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1. Introduction

In the past two decades, it has been observed an increased incidence of skin cancer around
the world [1-4]. This increase is particularly important in melanoma [5]. Latin-American da‐
ta have shown both an increase in incidence rates of skin cancer [6] and in mortality from
malignant melanoma [7]. The number of melanoma cases worldwide is increasing faster
than any other cancer. Although early detection, appropriate surgery, and adjuvant therapy
have improved outcomes, the prognosis of metastatic melanoma remains very poor. Ad‐
vanced melanoma is still associated with an extremely poor median survival, ranging from 2
to 8 months, with only 5% surviving more than 5 years and remains one of the most treat‐
ment-refractory malignancy [8]

2. Treatments

The only way to cure a malignant melanoma is early detection and appropriate surgical
treatment, because once it reaches an advanced stage, is highly resistant to conventional ra‐
diotherapy and chemotherapy [9]. The median survival for patients with metastatic disease
is approximately 8 months [10], and chemotherapy has so far failed to improve survival.
Treatment options include radiation therapy, chemotherapy, immunotherapy and bioche‐
motherapy which are summarized below.

2.1. Radiotherapy

The use of adjuvant radiotherapy (RT) in melanomas has been controversial. In vitro studies
have shown that melanoma cells possess a broad shoulder on the cell survival curve and
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thus have a large capacity for DNA repair. As a result, hypofractionated RT schedules have
been developed to counteract this perceived radioresistance, producing excellent locoregion‐
al control rates of 85% and higher [11,12]. Radiation Therapy Oncology Group (RTOG) Trial
83-05 was a prospective randomized study comparing hypofractionation to conventional
fractionation. The results showed no difference in partial or complete response rates be‐
tween the two schedules, and the overall response rates were approximately 70% [13]. The
role of adjuvant radiation therapy (RT) following nodal surgery in malignant melanoma re‐
mains controversial. Despite the high incidence of distant metastases, loco-regional control
remains an important goal in the management of melanoma. Surgery and adjuvant RT pro‐
vides excellent loco-regional control, although distant metastases remain the major cause of
mortality.[14]

2.2. Chemotherapy

Chemotherapeutic agents are cytotoxic anticancer drugs which aim is impair the cell division,
resulting in the death of rapidly dividing cells. They are widely used in the treatment of malig‐
nancies; however, melanomas are resistant to many forms of traditional chemotherapy.

2.2.1. Chemotherapy with single drugs in melanoma

Several antitumoral drugs have been used to treat the melanoma. One of the most known is
dacarbazine. In 1975, dacarbazine (DTIC) became the first US Food and Drug Administra‐
tion (FDA) approved chemotherapeutic agent for the treatment of metastatic melanoma. The
response rates with dacarbazine were 15–25%, with median response ranging from 5 to 6
months, but with less than 5% of complete responses [17-19]. Long-term follow-up of pa‐
tients treated with DTIC alone shows that less than 2% of the patients could survive for 6
years [15,16]. In a meta-analysis comparing two or three-drugs combination regimens with
DTIC alone, Huncharek et al. [20] concluded that there was no advantage for the combina‐
tion in terms of response or survival. Since survival was not improved by the use of single
or combination chemotherapy for metastatic melanoma, treatment decisions remain contro‐
versial, and quality of life and toxicity issues from treatment assume greater importance.

An orally analogue of DTIC is temozolomide whose activity has been tested in several clini‐
cal studies as single agent in metastatic malignant melanoma [18,21,22]. A randomized
phase III trial comparing TMZ to DTIC on patients with advanced melanoma demonstrated
a statistically significant increase in progression-free survival (1.9 months vs 1.5 months)
when TMZ was administered [18].

Fotemustine (FTMU) is the most active nitrosourea used against the metastatic melanoma. It
has been widely tested in Europe and has shown overall response of 20–25% including 5–8%
of complete response rates and it was the first drug to show significant efficacy in brain
metastases [23,24]. However, at conventional doses, little or no activity was observed
against melanoma brain metastases [25].

Platinum-based drugs are widely used in the treatment of cancer. In patients with melano‐
ma, cisplatin was shown to induce a 15% response rate with a short median duration of 3
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months. Doses up to 150 mg/m2 in combination with amifostine produced tumor responses
in 53% of patients. However, all of those responses were partial, and the median response
duration was only 4 months [26]. Regarding carboplatin, in a study on 26 chemotherapy-na‐
ive metastatic melanoma patients, a response rate of 19% with 5 partial responses was re‐
ported and thrombocytopenia was the dose-limiting toxicity [27].

The vinca alkaloids, especially vindesine and vinblastine, have induced responses in ap‐
proximately 14% of melanoma patients and they are usually used in combination with other
drugs [28]. Docetaxel or paclitaxel, do not have a significant activity in melanoma [29-32].
The role of tamoxifen (TAM) as single agent at standard or high-doses in the treatment of
melanoma is negligible with a response rate ranging between 0% and 10%. Currently all of
these drugs are rarely used as single agent therapy in metastatic melanoma.

2.2.2. Chemotheraphy with combined drugs in melanoma

In a phase II study, Lattanzi et al. [33] reported their experience with the addition of TAM to
the three-drug combination regimen of cisplatin, carmustine and dacarbazine (the Dart‐
mouth regimen) and showed high response rates (55%) with a 20% complete response. Since
then several randomized clinical trials have been conducted to confirm the therapeutic bene‐
fit of TAM in combination with chemotherapy.

Cocconi et al. [34] published a small phase III trial demonstrating an improvement of re‐
sponse and survival with the addition of tamoxifen to dacarbazine compared to dacarbazine
alone. However, two large randomized trials with low and high-dose tamoxifen in combina‐
tion with either dacarbazine alone or the Dartmouth regimen failed to demonstrate an ad‐
vantage to the addition of tamoxifen [35,36].

The efficacy of the combination of paclitaxel and carboplatin in the treatment of metastatic
melanoma was reported some years ago. Although originally tested in two small phase II
clinical trials and deemed not sufficiently clinically active, this evidence suggests that the
combination of paclitaxel and carboplatin may be worth further consideration [37].

2.3. Immunotherapy

Immunotherapy in melanoma consists of various approaches leading to specific or non-spe‐
cific immunomodulation. Immunotherapies are being used for melanoma patients in stage
II–III patients in the adjuvant setting, where only a fraction of patients have widespread (mi‐
croscopic) disease with the aim to prevent relapse of disease, prolong relapse-free survival
and, ideally, prolong overall survival (OS). In patients with stage IV disease, there is a need
for adequate systemic therapies as median OS for this patient group is only 6–9 months [38].
However, for the first time in >30 years, prospective randomized trials in patients with dis‐
tant metastatic melanoma demonstrated an OS benefit [39].

Some agents used in the treatment against the melanoma are ipilimumab and tremelimu‐
mab, fully human IgG1 and IgG2 monoclonal antibodies, respectively. They block cytotoxic
T-lymphocyte- associated antigen 4 (CTLA-4), a negative regulator of T cells, and thus aug‐
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ment T-cell activation and proliferation [40,41]. A phase-III trial was completed first and its
results were reported in 2010 [39]. This trial compared ipilimumab alone or in combination
with a gp100-peptide vaccine, compared to the vaccine alone in patients who had failed pri‐
or therapy or therapies. Melanoma patients receiving ipilimumab and ipilimumab + vacci‐
nation had a significantly better survival outcome than those receiving the vaccine alone.
Ipilimumab was combined with high-dose IL-2 in 36 patients in the surgery branch of the
NCI, with some remarkable observations. There were six patients (17%) with long-lasting
complete response, all over 5 years, and none of the patients relapsed. Moreover, there was
no increased toxicity as compared to high-dose IL-2 alone [42]. Other study showing a com‐
bination of tremelimumab with high-dose interferon yielded a high overall response rate of
30% in 33 melanoma patients, with three complete responses and seven partial responses, all
long-lasting responses. Again, there was no increased toxicity compared to high-dose IFN
therapy alone [43].

Interferon-α (IFN-α) has been approved in the adjuvant setting for the treatment of high-risk
melanoma based on clinical trials in the early 1990s [44,45]. In a metastatic situation, melanoma
patients treated with the single agent IFN-α showed approximately 15% of responses, with less
than 5% of complete response rates and median response duration between 6 and 9 months
with a maximum of 12 months for the best studies [46]. These response rates, while encourag‐
ing, were not significant enough to lead to its widespread use in the treatment of metastatic
melanoma. However, observations that patients with non-visceral disease were more likely to
respond suggested that the use of IFN-α may demonstrated a grater impact in patients with mi‐
crometastasis [46, 47]. Other combination studied was IL-2 with IFN-α. This association did not
seem to achieve better results (median response rate of 18% with three complete responses)
than if these agents were given alone [48-50]. By contrast, in a small randomized phase III trial
comparing continuous infusion IL- 2 plus interferon vs. continuous infusion decreasing IL-2
plus interferon, Keilholtz and colleagues [51], demonstrated improved response rates and re‐
duced toxicity with decreasing doses of IL-2.

2.4. Biochemotherapy

Because chemotherapy and cytokines have different and synergistic mechanisms of action
and in order to improve response rates and durable remissions, several groups developed in
the early 1990s the concept of biochemotherapy, a combination of chemotherapy and biolog‐
ic response modifiers.

Dacarbazine/IFN-α is one of the most evaluated combinations in metastatic malignant mela‐
noma. In a randomized phase II trial, Falkson et al. [52] reported that the association of IFN-
α with dacarbazine resulted in an encouraging response rate (53% vs. 20% for dacarbazine
alone) and a higher duration of response (8.9 months vs. 2.5 months) but IFN-α significantly
increased the toxicity. However, a follow up of a large randomized trial demonstrated no
benefit for the addition of IFN-α to dacarbazine and significantly more severe toxic events
occurred with treatments containing IFN-α [36].

The other approaches of biochemotherapy have involved sequential chemotherapy (cisplatin,
vinblastine, and dacarbazine, CVD) followed by biologic response modifiers (continuous infu‐
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sion of 9 MIU/m2 of IL-2 + IFN-α) because of concern of toxicity when drugs were given simul‐
taneously  or  concurrent  with  chemo-immunotherapy.  Both  approaches  have  produced
promising results with overall response rates between 40% and 60% and a long-term remission
rate of about 9%. The sequential approach was compared to chemotherapy alone in a random‐
ized trial conducted at the MD Anderson Cancer Center. Although both response rate and time
to progression were improved in the sequential biochemotherapy group, the survival differ‐
ence was at borderline significance and the toxicity was very high [53]. The results of the largest
phase III trial (ECOG/Intergroup E3695 trial) and most definitive test for biochemotherapy
comparing concurrent CVD-Bio to CVD alone showed that biochemotherapy produced slight‐
ly higher response rates and significantly longer median progression-free survival than CVD
alone, but once again failed to show any improvement in either overall survival or durable re‐
sponses. Considering the extra toxicity and complexity, this concurrent biochemotherapy regi‐
men should not be recommended for patients with metastatic melanoma [54].

2.5. Signal transduction inhibitors

In the past decades, no significant impact on survival has been made in spite of increased re‐
sponse rates achieved with combinations of chemotherapeutics or with the combination of che‐
motherapy and cytokines such as interferon (IFN) or interleukin-2 (IL-2). However, great
advances have been made in a very short time, both in terms of targeted drugs that kill melano‐
ma cells.

Sorafenib was designed to inhibit tyrosine kinase activity of CRAF, but this drug inhibits both
the wild-type RAF protein as the V600E mutant protein. Subsequently, it was shown that sora‐
fenib is actually a multikinase inhibitor, can inhibit many other molecules such as VEGFR2 and
3, PDGFR, p38 MAPK, FLT3, c-Kit and RET [55]. Although preclinical experiments, both in vi‐
tro and in animal models, seemed to be encouraging, the results of clinical trials have not con‐
firmed the efficacy of sorafenib for the treatment of disseminated melanoma [56]

After the failure of sorafenib in melanoma, was synthesized a more specific BRAF inhibitors,
in particular against the protein with the V600E mutation: PLX4032, a low molecular weight
drug, for oral administration. In the first clinical trial published in 2010 [57], the objective
response was observed in 81% of the BRAFV600E melanoma patients with 2 complete respons‐
es and 24 partial responses. Responses occurred in patients with visceral metastases in loca‐
tions usually resistant to treatment such as liver, intestine and bone. However, despite
having achieved a good response, relapses occur early, usually in a period of 8-12 months
after treatment [58].

The possibility that c-Kit was a therapeutic target in melanoma has long since shuffled. In
fact, c-Kit is a protein that acts as a receptor for a growth factor essential for epidermal mela‐
nocytes and has a role in the differentiation and migration of melanocytic cells during em‐
bryonic development [59]. In 2011, a phase-II study from China reported 20–30% response
rates and prolongation of progression-free survival with imatinib treatment [60].

From 15 to 30% of melanomas have mutations of NRAS. RAS activation mutations stimulate
MAP kinase pathway, but also the route of PI3K/AKT among others. A phase II trial using
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the RAS inhbitor Tipifarnib was performed; however, it was closed for lack of response.
None of the patients was selected based on the presence of mutations of NRAS [61].

MEK is a protein of the MAP kinase pathway, located downstream BRAF. Several MEK in‐
hibitors (PD0325901, AZD6244, GSK1120212, and E6201) have been synthesized. Bases on
some results, it appears that these pharmacological agents may be effective as single agents
in the treatment of melanoma. However, there are many preclinical studies suggesting that
it would be a good alternative to the combined treatments, both to avoid resistance in the
use of drugs directed against BRAF/V600E mutation, as for the treatment of BRAF muta‐
tions other than V600E or mutations of NRAS, especially if associated with inhibitors of
PI3K/AKT pathway [62-65]

Different derivatives of rapamycin (CCI-779 or temsirolimus) have been used as inhibitors
of the PI3K/AKT pathway. These inhibitors act on mTOR molecule downstream AKT/PKB.
There are also dual inhibitors of PI3K and mTOR, PI3K and AKT [66]. Although clinical out‐
comes of these drugs in phase II trials have not been good, there are several authors propos‐
ing their use in combined therapies especially with drugs that inhibit the MAP kinase
pathway [62, 63, 65, 67] or even, simultaneous inhibition via PI3K/AKT [68].

3. Resistance to the treatments in melanoma

Simultaneous resistance to several structurally unrelated drugs that do not necessarily have
a common mechanism of action is called multidrug resistance phenomena. An important
principle in multidrug resistance is that cancer cells are genetically heterogeneous. Although
the process results in uncontrolled cell growth for clonal expansion of cancer, tumor cells ex‐
posed to chemotherapeutic agents will be selected by their ability to survive and grow in the
presence of cytotoxic drugs. Therefore, in any population of cancer cells that are exposed to
chemotherapy, more than one mechanism of multidrug resistance may be present [69]. Dif‐
ferent types of multidrug resistance mechanisms have been described in cancer cells. Natu‐
ral resistance to hydrophobic drugs sometimes known as classical multidrug resistance,
usually results in the expression of efflux pumps with an ATP-dependent drug broad specif‐
icity. These pumps belong to a family of conveyors called ABC transporters (ATP-binding
cassette) that show sequence and structural homology [70]. The resistance is caused by in‐
creased output by lowering the intracellular concentration of the drug. Resistance may also
occur due to reduced entry of the drug. Water-soluble drugs, which are returned by carriers
that are used to carry nutrients into the cell, or agents that enter through endocytosis, could
fail without evidencing of increased output. Examples of this kind of drugs include the anti‐
folate methotrexate, nucleotide analogues such as 5-fluorouracil and 8-azaguanine, and al‐
kylating agents such as cisplatin [71,72]. Multidrug resistance can also result from the
activation of coordinated systems of detoxification, such as DNA repair systems and cyto‐
chrome P-450 [73]. In another hand, resistance can also result from a defective apoptotic
pathway. This can occur because of malignant transformation, such as in cancer, or as a re‐
sult of non-functional mutant p53 [74]. Alternatively, cells may acquire apoptotic pathways
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changes during exposure to chemotherapy and changes in the levels of ceramides [75] or
changes in the cell cycle machinery, which triggers checkpoints and prevent initiation of
apoptosis. Below we present several mechanisms of resistance to the treatments that have
been described in melanoma.

3.1. Antipoptotic characteristics in melanoma

Melanocytes  and their  stem cell  precursors  are  activated to  secrete  melanin and protect
neighboring  keratinocytes  and  other  epidermal  cells  from  further  damage  [76].  Thus,
melanocytes  should  be  programmed  to  survive.  Keratinocytes  promote  melanocyte  ex‐
pression  of  Bcl-2  by  secreting  neuronal  growth factor  (NGF)  and stem cell  grow factor
(SCF).  NGF binds to its  receptors in the melanocyte membrane and increases the levels
of Bcl-2 [77]. SCF interacts with its receptor c-KIT on the membrane and leads to the ac‐
tivation  of  transcription  factor  Mitf,  which  induces  proliferation  and  differentiation  of
melanocyte precursors [78]. Tumorigenic melanoma cells may take advantage of high en‐
dogenous Bcl-2 levels to survive under adverse environmental conditions that they may
encounter  during  metastatic  progression  and,  given  the  connection  between  apoptosis
and drug sensitivity,  bypass the effects of  chemotherapeutic drugs.  Similarly,  BclxL and
Mcl-1,  other  anti-apoptotic  members  of  the  Bcl-2  family,  are  strongly  expressed in  nor‐
mal  melanocytes,  benign  nevi,  primary  melanoma and  melanoma metastases,  and  may
contribute to melanoma resistance to therapy [79,80]

In melanoma, two members of the IAP family, survivin and ML-IAP, have been associated
with tumor progression, as they become detectable in melanocytic nevi and further overex‐
pressed in invasive and metastatic melanomas [81,82]. Survivin is abundantly expressed,
and its subcellular localization varies depending upon tumor thickness and invasiveness.
Survivin overexpression has been shown in squamous cell carcinoma (SCC), and it is in‐
volved in UVB-induced carcinogenesis. The presence of survivin both in the nucleus and in
the cytoplasm throughout the epidermal layers of psoriatic lesions suggests the involvement
of this protein in the keratinocyte alterations typical of this disease [81]. Similarly, suppres‐
sion of survivin can increase the sensitivity of melanoma cells to chemotherapeutic agents
[83,84]. ML-IAP is also upregulated in melanoma cell lines and absent in normal melano‐
cytes [85]. ML-IAP’s effects on the mitochondrial pathways are considered to be related to a
direct inhibition of the pro-apoptotic factor Smac/Diablo, and the caspases 9 and 3 [86]. The
role of ML-IAP on melanoma chemoresistance has not been proven yet, but the overexpres‐
sion of ML-IAP in breast cancer cell lines (MCF-7) or in HeLa cells protects against the drug
Adriamycin and other apoptotic inducers, including TNF-α, FADD or BAX [86,87].

3.2. p53 pathway

p53 suppresses tumor development through multiple activities including induction of
growth arrest, apoptosis, senescence, and autophagy [88,89]. Environmental agents such as
UV that induce cellular damage activate the p53 tumor suppressor and p53 activation re‐
sults in p53-dependent programmed cell death (apoptosis) in many cell types. Melanocytes
are resistant to UV-induced apoptosis suggesting that p53 activity is somehow blocked
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(non-functional p53), a state shared with melanoma cells [90], which are resistant to conven‐
tional modes of chemotherapy that aim to stimulate p53-dependent apoptosis.

Melanoma is one of a number of tumor types where p53 is still wild type, indicating that
other events are contributing to p53 inactivation, in fact p53 function could be disabled by
lesions that disrupt other components of the pathway. Studies using mouse models of mela‐
noma have shown that disruption of the upstream p53 regulator p14 ARF can functionally re‐
place p53 loss during melanomagenesis [91]. Analogous to the human situation, tumors
arising in these mouse models present wild type p53 [91]. Moreover, the abnormal phos‐
phorylation of p53 by Chk2 kinase may contribute to the resistance of melanoma cells to ra‐
diotherapy [92]. Disruption of apoptosis downstream of p53 may alleviate pressure to
mutate p53 and simultaneously decrease drug sensitivity [93]. For example, Apaf-1 and cas‐
pase 9 can be essential downstream effectors of p53-induced apoptosis and their disruption
can facilitate oncogenic transformation of cultured fibroblasts [94]. In melanomas, Apaf-1
protein and mRNA expression are frequently downregulated in metastatic cell lines and tu‐
mor specimens [95]. Interestingly, Apaf-1 protein levels can be restored by addition of the
methylation inhibitor 5-aza-2´-deoxycytidine (5azaCdR), suggesting that DNA methylation
contributes to suppression of Apaf-1 levels. Whether methylation blocks Apaf-1 mRNA ex‐
pression directly by interfering with the recruitment of transcription factors at the Apaf-1
promoter or by affecting a regulator of Apaf-1 expression remains an open question. In any
case, Apaf-1 downregulation compromises the apoptotic response of melanoma cells in re‐
sponse to p53 activation [95] or E2F-1 [96]. Restoring physiological levels of Apaf-1 through
gene transfer or 5aza2dC treatment enhances chemosensitivity, alleviating cell death defects
associated with reduced Apaf-1 expression [95].

In tumor cells, the selective pressure to delete or inactivate p53 is very high. This primarily
occurs through mutations in p53, amplification/overexpression of its inhibitors like Mdm2,
Mdm4 (Mdm2 family member) [97]. The key molecule in the p53 regulatory network is
Mdm2, an E3 ubiquitin ligase with potentially oncogenic activity. Dynamic fine-tuning of
the Mdm2-centered network dictates the proper rapidity, intensity, and duration of a p53 re‐
sponse, resulting in the appropriate biological outcomes [98]. Although p53 is one of the
most frequently mutated tumor suppressor genes in cancer, it is mutated in only about 13%
of uncultured melanoma specimens [99-101]. The absence of p53 mutations in melanoma
has been attributed to the epistatic loss of ARF [101] or amplification of HDM2 [102], both of
which lead to a functionally debilitating interaction between HDM2 and p53. Ji et al. have
provided important data that HDM2 antagonism can effectively restore p53 function, sup‐
press melanoma growth, and synergize with MEK inhibition [103].

3.3. Signaling pathways in melanoma

In malignant melanoma, the PI3K⁄AKT signaling pathway is frequently constitutively acti‐
vated [104]. Several studies indicate that only a combinatorial inhibition of PI3K⁄AKT and
MAPK signalling induces apoptosis in melanoma cells efficiently [105,106]. On the other
hand, inappropriate activation of survival signaling pathways such as those mediated by
mitogen-activated protein kinase (MEK)/extracellular-regulated kinase (ERK) and phosphoi‐
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nositide 3-kinase (PI3K)/AKT, either as consequences of genetic alterations or resulting from
environmental stimulations, is known to play a central role in the resistance of melanoma to
apoptosis [107,108].

One-third of primary melanomas and about 50% of metastatic melanoma cell lines showed
reduced expression of PTEN as a result of allelic deletion, mutation or transcriptional silenc‐
ing [109,110], suggesting that inactivation of PTEN is a late, but frequent, event on melano‐
magenesis [111,112]. Multiple lines of evidence point to the PI3K/AKT/PTEN pathway as a
putative candidate for therapeutic intervention in melanoma because PTEN overexpression
can revert the invasive phenotype of human and mouse melanoma cell lines [113,114] and
elevated PTEN activity may sensitize cells to chemotherapeutic drugs [115].

Recent  progress  in  the  identification  of  genes  relevant  for  melanomagenesis  was  made,
revealing the importance of several signaling pathways. Sinnberg et al. [116] suggest that
the  oncogenic  transcription  factor  Y-box  binding protein-1  (YB-1)  play  a  pivotal  role  in
melanoma cells. YB-1 could be a key player, activated by the signalling pathways MAPK
and  PI3K⁄AKT.  Indeed,  was  demostrated  that  both  signaling  pathways  are  able  to  in‐
crease  S102-phosphorylation  and  nuclear  translocation  of  YB-1.  It  is  known  that  S102-
phosphorylated YB-1 can induce the expression of  the catalytic  subunit  of  PI3K and by
this increases PI3K activity [117].

In melanoma cells, the NF-kB pathway can be altered by upregulation of the NF-kB sub‐
units  p50  and RelA [118,119]  and downregulation  of  the  NF-kB inhibitor  IkB [120,121].
Consequently, downstream NF-kB targets like c-myc, cyclin D1, the anti-apoptotic factor
TRAF2,  the  invasion-associated  proteins  Mel-CAM  or  the  pro-angiogenic  chemokine
GRO are also frequently upregulated in melanoma [122]. Recent studies have highlighted
that some components of NF- kB family, such as p50 and p65/ RelA proteins, are overex‐
pressed in the nuclei of dysplastic nevi and melanoma cells compared to those of normal
nevi and healthy melanocytes, respectively [123]. Other data show that a hyperactivation
of  NF-kB can be also caused by an increased expression of  other  factors  involved indi‐
rectly  in  NF-kB  pathway.  Recent  studies  on  the  gene  expression  profile  of  melanoma
cells  have shown an increased expression of  Osteopontin (OPN) [124],  a  secreted glyco‐
phosphoprotein that  induces NF-kB activation through enhancement of  the IKK activity
based  on  phosphorylation  and  degradation  of  IkBa  [125].  Indeed,  OPN  induces  AKT
phosphorylation  and,  in  turn,  phosphorylated  AKT  binds  to  IKKa/b  and  activates  IKK
complex [125].  Mutational  activation of  BRAF, common in human melanomas,  has been
also associated with an enhanced IKK activity and a concomitant increase in the rate of
IkBa ubiquitination and its subsequent degradation. This process overall entails a constit‐
utive  induction  of  NF-kB  activity  and  an  increased  survival  of  melanoma  cells  [126].
Combination  of  these  data  with  others  reported  in  literature  strongly  suggests  that  the
enhanced activation of NF-kB may be due to deregulations occurring in upstream signal‐
ing pathways such as RAS/RAF, PI3K/AKT and NIK [121].

Oncogenic mutations on Ras-family members, RAS and B-RAF, have been shown to im‐
pinge at multiple levels on AKT/NF-kB, RAF/MAPK and RAL/Rho signaling pathways [127]
producing survival signals to disengage cell cycle checkpoint controls, favor metastasis and
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block pro-apoptotic stimuli. In support of this hypothesis, overexpression of N-RAS in hu‐
man melanoma cells enhances Bcl-2 expression and contributes to a higher tumorigenicity
and drug resistance in mouse xenotransplant models (i.e. subcutaneous injections) [128].
Chin and collaborators have generated melanomas in the context of a specific genetic back‐
ground (INK4a/ARF deficiency) by conditional overexpression of H-RAS in melanocytes.
Once the tumors were formed, downregulation of H-RAS expression led to a marked tumor
regression by enhanced apoptosis of the tumor cells and also on the host-derived endothe‐
lial cells [129]. High-throughput analyses of genetic alterations in human cancers demon‐
strate that specifically, B-RAF, a RAS effector, was found to be mutated in 66% of human
melanomas. Mutations are restricted to a few single amino-acid changes (primarily on V599)
that render a constitutive active kinase with transforming properties in NIH3T3 cells [130].
Interestingly, previous studies indicate that wild-type B-RAF may inhibit programmed cell
death downstream of cytocrome C release [131].

Although >50 mutations in BRAF have now been described, the most common BRAF muta‐
tion in melanoma, accounting for 80% of all of the BRAF mutations, is a valine to glutamic
acid (V600E) substitution [130,132]. Acquisition of a V600E mutation in BRAF destabilizes
the inactive kinase conformation switching the equilibrium towards the active form, leading
to constitutive activity [132]. Mechanistically, mutated BRAF exerts most of its oncogenic ef‐
fects through the activation of the MAPK pathway [133]. MAPK activity drives the uncon‐
trolled growth of melanoma cells by upregulating the expression of cyclin D1 and through
the suppression of the cyclin dependent kinase inhibitor p27KIP1. Pre-clinical studies have
shown that introduction of mutated BRAF into immortalized melanocytes leads to anchor‐
age independent growth and tumor formation in immunocompromised mice [133]. Con‐
versely, downregulation of mutated BRAF using RNAi causes cell cycle arrest and apoptosis
in both in vitro and in vivo BRAFV600E mutant melanoma models [133]. Although it has been
suggested that the acquisition of the BRAFV600E mutation is an early event in melanoma de‐
velopment, with 80% of all benign nevi showing to be BRAF mutant, the available evidence
indicates that mutant BRAF alone cannot initiate melanoma [134,135].

3.4. DNA Mismatch Repair (MMR) proteins

Late et al. [136] determined that melanoma cells exhibiting resistance to cisplatin, etoposide
and vindesine present a reduction of 30 to 70% in the nuclear content of each of the DNA
mismatch repair (MMR) proteins hMLH1, hMSH2 and hMSH6. A decreased expression lev‐
el of up to 80% of mRNAs encoding hMLH1 and hMSH2 was observed in drug-resistant
melanoma cells selected for cisplatin, etoposide and fotemustine. In melanoma cells that ac‐
quired resistance to fotemustine, the activity of O6-methylguanine-DNA methyltransferase
(MGMT) was considerably enhanced. The data of this group indicate that modulation of
both MMR components and MGMT expression level may contribute to the drug-resistant
phenotype of melanoma cells.

DNA mismatch repair (MMR) deficiency and increased O6-methylguanine-DNA methyl‐
transferase  (MGMT)  activity  have  been  related  to  resistance  to  O6-guanine  methylating
agents in tumour cell lines. However, the clinical relevance of MMR and MGMT as drug
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resistance  factors  is  still  unclear.  In  a  retrospective  study,  the  expression  levels  of  the
MMR proteins,  hMSH2, hMSH6 and hMLH1, Ma et al.  [137] analysed by immunohisto‐
chemistry  in  melanoma  metastases  from  64  patients,  who  had  received  dacarbazine
(DTIC)  based chemotherapy.  All  tumours  showed positive  nuclear  staining for  hMLH1.
The  response  rates  were  similar  in  patients  with  hMSH2  and/or  hMSH6  positive  tu‐
mours to these in patients with negative tumours. In other retrospective study, Ma et al.
[138]  analysed  the  levels  of  the  DNA  repair  protein  O(6)-methylguanine-DNA  methyl‐
transferase (MGMT) in melanoma metastases from patients receiving dacarbazine (DTIC)
either as a single drug or as part of combination chemotherapy regimens, and related the
expression levels to the clinical response to treatment. DTIC as single agent was given to
44 patients, while 21 received combination chemotherapy. Objective responses to chemo‐
therapy were  seen in  12  patients,  while  53  patients  failed to  respond to  treatment.  The
expression of MGMT was determined according to the proportion of antibody-stained tu‐
mor cells,  using a  cut-off  level  of  50%.  In  12  of  the  patients,  more  than one metastasis
was  analyzed,  and in  seven of  these  cases,  the  MGMT expression differed between tu‐
mours in the same individual. Among the responders a larger proportion (six out of 12,
50%) had tumors containing less  than 50% MGMT-positive tumor cells  than among the
non-responders  (12  out  of  53,  23%).  These  data  are  consistent  with  the  hypothesis  that
MGMT  contributes  to  resistance  to  DTIC-based  treatment.  The  conclusion  that  can  be
drawn from the fact that the development of drug resistance in melanoma cells is accom‐
panied by  down modulation  of  certain  components  of  the  MMR system and by an  in‐
crease in MGMT activity when O6-alkylating agents are applied has several far-reaching
implications  regarding primary and acquired clinical  resistance  to  these  drugs.  Further‐
more,  reduction  or  deficiency  in  MMR may increase  the  mutation  rate  in  affected  cells
leading  subsequently  to  an  increased  rate  of  development  of  resistance  to  other  drugs
having  different  targets.  In  addition,  an  enhanced  mutation  rate  may  contribute  to  in‐
creased phenotypic variation and therefore the clinical aggressiveness of melanomas and
their metastases.

Recently, Li et al. [139] demonstrated the expression of DNA repair genes ERCC1 and XPF is
induced by cisplatin in melanoma cells and that this induction is regulated by the MAPK
pathway, with the role of DUSP6 phosphatase being particularly important. This induction
contributes to increased drug resistance, which is one of the major obstacles to melanoma
treatment, suggesting that ERCC1 or XPF inhibitors could be used to enhance the effective‐
ness of cisplatin treatment.

3.5. Multidrug Resistance Proteins (MRP)

The intrinsic multidrug resistance and sensitivity in melanomas and in pigment-producing
cells involves multiple ABC transporters and melanosome biogenesis [140]. Melanoma cells
express a group of ABC transporters, including ABCA9, ABCB1, ABCB5, ABCB8, ABCC1,
ABCC2, and ABCD1 [140,141].

ABCC1 was shown to cooperate with glutathione S-transferase M1 to help melanoma cells
escape the cytotoxicity of vincristine [141]. Have been described too that B16 melanoma
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(B16M) cells presenting high ABCC1 and GSH content show high metastatic activity and
high multidrug and radiation resistance [142]. Elevated expression of ABCC2 was shown to
cause cisplatin resistance by reducing nuclear DNA damage, decreasing cell cycle G2-arrest,
and increasing reentry into the cell cycle [4].

Has been reported that ABCB5 and ABCB8 mediate doxorubicin resistance in melanoma
cells [143, 144]. ABCB5 shares 73% of sequence homology with the classic and the most stud‐
ied multidrug resistance protein ABCB1 (P-gp, MDR1) [145,146] and was firstly detected in
tissues derived from the neuroectodermal lineage including melanocyte progenitors [145],
melanoma cell lines and patient specimens [143,146-148]. In melanoma, ABCB5-expressing
cells are endowed with self-renewal, differentiation and tumorigenicity abilities [149,150].
Their abundance in clinical melanoma specimens correlates positively with the neoplasic
progression suggesting that ABCB5 expression is associated with tumor aggressiveness.
Moreover, the growth of melanoma xenografts in mice was delayed when the animals were
treated with a monoclonal anti-ABCB5 antibody [149]. As a member of the ABC transporter
family, ABCB5 is thought to play a role in drug efflux. This was supported by experiments
measuring the intracellular accumulation of Rhodamine 123 [145]. These data suggest that
ABC proteins may be important molecular targets for the reversal of multidrug resistance in
melanoma cells.

4. Does oxidative stress contribute to the resistance in melanoma?

Free radicals are implicated in the pathogenesis of a multistage process of carcinogenesis.
They can cause DNA base alterations, strand breaks, damage to tumor suppressor genes
and enhanced expression of proto-oncogenes. The burst of reactive oxygen species (ROS)
and the reactive nitrogen species (RNS) has been implicated in the development of can‐
cer  [151,152].  Excessive  production  of  ROS  can  be  harmful  to  both  normal  and  cancer
cells.  High levels of ROS cause damage to lipids, DNA and cellular proteins, disrupting
their  normal  function.  However,  some  cancer  cells  can  develop  mechanisms  that  use
ROS  for  purposes  such  as  mitogenic  upregulation  of  the  expression  of  antioxidant  en‐
zymes  [153-155].  Several  studies  have  investigated  the  role  of  antioxidant  enzymes  in
cancer  and  it  has  been  shown  that  these  enzymes  play  a  significant  role  in  regulating
cancer growth and survival [156,157]. The carcinogenic effect of oxidative stress is attrib‐
uted primarily to the genotoxicity of  ROS in various cellular processes [158].  For exam‐
ple,  hydroxyl  radicals  can  react  with  purines  andor  pyrimidines  as  well  as  chromatin
proteins,  resulting in base modifications and genomic instability which can cause altera‐
tions in gene expression [159]. These data have suggested the accumulation of ROS as a
common phenomenon in many cancer cells. Such accumulations can cause direct damage
to  DNA by  increasing  the  cellular  mutation  and/or  promoting  and maintaining  the  tu‐
morigenic phenotype by activating a second messenger in intracellular signaling cascades
[160].  In  addition,  ROS have been determined to  cause epigenetic  alterations  that  affect
the genome and play a major role in the development of carcinogenesis in humans [161].
More specifically, the production of ROS is associated with alterations in DNA methyla‐

Melanoma - From Early Detection to Treatment450



tion patterns [162,  163].  In particular,  hydroxyl radicals that produce DNA lesions,  such
as  8-hydroxyl-2-deoxyguanosine,  8-hydroxyguanine,  8  -OHdG [164-166],  and damage to
the  single  strand  of  DNA  [167]  have  been  shown  to  decrease  DNA  methylation  by
means  of  interfering  with  the  ability  of  DNA  to  function  as  a  substrate  for  the  DNA
methyltransferases (DNMTs) and thus resulting in global hypomethylation [168].

Oxidative stress may play different roles in the pathogenesis of melanoma and non-melano‐
ma skin cancer. It is likely that in non-melanoma skin cancers, a diminished antioxidant de‐
fense caused by chronic UV exposure contributes to the occurrence of mutations and
carcinogenesis, whereas melanoma cells are equipped with a high antioxidant capacity and
might use their ability to generate ROS for damaging surrounding tissue and thus support‐
ing tumour progression and metastasis [169]. Gidanian et al. showed that melanosomes de‐
rived from melanoma cells in comparison to melanocytes actively produce excessive
amounts of ROS [170]. Higher intracellular levels of ROS in melanoma cells were also de‐
tected by the studies by Meyskens et al. [171]. They furthermore showed that due to these
elevated levels of ROS, melanin itself becomes progressively more oxidized and starts to
function as a pro‐oxidant [172]. They also showed that oxidation of melanin can be further
increased by binding of metals, such as iron. These melanin‐metal complexes can be con‐
verted by the Fenton reaction thereby producing even more ROS [173]. There is supportive
evidence that sustained oxidative stress is related to oxidative DNA damage [174]. Atypical
melanocytes have increased levels of oxidative stress and oxidative DNA damage [175, 176].
In line with these observations, Leikam et al. found that ROS production was accompanied
by enhanced DNA damage [177].

4.1. Oxidative stress by antitumoral treatments

The cytotoxicity of some antitumoral drugs like actinomycin-D (AMD), adriamycin (ADR),
cisplatin (Cis-Pt), vincristine (VCR), cytosine arabinoside (Ara-C) and dacarbazine (DTIC)
are, to a greater or lesser extent, linked to the generation of free radicals and/or to the antiox‐
idant defense of the cells. AMD and ADR are xenobiotics, which, in the cell, enter to cycles
of oxidation and reduction, generating ROS [178,179]. Cis-Pt does not produce ROS; howev‐
er, during its detoxification the level of glutathione (GSH) decreases [180]. In the case of
DTIC, it has been shown that the resistance of melanoma cells to that drug is also partly
linked to changes in the level of GSH [17,181]. ROS generated by mitochondria intensify the
apoptosis induced by cytosine arabinoside [182].

Radiotherapy is a cornerstone in the treatment of several cancers. Ionic irradiation exposes
all cells to high levels of oxidative stress, thus resulting in the formation of ROS, increasing
DNA damage and ultimately leading to cell death. Another mechanism of the action of radi‐
otherapy is to alter cellular homeostasis, thus modifying the signal transduction pathways
and predisposing to apoptosis [183]. However, there are conflicting reports on the effect of
radiotherapy on oxidative stress. Some studies have reported increased oxidative stress after
radiotherapy [184], while others have reported decreased oxidative stress after radiotherapy
in cancer patients [185, 186].
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4.2. Transcription factors Nrf1 and Nrf2 are regulators of oxidative stress signaling

Nrf1 (NF-E2 related factor-1) and Nrf2 (NF-E2 related factor-2) nowadays are known as two
oxidative stress sensitive transcription factors that belong to the CNC/bZIP family of tran‐
scription factors consisting of NF-E2, Nrf1, Nrf2, Nrf3, BACH1, and BACH2 [45–48]. Both
Nrf1 and Nrf2 are responsible for regulating the expression of many antioxidant genes in‐
cluding peroxiredoxin-1 (Prx-1), thioredoxin-1 (Txn-1), GCLC (Glutamate cysteine ligase cat‐
alytic subunit - an enzyme responsible for catalyzing the formation of glutathione),
glutathione peroxidase (GPX-1), drug metabolizing enzymes (cytochrome P-450s), and sev‐
eral ATP Binding Cassette (ABC) transporters that are responsible for drug efflux [187-190].
All of these genes are essential for the maintenance of oxidative homeostasis and contain an
Electrophile Response Element (EpRE) to which Nrf1 and Nrf2 bind (also known as the An‐
tioxidant Response Element). Both Nrf1 and Nrf2 are essential to the cellular response to ox‐
idative stress and several studies have shown that knockdown of Nrf1 and/or Nrf2
expression sensitizes cells to oxidative stress [191-193]. It has also been suggested that Nrf2
responds to inducible oxidative stimuli and that Nrf1 regulates oxidative stress [194]. In‐
creased oxidative stress has been shown to promote tumor proliferation and survival
through deregulation of redox-sensitive pathways [153,195,196]. Nrf2 resides predominantly
in the cytoplasm where it interacts with the actin-associated cytosolic protein INrf2, which is
also known as Keap1 (Kelch-like ECH-associated protein 1). INrf2 functions as a substrate
adaptor protein for a Cul3/Rbx1-dependent E3 ubiquitin ligase complex to ubiquitinate and
degrade Nrf2, thus maintaining a steady-state level of Nrf2 [197].

Data from tumor cell lines isolated and profiled from human patients have indicated that
many tumors have adapted to exploit the cytoprotective actions of Nrf2 both in vivo and in
vitro through mutations of Keap1 and Nrf2, which lead to the constitutive upregulation and
permanent activation of Nrf2-signaling to enhance the tolerance of the cancer cells to toxins
and thereby limit the efficacy of chemotherapeutic agents. The loss of INrf2 (Keap1) function
is shown to lead to nuclear accumulation of Nrf2, activation of metabolizing enzymes and
drug resistance [198]. Studies have reported mutations resulting in dysfunctional Nrf2 in
lung, breast and bladder cancers [199-203].

In a study carried out by Matundan et al. [204], they demonstrated the basal Nrf2 expression
pattern in human melanoma was increased in 7 of 8 human melanoma cell lines. Immuno‐
blots of Nrf2 showed over-expression in 6 of 8 metastatic melanoma cell lines and they de‐
termined that Nrf2’s contribution was protective against redox stress in melanoma, and that
decreased Nrf2 activation sensitizes melanoma cell lines to existing chemotherapeutics [204].

4.3. NRF2 are related with the expression of multidrug resistance proteins

Ogura and colleagues reported previously that Nrf2 binds within the ABCB1 promoter's
-126 and -102 regions, which contain the ATTCAGTCA motif. They have purified Nrf2 from
the nuclear extract of K562/ADM cells, a multidrug-resistant cell line derived from human
myelogenous leukemia K562 cells. This group determined that ATTCAGTCA motif is a pos‐
itive regulatory element of MDR1 gene and that the motif is important for Nrf2 binding.
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These results suggest that Nrf2 may be involved in the positive regulation of the ABCB1
gene transcription [205].

Maher and collaborators examined the possibility that Nrf2 is also involved in the expres‐
sion levels of ABCC1 in mouse embryo fibroblasts. The constitutive expression levels of
Mrp1 mRNA and protein were significantly lower in Nrf2 (-/-) cells compared with those in
wild type cells. In addition, significant induction by diethyl maleate was observed in wild
type, but not in Nrf2 (-/-) cells, suggesting the involvement of Nrf2 in both the constitutive
and inducible mRNA and protein expression of ABCC1. In addition, the uptake of [3H]2,4-
dinitrophenyl-S-glutathione, a typical substrate of ABCC1, into isolated membrane vesicles
also demonstrated that Nrf2 regulates the transport activity of glutathione conjugates in
mouse fibroblasts [206]. In another hand, Maher evaluated whether oxidative conditions
(that is, the disruption of hepatic GSH synthesis) or the administration of nuclear factor-E2-
related factor-2 (Nrf2) activators (oltipraz and butylated hydroxyanisole) can induce hepatic
ABC transporters and whether that induction is through the NRF2 transcriptional pathway.
Livers from hepatocyte-specific glutamate-cysteine ligase catalytic subunit-null mice had in‐
creased nuclear NRF2 levels, marked gene and protein induction of the Nrf2 target gene
NAD(P)H: quinone oxidoreductase 1, as well as ABCC2, ABCC3, and ABCC4 expression.
The treatment of wild type and Nrf2-null mice with oltipraz and butylated hydroxyanisole
demonstrated that the induction of ABCC2, ABCC3, and ABCC4 is NRF2-dependent. In
Hepa1c1c7 cells treated with the Nrf2 activator tert-butyl hydroquinone, chromatin immu‐
noprecipitation with Nrf2 antibodies revealed the binding of NRF2 to antioxidant response
elements in the promoter regions of mouse ABCC2 [-185 base pairs (bp)], ABCC3 (-9919 bp),
and ABCC4 (-3767 bp). In this way, the activation of the Nrf2 regulatory pathway was
shown to stimulate the coordinated induction of hepatic ABCs [190].

4.4. NRF2 represses the p53 pathway

You et al. [207] confirmed that Nrf2 is directly involved in the basal expression of Mdm2
through the antioxidant response element, which is located in the first intron of this gene.
This linkage between Nrf2 and Mdm2 appears to cause the accumulation of p53 protein in
Nrf2-deficent MEFs. They also showed that ovarian carcinoma A2780 cells silenced for Nrf2
by shRNA displayed higher levels of p53 activation in response to hydrogen peroxide treat‐
ment, leading to increased cell death. Collectively, those results suggest novel evidence that
the inhibition of Nrf2 can suppress Mdm2 expression, which may result in p53 signaling
modulation. Thus, forced inhibition of Nrf2 expression in cancer cells may be lead to activa‐
tion of apoptosis response through the activation of p53 signaling.

4.5. Nrf2 and signalling pathways

The functional interaction between the Keap1-Nrf2 pathway and PTEN-PI3K-AKT pathway
has been reported in several studies using cell lines. The pharmacological inhibition of the
PI3K-AKT pathway represses the nuclear translocation of Nrf2 [208, 209]. In another hand,
Beyer et al. showed that AKT phosphorylation was robustly augmented in the P/K-Alb mice
in Nrf2-dependent manner, which is consistent with the previous report that Nrf2 positively
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regulates the activation of AKT [210]. Recently, Mitsuishi et al. [211] demonstrated a contri‐
bution of Nrf2 to cellular metabolic activities in proliferating cells, and the positive feedback
loop between the PTEN-PI3K-AKT and Keap1-Nrf2 pathways, which appears to be one of
the most substantial mechanisms for promoting the malignant evolution of cancers. It
should be noted that Nrf2 accumulation, which is achieved by the functional impairment of
Keap1 combined with the sustained activation of PI3K-AKT pathway, allows Nrf2 to get in‐
volved in the modulation of metabolism under pathological conditions. In contrast, tempo‐
rary accumulation of Nrf2 at a low level is sufficient for Nrf2 to exert the cytoprotective
function under physiological conditions [211].

Su et al. [212] reported the first evidence that Nrf2 is phosphorylated by MAPKs in vivo,
however the nuclear accumulation of Nrf2 was slightly enhanced by its phosphorylation.
This group concluded that direct phosphorylation of Nrf2 by MAPKs has a limited contribu‐
tion in regulating the Nrf2-dependent antioxidant responses.

4.6. Nrf2 and anti-apoptotic features

Nrf2 resides predominantly in the cytoplasm where it  interacts with the actin-associated
cytosolic  protein  INrf2,  which  is  also  known as  Keap1  (Kelch-like  ECH-associated  pro‐
tein  1).  INrf2  functions  as  a  substrate  adaptor  protein  for  a  Cul3/Rbx1-dependent  E3
ubiquitin  ligase  complex  to  ubiquitinate  and  degrade  Nrf2,  thus  maintaining  a  steady-
state level of Nrf2 [197]. A study conducted by Niture et al. demonstrated that INrf2, in
association with Cul3/Rbx1, ubiquitinates and degrades Bcl-2 [213]. However they recent‐
ly demonstrated that Nrf2 binds to Bcl-2 ARE and regulates expression and induction of
the Bcl-2 gene. Nrf2 mediated the up-regulation of Bcl-2,  down regulated the activity of
pro-apoptotic Bax protein and caspases 3/7, and protected cells from etoposide/radiation-
mediated apoptosis that leads to drug resistance. Thus, they demonstrate that Nrf2-medi‐
ated  up-regulation  of  Bcl-2  plays  a  significant  role  in  preventing  apoptosis,  increasing
cell survival, and drug resistance [214].

5. Conclusion

Melanoma continues to increase in incidence in many parts of the world, but there is cur‐
rently no curative treatment once the disease has spread beyond the primary site because of
the absence of effective therapies. This is believed to be largely due to the resistance of mela‐
noma cells to induction of apoptosis by available chemotherapeutic drugs and biological re‐
agents. Drug resistance is likely not only a primary consequence of acquired genetic
alterations selected during or after therapy, but rather inherent to the malignant behavior of
melanoma cells at diagnosis. Data support the existing hypothesis that talks about melano‐
ma cells are “born to survive”. Their aggressive behavior stems from intrinsic survival fea‐
tures of their paternal melanocytes nourished by additional alterations acquired during
tumor progression. These inherent survival mechanisms may be partly caused by the oxida‐
tive stress to which melanoma cells are exposed. Nrf2 is a transcription factor that is consid‐
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ered a double-edged sword because it participates in the regulation of oxidative stress,
however has been shown that overexpression of Nrf2 is a common phenomenon in several
cancer types, participating in chemoresistance and tumor survival. We assume that this phe‐
nomenon also overlaps in melanoma, thus the intrinsic or extrinsic resistance produced in
melanoma cells is partly due to overexpression of Nrf2, which can promote cell survival
through mechanisms already reviewed in this chapter. Although these mechanisms present‐
ed in the last part of this chapter were not studied in melanoma, we believe that future stud‐
ies endorse our theory. The knowledge about melanoma treatment has been widespread in
recent years, but still is not enough, hence we must deepen in this area in order to improve
the existing treatments and create effective targeted therapeutic target against this disease.
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