values. Under stable fabrication conditions, the 

processed dimensions often vary within certain controlled ranges. Tolerances 

are specified to control the actual dimensions of processed features within al-

lowable variation zones for product functional requirements and manufactur-

ing costs (Zhang, 1996; Ngoi and Teck, 1997; Lee and Tang, 2000; Fang and Wu, 

2000; Huang et al., 2001; Huang and Gao, 2003; Chen et al., 2003).  

The contemporary practice of tolerance design has two sequential phases: 

Product tolerance design and process tolerance design (Ngoi and Teck, 1997).  

In product tolerance design, designers use their knowledge and expertise to 

determine the assembly critical tolerances by computation or design hand-

books. These tolerances will then be allocated to component design tolerances 

(blueprint tolerances) in terms of component structures, assembly restrictions, 

and given design criteria. If a mathematical model is used, the objective func-

tion is usually to minimize manufacturing costs or to maximize weighted 

component tolerances. The constraints are often tolerance stack-up and eco-

nomical tolerance ranges of each component part (Swift et al., 1999; Ngoi and 

Min, 1999; Ngoi and Ong, 1999; Huang and Gao, 2002). Swift et al (1999) pre-

sented a tolerance optimization model in assembly stacks based on capacity 

design. In their research, systematic analysis for estimating process capability 

levels at the design stage is used in conjunction with statistical methods for op-

timization of tolerances in assembly stacks. Ngoi and Min (1999) presented a 

new approach for optimum tolerance allocation in assembly. Their method al-

lows all blueprint (BP) tolerances to be determined while ensuring that all as-

Source: Manufacturing the Future, Concepts - Technologies - Visions , ISBN 3-86611-198-3, pp. 908, ARS/plV, Germany, July 2006, Edited by: Kordic, V.; Lazinica, A. & Merdan, M.

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m



 Manufacturing the Future: Concepts, Technologies & Visions 522

sembly requirements are satisfied. Ngoi and Ong (1999) presented a complete 

tolerance charting in the assembly phase. Their method integrates product tol-

erance design and process tolerance design. The objective is to maximize the 

summation of weighted process tolerances. Huang and Gao (2002) presented a 

discrete hierarchy optimal approach for allocating the optimum component 

tolerance based on estimated process capability. They minimize the total 

manufacturing cost by using a cost-tolerance function. 

In process tolerance design, manufacturing engineers develop component 

process planning to determine manufacturing methods, machine tools, fix-

tures, cutting tools, cutting conditions, manufacturing routines, and process 

tolerances. At this stage, BP tolerances are the most important factors. If they 

are too tight and cannot guarantee the economic fabrication for components by 

using selected process planning, more precise machine tools, special fixtures, 

and expensive measurements should be introduced (Wu et al., 1998). This in-

evitably increases the manufacturing cost of the product. The manufacturing 

engineers may ask for revision of BP tolerances or of the process plan. In proc-

ess tolerance design, the most popular methods are also the optimal design for 

minimum manufacturing cost or maximum process tolerances. Huang et al. 

(2002) presented an optimal planar tolerance design approach to allocate di-

mensional and orientation geometric tolerances. A special relevance graph 

(SRG) was used to represent the relationships between manufactured elements 

and their size and tolerance information. In addition, the SRG is also applied 

for the geometric dimensions and tolerances. A linear programming model 

was established to solve the problem. Huang and Gao (2003) presented a 

nonlinear programming model for optimal process tolerance balancing. A lin-

ear programming model to determine process dimensions and process toler-

ances was used in Ji (1993) and Ngoi and Teck (1993). Similar methods to de-

termine optimum process tolerances were proposed by Wei and Lee (1995) and 

Chang et al., (2000).  

Though the above methods have been used successfully to distribute both 

component design tolerances and process tolerances in two different phases, 

they over-emphasize manufacturing factors and seldom consider quality as-

pects. Systematically, product satisfaction conflicts with manufacturing cost. In 

other words, a better product satisfaction requires smaller tolerances and a 

higher manufacturing cost. Taguchi quality loss is a useful monetary specifica-

tion to evaluate the quality factors (Taguchi et al., 1989; Taguchi, 1993; Jeang, 

1998). Therefore the best policy is to consolidate manufacturing cost and qual-

ity loss in the same optimization objective to best balance quality satisfaction 
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and tolerances (Taguchi, 1993; Huang and Gao, 2002). Using this method, the 

research work has been carried out in product design and component process 

planning stages, respectively. Lee and Tang (Lee and Tang, 2000) presented an 

optimization model for controlling dimensional tolerances of components with 

multiple functional characteristics by minimizing the sum of manufacturing 

cost and quality loss. Jeang (1998) introduced a mathematical optimization 

model to integrate manufacturing cost and quality loss for tolerance charting 

balancing during machining process planning. Jeang (1997) also discussed a 

set of models to determine the optimal product tolerance and to minimize 

combined manufacturing and related costs.  

Although tolerance assignment in the product design and process planning 

stages is often interdependent and interactive and affects overall production 

costs and product satisfaction, research into these areas is often conducted 

separately (Ngoi and Teck, 1997). There are some inherent shortcomings in this 

method. Firstly, in product tolerance design, designers are unable to allocate 

the real optimal BP tolerances to components because there is no manufactur-

ing information available at this stage. Secondly, in process tolerance design, 

manufacturing engineers develop process planning in terms of the component 

information obtained from mechanical drawings, technical notes, and others 

such as title bars. They are less concerned with functional roles of components 

than with their manufacturing capabilities. This sequential tolerance design 

method would result in some problems in cooperation, continuity, and consis-

tency between two separate design stages. Therefore, rework or redesign can-

not be avoided.  

Until recently, the concurrent tolerancing method has attracted the attention of 

some engineers (Zhang, 1996; Ngoi and Teck, 1997; Fang et al., 1998; Fang and 

Wu, 2000; Huang et al., 2001, Huang and Gao, 2003; Chen et al., 2003). Zhang 

(1996) first systematically presented mathematical methods for concurrent tol-

erancing and developed a general model of optimal tolerancing that supports 

concurrent engineering. Ngoi and Teck (1997) proposed a concurrent toleranc-

ing method for product design in which the assembly tolerance can be allo-

cated to the component design tolerance in an early stage of product design. 

Fang et al. (1998) proposed a concurrent tolerancing method to determine the 

optimum process tolerances with manufacturing cost and quality loss being 

considered simultaneously. But only a single assembly critical tolerance is re-

lated. Fang and Wu (2000) proposed a mathematical model to minimize the 

cost of sum machining. The constraints include assembly functional require-

ments, machining methods, stock remove tolerances, and economically attain-
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able accuracies. Huang et al. (2001) proposed a special relative hierarchical hy-

pergraph (SRHG) to represent the assembly. Through use of SRHG, assembly 

and process tolerance chains can be generated automatically. The method can 

allocate required assembly tolerances to process tolerances concurrently. 

Huang and Gao (2003) and Chen et al. (2003) proposed a concurrent method to 

allocate the optimal process tolerances in early product design stages. Here, a 

nonlinear optimization model is established to minimize the total manufactur-

ing cost.  

So far no design method has been presented to directly allocate multiple corre-

lated critical tolerances to their process tolerances in a concurrent design envi-

ronment. Therefore, the purpose of this paper is to introduce a concurrent op-

timal tolerancing method to realize this goal. To implement optimal robust 

tolerance design from product design stage to manufacturing stage, we first 

derive the quality loss function of multiple correlated critical tolerances in 

terms of manufacturing tolerances. A nonlinear optimization model is then 

given to minimize the summation of total component manufacturing cost and 

product quality loss. Finally the optimal processes are obtained by solving the 

model.  

This chapter is divided into the following sections. Section 2 discusses the 

models for converting the geometrical tolerances with fixed tolerance zones 

into equivalent bilateral sized dimensions and tolerances. In section 3, we dis-

cuss the methods to present concurrent dimensional and geometrical tolerance 

chains. Section 4 further describes integrated concurrent dimensioning and 

dimensioning. In Section 5 we derive the quality loss of multiple correlated 

critical dimensions in terms of the process tolerances. In Section 6 we develop 

the optimal tolerance design model, whereas Section 7 examines the imple-

mentation for a specific example. The concluding remarks are given in Section 

8.  

2. Models for interpretation of geometrical tolerances 

Geometric tolerances are usually expressed as graphical symbols, which can 

contain nominal sizes, tolerance values, and data (references). In order to deal 

with geometric tolerances in integrated tolerance charts, their geometrical 

characteristics must be addressed first. Generally geometric tolerances can be 

classified into five types: individual form, profile, orientation, location, and 

runout. There are fourteen geometric tolerances items altogether but only 
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those items with fixed tolerance zones will directly affect tolerance chains. 

Consequently only four geometrical tolerances in the total fourteen can be in-

cluded in the integrated tolerance chains. These items — profile, position, 

symmetry, and concentricity — can be converted into the equivalent bilateral 

dimensional tolerances. The remaining items are treated as additional toler-

ance constraints (He & Gibson, 1992; Ngoi & Tan, 1995; Ngoi & Soew, 1996; 

Tseng & Kung, 1999).  

2.1. Profile of a line (surface)  

Profile of a line (surface) defines a permitted variation zone of a line (surface) 

relative to the corresponding theoretical geometry. It can be used to specify the 

geometrical requirements of an individual and a relevant feature in terms of 

different graphical notations in mechanical drawing. When profile of a line 

(surface) tolerance is used to denote an individual feature, then this item 

doesn’t contribute to tolerance stack-up. Thus it can be treated as additional 

tolerance constraints. However, when profile of a line (surface) tolerance is 

used to specify a relevant feature, this item possesses a fixed tolerance zone. 

Thus it can be treated as equivalent bilateral dimensional tolerance. Figure 1 is 

the interpretation of the relevant profile of a surface. The relationship between 

profile of a line (surface) and their pertinent processed working dimensions 

and tolerances can be expressed as: 
 

1

n

i i ii
GL TGL WD TWDξ

=
± = ±∑  (1)

 

Where GL and TGL is the 

nominal dimension the toler-

ance between the controlled 

line (surface) and the data 

(reference), respectively. WDi 

and TWDi is the ith working 

dimension and tolerance, re-

spectively. ξi is the unit vector 

of WDi, n is the total number 

of working dimensions and 

tolerances. 
 

Figure 1.  Interpretation of profile of a relevant surface 
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2.2 Position  

Position tolerance defines the true position of a feature with respect to the ref-

erences or the data. Because position tolerance holds a fixed tolerance zone 

with respect to the data, it can be transformed into equivalent bilateral dimen-

sional tolerance. All the pertinent dimensions and tolerances in determining 

position of the controlled feature with respect to the data will be the link 

members of the position tolerance. Figure 2 is the interpretation of position 

tolerance. The transform model between position tolerance and their pertinent 

processed working dimensions and tolerances is:  
 

1

n

i i ii
GP TGP WD TWDξ

=
± = ±∑  (2)

 

Where GP and TGP is the nominal dimension and position tolerance from the 

controlled feature to the data, respectively. WDi and TWDi is the ith working 

dimension and tolerance, respectively. ξi is the unit vector of WDi, n is the total 

number of working dimensions and tolerances. In Figure 2 the position toler-

ance value is specified when the controlled hole is under the maximum mate-

rial condition.  
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Figure 2. Interpretation of position 

2.3 Concentricity 

Concentricity tolerance expresses the requirement that the controlled axis 

should locate within the given allowable cylinder zone whose axis is the da-

tum axis. Thus all the pertinent dimensions contribute to the dimension be-
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tween the controlled axis and the datum axis will be the link members of this 

specification. Figure 3 shows a simple example for interpretation of concentric-

ity into its equivalent bilateral dimensional tolerance. The model for interpre-

tation of concentricity is: 

 

∑ =
±=±

n

i iii TWDWDTGAGA
1
ξ  (3)

 

Where GA and TGA is the nominal dimension and concentricity tolerance be-

tween the controlled axis and the datum axis, respectively. Generally this di-

mension is zero. WDi and TWDi is the working dimension and tolerance for the 

ith link member of GA, respectively. ξi is the unit vector of WDi. n is the num-

ber of link members. 

2.4 Symmetry  

Symmetry tolerance presents the requirement that the controlled centre rele-

vant feature such as the centre line of a hole, or the centre plane of a slot 

should locate within the given zone with respect to the datum. So all the re-

lated dimensions contribute to the dimension for determining the location of 

the controlled feature with respect to the datum will be the link member of this 

specification. Figure 4 gives a simple example for interpretation of symmetry 

into its equivalent dimensional tolerance specification. The model for interpre-

tation of symmetry is:  

 

∑ =
±=±

n

i iii TWDWDTGGB
1

B ξ  (4)

 

Where GB and TGB is the nominal dimension and symmetry tolerance be-

tween the controlled center features with respect to the datum, respectively. 

Generally, this dimension is zero. WDi and TWDi is the working dimension for 

the ith link member of GB, respectively. ξi is the unit vector of WDi. n is the 

number of link members.  
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Figure 3.  Interpretation of concentricity 

 

 

AA

1
8

3
0

±
0
.1

A

0
.1

0
.1

Means

A0.21
5

±
0
.1

 
 

Figure 4.  Interpretation of symmetry 

3. Concurrent dimensional and geometric tolerance chains  

In a concurrent tolerancing environment one of the most important issues is 

presentation of the concurrent integrated dimensional and geometric tolerance 

(DGT) chains. In a conventional system, tolerance design is being executed in 

two separate sequential stages: BP tolerance design and process tolerance de-

sign. Unlike the methods presented by several researchers (Ngoi & Tan, 1995; 

Zhang, 1996; Huang et al., 2001; Huang and Gao, 2002; Gao and Huang, 2003; 

Chen et al., 2003), this paper presents a general methodology for concurrent al-

location of the required assembly functional DGTs to the component process 

ones. 

In the stage of product design, let all the required assembly functional dimen-
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sions and tolerances be the set SAD = {LADi ±TADi / 2, i = 1, …, n}, where n is the 

number of functional dimensions and tolerances, LADi is the ith assembly func-

tional dimension, TADi is the tolerance of LADi. Also all the assembly functional 

geometric tolerances which can be modeled as equivalent dimensions and tol-

erances be the set SAG = {LAGi ±TAGi / 2, i = 1, …, m}, where m is the number of 

functional geometric tolerances which can be treated as equivalent bilateral 

dimensional tolerances, LAGi is the ith equivalent assembly functional dimen-

sion, TAGi is the geometric tolerance of LAGi. And all the assembly functional 

geometric tolerances which can be modeled as additional tolerance constraints 

be the set S’AG = {LAgi(TAGi)，i = m+1, …, m+β}, where β is the number of func-

tional geometric tolerances which can be treated as additional tolerance con-

straints, TAGi is the geometric tolerance treated as additional tolerance con-

straint, LAGi (TAGi) is the ith equivalent assembly functional dimension.  

For simplicity the set notation is introduced as SAF = {SAD, SAG, S’AG} = {LAFi ±TAFi / 

2, i = 1, …, n+m, LAGi(TAGi), i = n+m+1, …, n+m+β}. Where {LAFi ±TAFi / 2, i = 1, …, n} 

corresponds to SAG = {LADi ±TADi / 2, i = 1, …, n}, {LAFi ±TAFi / 2, i = n+1, …, n+m} cor-

responds to SAG = {LAGi ±TAGi / 2, i = 1, …, m}, and {LAFi(TAFi), i = n+m+1, …, n+m+β} 

corresponds to S’AG = { LAGi(TAGi), i = m+1, …, m+β}.  

In a given assembly assume that all the component functional dimensions and 

tolerances be the set SCD = {LCDj ±TCDj/2, j = 1, …, r}, where r is the number of 

functional dimensions and tolerances of all the components, LCDj is the jth 

component functional dimension, TCDj is the tolerance of LCDj. And all the com-

ponent functional geometric tolerances which can be converted into the 

equivalent bilateral dimensional tolerances be the set SCG = {LCGj ±TCGj / 2, j = 1, 

…, p}, where p is the number of functional geometric tolerances, which can be 

treated as the equivalent bilateral dimensional tolerances of the components, 

TCGj is the jth component functional geometric tolerance, LCGj is the nominal 

dimension of TCGj. Also the functional component geometric tolerances which 

can be treated as the additional tolerance constraints be the set S’CG = {LCGj(TCGj), 

j = p+1, …, p+δ}, where δ is the number of the functional geometric tolerances 

which can be treated as the additional tolerance constraints of the components, 

TCGj is the jth component functional geometric tolerances which is treated as 

the additional tolerance constraint, LCGj(TCGj) is the nominal dimension of TCGj.  

The set notation is introduced as SCF = {SCD, SCG, S’CG} = {LCFj ±TCFj/2, j = 1, …, r+p, 

LCFj(TCFj), j = r+p+1, …, r+p+δ}. Where {LCFj ±TCFj/2, j = 1, …, r} corresponds to SCD 

= {LCD j ±TCD j/2, j = 1, …, r}, {LCF j ±TCF j /2, j = r+1, …, r+p} corresponds to SCG = 

{LCGj ±TCGj/2, j = 1, …, p}, and {LCFj(TCFj), j = r+p+1, …, r+p+δ} corresponds to S’CG = 
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{LCGj(TCGj), j = p+1, …, p+δ}.  

Using of the assembly drawing, the required functional nominal dimensions of 

the assembly can be expressed as the related component BP nominal dimen-

sions: 
 

mniLKL
pr

j

CFijijijijAFi +==∑
+

=1

,,1    Lξα  (5)

 

where αij is the BP dimension selection coefficient. When the functional com-

ponent BP dimension LCFij is the link member of dimension LAFi, αij = 1, other-

wise, αij = 0. ξ ij is the unit vector for LCFij. CFijAFiij LLK ∂∂= / is the dimension coef-

ficient of LCFij, 0 ≤ Kij ≤ 1, LCFij∈SCF. LAFi is an assembly functional dimension, 

LAFi∈SAF. 

With above dimensional equations, a set of assembly functional DGT inequali-

ties can be derived to represent the relationship between the assembly func-

tional tolerances and the component functional BP tolerances. The general 

formulation with the worst-case model is: 
 

mniTKT
pr

j

CFijijijAFi +=≥∑
+

=1

,,1    Lα  (6)

 

where TCFij is the tolerance of component functional dimension LCFij, TCFij∈SCF, 

TAFi is the tolerance of the required assembly functional dimension LAFi, 

TAFi∈SAF.  

In the stage of process planning, the task of tolerancing, however, is to allocate 

the obtained component functional BP DGTs to the pertinent process toler-

ances. In most cases, because the design data, the measurement data, and the 

process data do not always coincide with each other, the tolerance stack-up is 

inevitable. Assume that there are φ manufactured components in an assembly 

and the subscription variable u denotes the sequence number of the compo-

nent, thus u∈[1, …, φ]. The subscription variable v denotes the sequence num-

ber of the operations related to each component, thus v∈[1, …, θu]. Where θu is 

the total operations of the uth component. Let processing working dimensions 

and tolerances of the uth component be the set SMD u = {LMD u v ±TMD u v/2, u = 1, …, 

φ, v = 1, …, fu}, where fu is the number of process dimensions and tolerances of 

the uth component. Let processing geometric tolerances of the uth component 

that can be treated as equivalent bilateral dimensional tolerances be the set SMG 
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u = {LMG u v ±TMG u v / 2, u = 1, …, φ, v = 1, …, gu}, where gu is the number of geo-

metric tolerances that can be interpreted as equivalent bilateral process dimen-

sional tolerances related to the uth component. Let processing geometric toler-

ances of the uth component that can be treated as additional processing 

tolerance constraints be the set S’MG u = {LMG u v(TMG u v), u = 1, …, φ, v = gu+1, …, 

gu+εu}, where εu is the number of geometric tolerances that can be interpreted 

as additional processing tolerance constraints related to the uth component, 

TMG u v is the component BP geometric tolerances, LMG u v(TMG u v) is the process 

dimension of tolerance TMG u v.  

The set notation related to the uth component is introduced as SCP u = {LCP u v±TCP 

u v / 2, u = 1, …, φ, v = 1, …, fu+gu, LCP u v+TCP u v, v = fu+gu+1, …, fu+gu+εu}. Where {LCP 

u v ±TCP u v / 2, v = 1, …, fu} corresponds to SMD u = {LMD u v ±TMD u v / 2, v = 1, …, fu}, 

{LCP u v ±TCP u v / 2, v = fu+1, …, fu+gu} corresponds to SMG u = {LMG u v ±TMG u v / 2, v = 1, 

…, gu}, and {LCP u v +TCP u v, v = fu+gu+1, …, fu+gu+εu} corresponds to S’MG u = {LMG u v 

+TMG u v, v = gu+1, …, gu+εu}.  

Using the process planning of each related components, the required nominal 

functional BP dimensions can be expressed as the process dimensions: 
 

ϕξα
θ

,,1      
1

L==∑
=

uLKL
u

v

CPuvuvuvuvCFj  (7)

 

where αuv is the process dimension selection coefficient. For the given process 

planning of the uth component, when a process dimension LCPuv is the link 

member of dimension LCFj, αuv = 1, otherwise, αuv = 0. ξuv is the unit vector of 

LCPuv. CPuvCFjuv LLK ∂∂= / is the dimension coefficient of LCPuv, 0 ≤ Kuv ≤ 1. LCPuv is 

the vth process dimension of the uth component, LCPuv∈SCP u. LCFj is the compo-

nent functional dimension, LCFj∈SCF.  

With above equation, the allocation of the component functional BP DGTs to 

the process DGTs can be formulated by following inequalities with the worst-

case model:  
 

 ,,1       
1

ϕα
θ

L=≥∑
=

uTKT
u

v

CPuvuvuvCFj  (8)

where TCPuv is the vth process DGT specification corresponds to process dimen-

sion LCPuv of the uth component, TCFj is the component functional BP DGT cor-

responds to BP dimension LCFj.  
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In a conventional tolerancing system, the process tolerances are acquired by al-

location of the functional component BP DGT specifications to the process 

ones. The disadvantages of this method are that the obtained process toler-

ances are just under the constraints of BP tolerances and process accuracies. 

Moreover, component BP tolerances are first determined in the product toler-

ance design stage. In this stage, the assembly functional DGT specifications 

cannot be allocated to the relevant component functional BP DGTs in an opti-

mal way without manufacturing information. Therefore some process DGT 

specifications obtained in the process stage will be beyond the economical 

bounds and the manufacturing costs will increase unnecessarily.  

In concurrent tolerance design, the assembly functional DGT specifications can 

be directly expressed as the process DGT specifications through using the 

process planning information of each related component. When the design cri-

terions such as maximum total manufacturing tolerances or minimum manu-

facturing costs have been presented, the optimal process tolerances can be ob-

tained through establishing and solving an optimization model. Therefore by 

substituting Equation (7) into (5), the concurrent integrated dimension chains 

are obtained as: 
 

∑∑
= =

+==
ϕ θ

λξα
1 1

*** ,,1   
u v

CPuvuvuvuvAFi

u

mniLL L  (9)

 

where α*uv is the concurrent dimension selection coefficient. For the given 

process planning of the uth component, when a process dimension LCPuv is the 

link member of dimension LAFi, α*uv = 1, otherwise, α*uv = 0. ξ*uv is the unit vector 

of dimension LCPuv. CPuvAFiuv LL ∂∂= /*λ is the dimension coefficient of LCPuv, 0 ≤ λ*uv 

≤ 1.  

With above equation, the concurrent integrated DGT chains, which will be 

used for directly allocating of the assembly functional DGTs to the component 

process DGTs, are formulated as: 
 

   ,,1   
1 1

∑∑
= =

+=≥
ϕ θ

λα
u v

CPuvTuvTuvAFi

u

mniTT L  (10)

The concurrent integrated DGT chains are main constraints and the technical 

bridge to link substantially the assembly functional DGT specifications and the 

component process DGT specifications. The approaches used in this paper for 

establishing the concurrent DGT chains are divided into three steps. First, the 
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assembly functional product DGT chains will be formulated by using the re-

lated mechanical structures of the components and the assembly constraints as 

the input data. The assembly functional DGTs are expressed as the related 

functional component BP DGTs by using the integrated tolerance charts in 

product tolerance design stage. Second, in terms of the given process planning 

of each component, the component functional BP DGT specifications will be 

formulated by process DGTs. In this stage, the pertinent structures and the 

processing plans of the components are used as the input data. Finally, when 

each component functional BP DGT equation is substituted into the required 

assembly functional product DGT chains, the required concurrent integrated 

DGT chains are obtained.  

4. Concurrent integrated dimensioning and tolerancing 

In assembling a complex product, normally several critical dimensions evalu-

ate the functional performance requirements. These critical dimensions are 

controlled simultaneously within certain variation ranges for the best working 

performances. Let the critical dimension vector y = [y1 y2 … yp]T, and the devia-

tion vector w = [w1 w2 … wp]T, wi = yi− y0i, i = 1, 2, … , p, where y0i is the nomi-

nal/target value of yi. In a concurrent design environment, the assembly restric-

tions, topological relationships, and nominal dimensions of the main 

component have been determined by the assembly structure design. Let x = [x1 

x2 … xn]T be the vector of component design dimensions. These dimensions in-

clude sized dimensions and geometrical dimensions. For the geometrical di-

mensions with fixed tolerance zones, their dimensions and corresponding tol-

erances can be converted into equivalent bilateral sized dimensions and 

tolerances. The remaining geometric tolerances are treated as additional toler-

ance constraints. For simplicity, we denote both sized dimensions and equiva-

lent bilateral sized dimensions as component design dimensions and process 

dimensions in their different design and manufacturing stages. Therefore, xj (j 

= 1, 2, …, n) is the combination of a set of pertinent process dimensions of a 

component. Let the process dimension vector zj = [zj1 zj2 … 
jjmz ]T, (j = 1, 2, …, n), 

where mj is the number of the operations related to dimension xj. Finally the 

assembly functional equations (Zhang, 1996) are expressed:  
 

,p,, i  xfy ii K21   )( ==  (11)
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In process planning, the machining equations (Zhang, 1996) are generally ex-

pressed as:  
 

njzgx jjj ,,2,1    )( K==  (12)

 

Since there is no need or way for critical dimensions to be controlled in the ex-

act nominal/target value, a rational variation zone should be assigned for each 

design dimension. From Equation (11), the actual critical dimension deviations 

due to their design dimension deviations are expressed as:  
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where fi( x ) is the nominal value obtained by evaluating the assembly func-

tional Equation (1) with its nominal design dimension vector x . ∆xj is the alge-

braic difference between xj and jx .  

In tolerance design, accumulated design tolerances must be less than or equal 

to their critical tolerance, so Equation (13) needs some adjusting. For worst-

case tolerance stack-up, each differential coefficient is positive, therefore, abso-

lute value of each differential coefficient is required. wi and ∆xj are replaced by 

ti and txj. Where ti and txj are respectively the tolerance of critical dimension yi 

and design dimension xj. With these substitutions, Equation (13) changes into 

inequality:  
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Similarly, from Equation (12) the actual design dimension deviations due to 

their process dimension deviations can be expressed as:  
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where )( jj zg is the nominal value obtained by evaluating the machining Equa-

tion (12) with its nominal process dimension vector jz . ∆zjk is the algebraic dif-

ference of zjk and jkz .  

When component design tolerances are allocated to process tolerances, Equa-
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tion (15) changes into inequality:  
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where tjk is jk-th process tolerance of design dimension zjk.  

Assume that all process dimensions are of normal distributions. Because de-

sign dimensions are functions of process dimensions and assembly critical di-

mensions are functions of design dimensions, according to statistical theory, 

both critical dimensions and design dimensions are of normal distributions. 

From Equation (11), we get variance equations:  
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where variance var(∆xj) is obtained from Equation (13) and expressed as:  
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where var(wi), var(∆xj), and var(zjk) are variances of wi, ∆xj, and zjk, respectively.  

Equations (14) and (16) reveal the worst-case tolerance stack-up effect related 

to two stages, respectively. In Equation (14), component design stack-up toler-

ance must be less than or equal to functional critical tolerances. Similarly in 

Equation (16), component process stack-up tolerance must be less than or 

equal to design tolerances. As discussed above, interdependent tolerancing is 

divided into two separate stages. In initial product design, designers care more 

about product satisfaction than about subsequent production capabilities and 

costs. On the other hand, process planners are more concerned about compo-

nent manufacturing capabilities than their functional roles in assembly. This 

conventional method can obtain only the optimum solutions within two sepa-

rate stages. The best policy is to integrate the two stages into one.  

In concurrent engineering, however, the two separate phases are integrated 

into only one stage (Zhang, 1996; Ngoi and Teck, 1997). This makes it easy for 

design and manufacturing to collaborate. Essentially, the product designer can 

consider more fabrication issues when initially designing the product, while 
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manufacturing engineers can cope with the manufacturing problems based on 

the component functional roles. This balances the different targets related to 

product satisfaction and production costs. Mathematically, by substituting 

machining equation into functional equations the concurrent design equation 

can be obtained as:  
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5. Quality loss of multiple correlated critical dimensions  

High quality and low cost are two fundamental requirements for product de-

sign and manufacturing. In an assembly, critical tolerances must be guaranteed 

for functional requirements. It is well known that the tighter tolerance is, the 

higher the cost is, and vice versa. For a selected machining operation, if proc-

ess tolerance becomes smaller and smaller until it reaches a certain value, it 

will result in the infinite theoretical manufacturing cost. To simplify computa-

tion, let best product performance be the point where tolerance is zero. At that 

point, the theoretical manufacturing cost is infinite. For a single critical dimen-

sion case, when critical dimension deviates from its target, the symmetric 

quadratic Taguchi quality loss function is (Taguchi et al., 1989):  
 

2)()( yykyL −=  (20)

 

where y and y are respectively the actual and target values of critical dimen-

sion, and k is a positive constant coefficient  

To determine the value of k, provided that when dimension y deviates from its 

target in value w, will cause the loss of A$. Thus the following equation will be 

satisfied:  

2/ wAk =  (21)

where w = y− y .  

For a p-dimensional multivariate vector w, Le and Tang (2000) presented a 

general formula to evaluate the total quality loss due to w:  
 

KwwwL T=)(  (22)
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where K is a p×p symmetric constant matrix. kij = kji, for i ≠ j, i, j = 1, 2, …, p. If 

p(p+1)/2 set of product quality deviations and corresponding quality losses are 

available. The elements of K are related by:  
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Since manufacturing dimension distribution is dependent upon the related 

manufacturing process random factors such as machine tools, fixtures, tool 

wearing, system vibration, temperature fluctuation, operators, and measure-

ment devices, etc, each actual process dimension zjk is obviously a random 

variable. In terms of Equations (12) and (11), design dimension xj is the combi-

nation of process dimension zjk and critical dimension yi is the combination of 

design dimension xj, so design dimension xj and critical dimension yi are also 

random variables. The distribution of critical dimension yi is finally dependent 

upon the density distribution functions of pertinent process dimensions. The 

product quality loss is determined by all critical dimension distributions. For a 

batch of products, average quality loss rather than individual loss should be 

considered. When a product has only a single critical dimension y, let the den-

sity function of y be functionψ(w), the average loss of a batch product could be 

obtained by integration:  
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As for the multiple critical dimensions, the expectation loss is obvious the 

summation of individual contributions derived from Equation (24):  
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For the design vector x, the density function is continuous within an interval. 

Expected quality loss function is (Lee and Tang, 2000):  
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where V(w) is the variance-covariance matrix of the parameter vector w ex-

pressed by:   
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where variance var(wi) is determined by Equation (17). The covariance be-

tween the i-th and the l-th critical dimensions is:  
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For tolerance design, each dimension variance should be expressed as the 

function of its dimension tolerance. Under stable machining conditions and for 

large mass production, it is obviously that process dimensions are normally 

distributed. Therefore when component design tolerances are expressed as 

process tolerances in the process planning stage, the relation between design 

tolerance and process variance is:  
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where tj is bilateral tolerance of design dimension xj. Cj is a constant factor de-

pending on the probability distribution of the dimension variations concerned. 

Cj = 1/3 for normally distributed process dimensions with 99.73% probability.  

When the above equation is substituted into Equations (17) and (29), the vari-

ance and covariance of critical dimensions can be expressed by:  
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where tj is an mj-th process tolerance vector, i.e. tj = [tj1 tj2 … jkt …
jjmt ]T, and k = 

1, 2, …, n.  

6. Optimal tolerance assignment 

To implement robust tolerance design, the best balance should be made be-

tween product satisfaction and manufacturing cost. In a concurrent tolerancing 

environment, the product quality loss is expressed as the function of pertinent 

process tolerances. In the optimum model, the objective is to minimize the 

summation of product manufacturing cost and quality loss:  
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where cjk(tjk) is manufacturing cost of jk-th process operation, and E(L(w)) is ex-

pected quality loss function of the product.  

To determine the manufacturing cost, cost-tolerance functions can be used. 

With regard to cost-tolerance function, several types of models have been pre-

sented (Zhang, 1996; Fang and Wu, 2000). Regression techniques are often ap-

plied to the acquired discrete cost-tolerance data and determine the unknown 

constant coefficients for each model. The models with the highest regression 

precision are used as cost-tolerance functions. Based on this method, Fang et al 

presented a set of cost-tolerance functions suitable for middle quantitative 

production in manufacturing enterprises. The one suitable for planar features 

is (Fang and Wu, 2000):  
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In actual manufacturing, each process dimension zjk has an economical toler-
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ance range. It can be expressed mathematically by:  
 

+− ≤≤ jkjkjk ttt  (35)

 

where tjk
− and tjk+ is respectively the lower and upper bounds of process toler-

ance tjk 

In a concurrent tolerancing environment, the complete optimization model can 

be introduced as:  
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where tyi
−and tyi+ are the lower and upper bounds of assembly critical toler-

ance tyi, respectively. They are given as input data in terms of product quality 

and manufacturing cost. The optimum tyi is determined by solving the optimal 

model. 

Two kinds of constraints are proposed for the optimal model. The first are con-

current design equations. These equations present the tolerance stack-up ef-

fects between assembly critical tolerances and pertinent manufacturing toler-

ances by worst-case or statistical model. In concurrent design equation critical 

tolerance must be greater than or equal to its pertinent sum manufacturing tol-

erance. The second constraints are process capabilities. According to selected 

fabrication methods and machining tools, each processed tolerance should 

specify an economical variation range.  

7. A practical example 

Figure 5 shows a wheel assembly with pure size dimensions. For simplicity, we 

do not consider the geometric tolerances and their conversion in this example. 

Also the process dimensions obey normal distributions. Assume that nominal 

design dimensions have already been assigned based on the requirements in 

size, strength, structure, assembly, and maintenance, etc, they are: x1 = 9, x2 = 
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20, x3 = 9, x4 = 12, x5 = 38.2, x6 = 12, x7 = 62.4 (unit: mm). Two critical dimensions 

y1 = 0.2 ± 0.080 ~ 0.140, and y2 = 0.2 ± 0.075 ~ 0.130. y1 is the critical axial gap be-

tween bush 7 and frame 9. y2 is another critical axial gap between nut 8 and 

frame 9. It is not difficult to formulate the assembly functional equations using 

the method presented by Huang et al. (2001).  

 
 

Frame 1

Bolt 2

Block 3

Shaft 4

Bush 5

Nut 10

Wheel 6

Bush 7

Nut 8

Frame 9

X4

X7

X5 X6 Y2

Y1X3X2X1

 
Figure 5. Wheel assembly 
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According to Equation (13), the deviation equations of critical dimensions are:  
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With Equation (14), the functional tolerance inequalities by worst-case model 

are:  
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Provided that the manufacturing process takes place under stable conditions, 

each process dimension will be of normal distribution. For simplicity, assume 

that the distribution center of each process dimension is just equal to its nomi-

nal value. Each critical dimension variance can be expressed as the function of 

its design tolerance:  
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Similarly, the covariance of the two correlated critical dimensions can be ex-

pressed as the function of the pertinent design tolerances:  
 

2

521
36

1
),cov( txww −=  

 

The critical tolerance ranges of y1 and y2 in Figure 5 are determined both by 

performance satisfaction and manufacturing cost of this assembly. To finally 

determine the optimum tolerance of these two critical dimensions and then al-

locate them to the related process dimensions, quality loss and manufacturing 

cost must be determined first. Provided that when critical dimension y1 and y2 

deviate from their target (nominal) vector with values w (1)= [w1(1) 0]T = [0.160, 

0]T, w(2) = [0 w2(2)]T = [0, 0.150]T, or w(3) = [w1(3) w2(3)]T = [0.140, 0.130]Twill result in 

product failure and cause a quality loss of $300. The constant matrix K can thus 

be decided by Equation (22):  
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With this, total expected loss is:  
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Figure 6 shows the related structure and design dimension for each machining 

part. For the corresponding process plan, look at the economical process toler-

ance bounds for each machining part in Table 1.  

Using the method presented by Huang et al. (2001), the machining equations 

are obtained from given component process plans:  
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Figure 6.  Process plan of related parts 
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The design tolerance inequalities are:  
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Part No Process name 

Mea- 

sure 

refe- 

rence 

Ma- 

chined 

plane 

Process 

dimen- 

sion zkq 

Process 

tolerance - 

tkq 

Tolerance  

bound 

tkq−∼tkq+  -(µm) 

Bush 5 

and 7 

11 

12 

Parting-off 

L plane by FL 

C 

A 

A 

B 

z11 = 11 

z12 = 2 

t11 

t12 

27∼70 

10∼25 

Wheel 

6 

21 

22 

23 

24 

25 

R plane by RL 

L plane by FL 

L pole by L 

R plane by FL 

R pole by L 

A 

F 

B 

B 

E 

F 

B 

C 

E 

D 

z21= 36 

z22= 34 

z23= 6 

z24= 32 

z25= 6 

t21 

t22 

t23 

t24 

t25 

54∼140 

54∼140 

12∼30 

25∼62 

12∼30 

Frame 

1 and 9 

41 

42 

43 

44 

R plane by RM 

L plane by RM 

R plane by FM 

L plane by FM 

A 

D 

B 

C 

D 

B 

C 

B 

z41= 16 

z42= 16 

z43= 14 

z44= 12 

t41 

t42 

t43 

t44 

43∼110 

43∼110 

43∼110 

27∼70 

Block 

3 

51 

52 

53 

54 

R plane by RM 

L plane by RM 

R plane by FM 

L plane by FM 

A 

D 

B 

C 

D 

B 

C 

B 

z51= 42.2 

z52= 42.2 

z53= 40.2 

z54= 38.2 

t51 

t52 

t53 

t54 

62∼160 

62∼160 

39∼100 

39∼100 

Shaft 

4 

71 

72 

73 

74 

75 

Step by RL 

Step by RL 

Step by FL 

Step by FL 

Truncation 

G 

G 

G 

G 

G 

C 

E 

D 

B 

A 

z71 = 80.4 

z72 = 18 

z73 = 20 

z74 = 82.4 

z75 = 90 

t71 

t72 

t73 

t74 

t75 

54∼140 

27∼70 

21∼52 

35∼87 

54∼140 

Table 1. Axial process plan for related parts. 
 

Notes: FM stands for finish milling, RM stands for rough milling, FL stands for finish 

lathing, RL stands for rough lathing, L stands for lathing, R stands for right and L 

stands for left. 

 

The component design tolerance can be formulated as the function of its re-

lated process tolerances with Equation (20):  
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In a concurrent tolerancing environment, when machining equations are sub-

stituted into assembly functional equations, product quality loss is finally ob-

tained as:  

 

)(37.370  

37.3707.3356937.370)(52.325

])2([
36

1

))((

2

74

2

73

2

64

2

54

2

44

2

32

2

31

2

25

2

24

2

23

2

12

2

11

2

722

2

622

2

5221211

2

422

2

311

2

211

2

111

tt

tttttttttt

txktxktxkkktxktxktxktxk

wLE

++

+++++++++=

+++−++++=
 

 

In this example, we only consider the manufacturing cost of process dimen-

sions that are involved in assembly functional equations. The reason is that the 

other process dimensions can use the most economical tolerances, and manu-

facturing costs of these operations are minimal. Furthermore, these process 

dimensions don’t contribute to quality loss. The manufacturing cost of these 

considered operations is:   
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The summation of CM and E(L(w)) is:  
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Finally, the entire optimization problem is formulated as:  
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where  
 

)1176.03927.0/()8903.15exp(0261.5)( ++−== jkjkjkjkjkjk ttttcc  



 Manufacturing the Future: Concepts, Technologies & Visions 546

Subjected to:  

The concurrent tolerance stack-up constraints by worst-case model:  
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tttttttttt
 

 

where t1
− = 0.160, t1+ = 0.280 is the lower and upper tolerance bound of critical 

dimension y1, t2
− = 0.150, t2+ = 0.260 is the lower and upper tolerance bound of 

critical dimension y2, respectively.  

The economical process tolerance ranges for each process operation are as fol-

lows:  
 

0.018 = t11
− ≤ t11 ≤ t11+ = 0.043 

0.010 = t12
− ≤ t12 ≤ t12+ = 0.025 

0.012 = t23
− ≤ t23 ≤ t23+ = 0.030 

0.025 = t24
− ≤ t24 ≤ t24+ = 0.062 

0.012 = t25
− ≤ t25 ≤ t25+ = 0.030 

0.018 = t31
− ≤ t31 ≤ t31+ = 0.043 

0.010 = t32
− ≤ t32 ≤ t32+ = 0.025 

0.018 = t44
− ≤ t44 ≤ t44+ = 0.043 

0.025 = t54
− ≤ t54 ≤ t54+ = 0.062 

0.018 = t64
− ≤ t64 ≤ t64+ = 0.043 

0.021 = t73
− ≤ t73 ≤ t73+ = 0.052 

0.035 = t74
− ≤ t74 ≤ t74+ = 0.087 

 

The proposed optimization model is solved by the nonlinear optimal method. 

In order to test the validity of the proposed approach, a similar optimal model 

is also introduced. This model removes the quality loss from objective func-

tion. The constraints are the same for these two different models. The optimi-

zation results of the two models are given in Table 2 for comparison. Obtained 

process tolerance t11，t12，t23，t25，t31，t32，t44, and t64 are the same for both 

approaches. But t24，t54，t73, and t74 are different. For the proposed method, 

these tolerances are of smaller values to maintain less quality loss.  
 

Method t11 t12 t23 t24 t25 t31 t32 t44 t54 t64 t73 t74 total 

CM+CL 43 25 30 25 30 43 25 43 25 43 21 35 388 

CM 43 25 30 49 30 43 25 43 35 43 52 87 505 

Table 2.  The comparison results of the two methods (unit: µm). 
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8. Concluding remarks 

This paper has presented a robust optimization method in a concurrent toler-

ancing environment. This method can determine multiple correlated critical 

tolerances and directly allocate them to process tolerances by using component 

process plans.  

In a concurrent environment, the product tolerance design and process toler-

ance design can be integrated into one stage. Tolerance design has been ex-

tended directly from the product design to the manufacturing stage. The ne-

cessity of redesign and rework between product tolerance design and process 

tolerance design has been eliminated, increasing the design efficiency. In a 

conventional tolerance design, the optimal model is established for two sepa-

rate stages, and the optimum solutions are for different stages but not for the 

entire product design process.  

Though Lee and Tang (2000) in their research introduced a method to imple-

ment tolerance design for products with correlated characteristics, they only 

dealt with tolerancing problems within the product design stage. The basic 

method they used has now been extended profoundly to the concurrent envi-

ronment to determine multiple correlated critical product tolerances and then 

allocate them directly to pertinent process tolerances.  

The purpose of this paper is to propose a robust optimum tolerance design 

method in a concurrent environment to balance the conflict design targets be-

tween manufacturing tolerances and product satisfaction. The design targets 

are quantified in monetary ways in the optimization objective function. The 

focus is on establishment of quality loss of product with multiple correlated 

critical tolerances in a concurrent tolerance design environment. The paper 

presents an approach to provide the product quality loss function, which is fi-

nally expressed as the function of process tolerances. 

A wheel assembly example presented by Huang and Gao (2003) has also been 

applied. The simulation results show the validity of the proposed method. If 

cost-tolerance function and related information of product quality loss are 

available, the rational tolerances can be obtained in actual design and produc-

tion.  
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