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1. Introduction 

1.1. Lactic acid bacteria 

Lactic acid bacteria (LAB) are a group of Gram-positive, non-sporulating, low-GC-content 

bacteria that comprise 11 bacterial genera, such as Lactococcus, Lactobacillus, Leuconostoc, 

Streptococcus and others (Stiles & Holzapfel, 1997). LAB have a generally regarded as safe 

(GRAS) Food and Drug Administration (FDA) status, and some strains of different LAB 

species exhibit also probiotic properties (Gilliland, 1989). They are ubiquitous in many 

nutrient rich environments, such as milk, meat and plant material, and some of them are 

permanent residents of mainly mammalian intestinal tracts, while others are able to colonize 

them temporarily. Due to their ability to produce lactic acid as an end product of sugar 

fermentation, they are industrially important and are used as starter cultures in various 

food-fermentation processes. The importance of LAB for humans can be appreciated from 

the estimated 8.5 billion kg of fermented milk produced annually in Europe, leading to 

human consumption of 8.5×1020 LAB (Franz et al., 2010).  

Understanding the mechanisms involved in carbohydrate metabolism and its regulation in 

LAB is essential for improving the industrial properties of these microorganisms. There are 

several ways to improve the metabolic potential of LAB cells, of which metabolic 

engineering offers a very efficient and effective tool. 

1.2. Genus Lactococcus 

Lactococci are homofermentative, mesophilic LAB that basically inhabit two natural 

environments, milk and plants, of which plants seem to constitute the primary niche. 

Occasionally, there have been reports that L. lactis was also isolated from soil, effluent water,  

the skin of cattle (Klijn et al., 1995), insects (leafhoppers, termites) (Bauer et al., 2000; 
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Latorre-Guzman et al., 1977; Schultz & Breznak, 1978) and fish (Itoi et al., 2008, 2009; Pérez 

et al., 2011). Adaptation of lactococcal strains from plants to the dairy environment has 

caused the loss of some functions, resulting in smaller chromosomes and acquisition of 

genes (often plasmidic) important for growth in milk (Kelly et al., 2010). 

Since Lactococcus lactis was first described in 1919 (Orla-Jensen, 1919), its taxonomy has 

changed repeatedly and still is confusing in some aspects. This group of bacteria, previously 

designated lactic streptococci, was placed in the new Lactococcus taxon in 1985 (Schleifer et 

al., 1985). The current taxonomy of L. lactis is based on phenotype and includes four 

subspecies (lactis, cremoris, hordniae, and the newly identified subsp. tructae) and one biovar 

(subsp. lactis biovar diacetylactis) (Schleifer et al., 1985; van Hylckama Vlieg et al., 2006; 

Pérez et al., 2011; Rademaker et al., 2007). Among them, only L. lactis subsp. hordniae and 

subsp. tructae have never been isolated from dairy products. The lactis and cremoris 

phenotypes are distinguished on the basis of several basic criteria, such as: arginine and 

maltose utilization, decarboxylation of glutamate to γ-aminobutyric acid (GABA), and 40°C, 

4% NaCl and pH 9.2 tolerance. L. lactis subsp. cremoris strains are reported to be negative for 

all of these features (Nomura et al., 1999; Schleifer et al., 1985). Moreover, the biovar 

diacetylactis strains are able to metabolize citrate, which is converted to diacetyl, an 

important aroma compound. Additionally, numerous genetic studies (DNA–DNA 

hybridization, 16S rRNA and gene sequence analysis) of L. lactis isolates of dairy and plant 

origin have revealed the existence among them of two main genotypes that have also been 

called L. lactis subsp. lactis (lactis genotype) and L. lactis subsp. cremoris (cremoris genotype). 

Furthermore, it has been demonstrated that the genotype and phenotype do not always 

correspond within one isolate, thus introducing a degree of disorder into the taxonomy of 

this species (Tailliez et al., 1998). It has been observed that within the group of cremoris 

genotype, strains with both lactis (MG1363) and cremoris (SK11) phenotypes may occur, and, 

likewise, within the group of lactis genotype there are ones with lactis (KF147) as well as 

biovar diacetylactis (IL594) phenotypes (Bayjanov et al., 2009; Kelly et al., 2010; Nomura et 

al., 2002; Rademaker et al., 2007; Tanigawa et al., 2010). Hence, the L. lactis has an atypical 

taxonomic structure with two phenotypically distinct groups, such as L. lactis subsp. lactis 

and L. lactis subsp. cremoris, which may belong to two distinct genotype groups. As a result, 

in order to sufficiently describe the individual strains, it is necessary to specify both the 

genotype (cremoris or lactis) and the phenotype (cremoris, diacetylactis, or lactis). 

Strains belonging to L. lactis subsp. lactis and L. lactis subsp. cremoris together with a diverse 

assortment of other LAB are widely used as dairy starters for the production of a vast range 

of fermented dairy products, including various types of cheeses, sour cream, buttermilk and 

butter (Daly, 1983; Davidson et al., 1996). In the dairy industry, the lactis subspecies are 

better for making soft cheeses and the cremoris subspecies for the hard ones. Overall, it is 

generally accepted that the L. lactis subsp. cremoris strains make better quality products than 

L. lactis subsp. lactis because of their important contribution to flavour development via their 

unique metabolic mechanisms (Salama et al., 1991; Sandine, 1988).  

During growth in milk, the primary function of L. lactis is rapid conversion of lactose to 

lactic acid, which provides preservation of the fermented product by preventing growth of 
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pathogenic and spoilage bacteria, it supports curd formation, and creates optimal conditions 

for ripening. Further, due to their proteolytic activity and amino acid conversion, lactococci 

contribute to the final texture (moisture, softness) and flavour of dairy products (Smit et al., 

2005). Many of lactococcal functions vital for successful fermentations are borne on 

plasmids, which are a common feature in lactococci, even in strains isolated from non-dairy 

sources (Davidson et al., 1996). For example, specific plasmid-borne genes encode proteins 

involved in lactose transport and metabolism and in hydrolysis and utilization of casein 

(Davidson, et al., 1996; McKay, 1983). Hence, there is considerable selective pressure on 

dairy strains to retain these plasmids, since plasmid-cured derivatives grow poorly in milk. 

Since plasmids are mobile elements, they can be readily exchanged among different strains 

(via conjugal transfer) (Gasson, 1990).  

Due to its industrial importance L. lactis has become the best studied LAB, and although 

most studies have been performed on a small number of laboratory strains of dairy origin, it 

is regarded as a model organism for this bacterial group. A number of genome sequences of 

L. lactis strains are available, including strains from L. lactis subsp. lactis, such as IL1403, 

KF147 and CV56, as well as strains from L. lactis subsp. cremoris, such as MG1363, A76, 

NZ9000 and SK11 (according to http://www.ncbi.nlm.nih.gov/genome/). Among them, L. 

lactis subsp. lactis IL1403 (Chopin et al., 1984) and L. lactis subsp. cremoris MG1363 (Gasson, 

1983) are the most important laboratory strains, and they can be distinguished by 

differences in specific DNA sequences, including those encoding 16S rRNA (Godon et al., 

1992), and by their genome organization (Le Bourgeois et al., 1995). These two strains are 

plasmid-cured derivatives of the dairy starter strains IL594 (IL1403) and NCDO 712 

(MG1363) respectively, and due to their industrial importance, their metabolism, physiology 

and genetics have been extensively studied over the past years. Both belong to L. lactis 

subsp. lactis phenotypically, but the parent strain of IL1403 has a citrate permease plasmid 

(Górecki et al., 2011) and is able to metabolize citrate, placing it with L. lactis subsp. lactis 

biovar diacetylactis, whereas MG1363 has a lactis phenotype and a cremoris genotype (Kelly 

et al., 2010). Despite their physiological and 16S rRNA gene sequence similarities, they share 

only about 85% chromosomal sequence identity, which is comparable to the genetic distance 

between Escherichia coli and Salmonella typhimurium (McClelland et al., 2001; Salama et al., 

1991; Wegmann et al., 2007). A derivative of MG1363 was created by the integration of the 

nisRK genes (involving the “NICE” system for nisin-controlled protein overexpression) into 

the pepN gene, yielding L. lactis NZ9000 (Kuipers et al., 1998). 

2. Lactose metabolism 

Most microorganisms have adapted to growth in milk habitat due to acquisition of the 

ability to the use its most abundant sugar, lactose, as a carbon source. This disaccharide 

consists of a galactose moiety linked at its C1 via a β-galactosidic bond to the C4 of glucose. 

Because of the efficiency and economic importance of its fermentation, a large number of 

studies have focused on the utilization of lactose by LAB. 

Uptake of lactose into a bacterial cell can be mediated by several pathways, such as the 

lactose-specific phosphotransferase system (lac-PTS), ABC protein-dependent systems and 
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secondary system transporters like lactose-galactose antiporters and lactose-H+ symport 

systems (de Vos & Vaughan, 1994). While ABC protein-dependent lactose transport has been 

demonstrated only in non-LAB, Gram-negative Agrobacterium radiobacter (Williams et al., 1992), the 

lac-PTS as well as secondary lactose transport systems have been described for many LAB species. 

2.1. Lactose-specific phosphotransferase systems (lac-PTS) 

Although LAB used as starter cultures may also convert pyruvate to a variety of end 

products, these pathways are not expressed during lactose fermentation, which is 

homolactic in most strains (Cocaign-Bousquet et al., 2002; Neves et al., 2005). Since the 

primary function of LAB in dairy fermentations is the conversion of lactose to lactic acid, the 

industrial strains are primarily selected on the basis of their ability for its rapid, homolactic 

fermentation (de Vos & Simons, 1988). 

Starter lactococcal strains transport lactose exclusively by the most abundant in LAB uptake 

system for various sugars - the phosphoenolpyruvate-dependent phosphotransferase 

system (PEP-PTS). The lac-PTS has a very high affinity for this sugar and is bioenergetically 

the most efficient system since one lactose molecule is translocated and phosphorylated in a 

single step, at the expense of a single ATP equivalent. Concomitantly with transport, PTS 

catalyzes the phosphorylation of the incoming sugar. Phosphoenolpyruvate is the first 

phosphoryl donor, which phosphorylates Enzyme I (EI), and then the phosphoryl group is 

transferred in sequence to HPr, EIIA, EIIB, and finally, via transmembrane porter (EIIC), to 

the transported sugar (Lorca et al., 2010). After translocation via lac-PTS, lactose is 

hydrolyzed by P-β-galactosidase to glucose and galactose-6-P. While glucose enters the 

Embden-Meyerhof-Parnas glycolytic pathway through phosphorylation by glucokinase, 

galactose-6-P, before it also enters the glycolytic pathway, is further metabolized via the D-

tagatose-6-P (Tag-6P) pathway. This involves three enzymes: (i) galactose-6-P isomerase 

(LacAB); (ii) tagatose-6-P kinase (LacC); and (iii) tagatose-1,6-diphosphate aldolase (LacD). 

The resulting triosephosphates (glyceraldehydes-3-P and dihydroxyacetone-P) are further 

metabolized via glycolysis. The operons engaged in this rapid, homolactic lactose 

fermentation are usually plasmid-located (lac-plasmids) and, in addition to the genes for the 

lac-PTS proteins and P-β-galactosidase, contain genes coding for the enzymes of the Tag-6P 

pathway. Their transcription is regulated by various repressors, with tagatose-6-P being the 

molecular inducer in L. lactis (van Rooijen et al., 1991). 

It is believed that plasmid-encoded ability for rapid lactose fermentation characteristic for 

dairy strains was recently acquired by wild-type plant strains, as a result of their adaptation 

to milk-environment (Kelly et al., 2010). 

2.2. Lactose permease-β-galactosidase systems 

Another strategy developed by LAB for lactose metabolism depends on its uptake via 

secondary transport systems. These systems transport lactose in an unphosphorylated form 

via specific permeases belonging to the LacS subfamily (TC No. 2.A.2.2.3) of the 2.A.2 

glycoside-pentoside-hexuronide (GPH) family (Saier, 2000). Carriers of the LacS subgroup 
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are chimeric in nature: at their carboxy terminal end they contain an approximately 160 

amino acid hydrophilic extension homologous to the EIIA domains of PTS. Thus, lactose 

transport is controlled by HPr-dependent phosphorylation (Gunnewijk et al., 1999; 

Gunnewijk & Poolman, 2000a; Gunnewijk & Poolman, 2000b). Due to this additional 

domain these lactose permeases are larger than the other carriers from the GPH family, 

which are generally about 500 amino acids in length. Depending on the organism, LacS can 

mediate lactose transport coupled to proton symport or by antiport with galactose. 

Following its import, lactose is hydrolyzed by β-galactosidase (David et al., 1992; Vaughan 

et al., 1996) yielding glucose and galactose. The glucose moiety is further metabolized via 

glycolysis, whereas the galactose moiety follows different pathways depending on the 

particular LAB. While some thermophilic strains of LAB (e.g., Lactobacillus bulgaricus and 

Streptococcus thermophilus) are known to release the galactose moiety of lactose into the 

medium, other LAB (e.g., Lactobacillus helveticus, Leuconostoc lactis and Streptococcus salivarius) 

metabolize this saccharide via the Leloir pathway (de Vos, 1996; Poolman, 1993; Vaughan et al., 

2001). This pathway was one of the first central metabolic pathways to be discovered, by L. 

F. Leloir and coworkers in the early 1950s. It includes the key enzyme galactokinase (GalK), 

and hexose-1-P uridylyltransferase (GalT) plus UDP-glucose 4-epimerase (GalE), all of 

which are involved in the conversion of galactose to glucose-1P. The generated glucose-1P, 

after conversion to glucose-6P by phosphoglucomutase, enters the glycolytic pathway. 

Aldose-1-epimerase, a mutarotase (GalM), is an additional, more recently characterized 

enzyme required for rapid galactose metabolism (Bouffard et al., 1994; Mollet & Pilloud, 

1991; Poolman et al., 1990). GalM catalyses the interconversion of the α- and β-anomers of 

galactose. This enzyme was found to be essential for efficient lactose utilization in E. coli 

since cleavage of this β-galactoside by β-galactosidase yields glucose and β-D-galactose, the 

latter being the sole substrate for GalK (Bouffard et al., 1994). 

The existence of genes encoding components of the lactose permease-β-galactosidase system 

seems to be limited among the L. lactis strains as they have been identified only in the 

genomes of the dairy-derived strain IL1403 (Bolotin et al., 2001), non-dairy NCDO2054 

(Vaughan et al., 1998) and KF147 isolated from mung bean sprouts (Siezen et al., 2010). 

Remarkably, in addition to galactose genes of the Leloir pathway cluster, these strains contain 

genes needed for lactose assimilation, such as lacZ (β-galactosidase) and lacA 

(thiogalactoside acetyltransferase), arranged in an identical layout. Directly upstream of the 

aforementioned genes required for lactose hydrolysis and subsequent galactose conversion, 

there is the gene encoding the LacS permease for sugar uptake.  

Some details concerning the role of the lactose permease-β-galactosidase system in lactose 

utilization have been reported for the slow lactose fermenter - L. lactis NCDO2054 (Vaughan 

et al., 1998), and for the devoid of the lac-plasmid, essentially lactose-negative L. lactis IL1403 

strain (starts to utilize lactose slowly after approximately 40 h of incubation) (Aleksandrzak-

Piekarczyk et al., 2005). Since these strains possess the complete lactose permease-β-

galactosidase system and an active Leloir pathway, it seems odd that they are barely capable of 

lactose metabolism. In the case of L. lactis NCDO2054, which can accumulate a high 

intracellular concentration of lactose-6-phosphate by using an efficient lac-PTS and 
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possesses low-level P-β-galactosidase activity, it has been suggested that the slow 

fermentation of lactose may be due to this rate-limiting P-β-galactosidase activity and 

the inhibitory effect of the accumulated lactose-6-phosphate (Bissette & Anderson 1974; 

Crow & Thomas, 1984). However, other explanations of lactose fermentation problem 

can be envisaged: (i) lactose transport is inefficient due to low affinity of LacS for 

lactose or (ii) the strains lack a functional β-galactosidase. Indeed, the lacS gene of L. lactis 

IL1403 is almost identical to that of L. lactis NCDO2054, but also to galP of the lactose-negative L. 

lactis MG1363 strain (Grossiord et al., 2003). These permeases belong to the same subfamily (TC 

No. 2.A.2.2.3 according to the Transporter Classification Database: http://www.tcdb.org/; Saier, 

2000), which includes transporters specific for galactose uptake, in contrast to LacS permeases of 

another subfamily (TC No. 2.A.2.2.1) with a proven high lactose-transport rate. The lack of LacS 

involvement in lactose transport is confirmed by the fact that disruption of lacS in L. lactis 

IL1403 had a minor effect on lactose assimilation (Aleksandrzak-Piekarczyk et al., 2005). 

Another indispensable factor in lactose assimilation, the β-galactosidase enzyme, is also 

encoded by the genomes of L. lactis IL1403 and NCDO2054 strains. In spite of the high 

similarity in the protein level of both enzymes, β-galactosidase of L. lactis NCDO2054, in 

contrast to the one of L. lactis IL1403 (Aleksandrzak-Piekarczyk et al., 2005), seems to be 

highly active and strongly regulated (Griffin et al., 1996). It has been suggested that the 

lacZ gene of L. lactis IL1403 may not be expressed or the encoded enzyme may be 

inactive since this strain does not exhibit β-galactosidase activity (Aleksandrzak-

Piekarczyk et al., 2005). Furthermore, the in trans complementation of chromosomal lacZ 

by an active β-galactosidase in L. lactis IL1403 did not improve its ability for lactose 

assimilation, indicating that the lack of β-galactosidase activity is not the only obstacle 

in its ability to efficiently ferment lactose (unpublished personal observations). 

Taken together, it seems that in L. lactis strains lactose permease-β-galactosidase systems play 

a minor role in lactose assimilation or function under certain environmental conditions. It 

appears that the major obstacle is the galactose-specific LacS permease, which shows only 

weak affinity for lactose and functions almost only in transport of galactose (Fig. 1). This 

thesis is confirmed by the study of Solem et al. (2008), in which an efficient lactose 

transporter (LacS; TC No. 2.A.2.2.1 ) and β-galactosidase (LacZ), encoded by the lacSZ 

operon, were introduced from lactose-positive S. thermophilus into the lactose-negative strain 

L. lactis MG1363, devoid of lactose permease-β-galactosidase system. As a result, fast-growing 

lactose-positive mutant strains were obtained. This shows that addition of the LacSZ system 

containing LacS with a proven high lactose-transport rate can strongly increase the lactose-

transport capacity in L. lactis. 

3. Metabolism of β–glucosides 

In addition to dairy environment, plant surfaces and fermenting plant material are also 

important ecosystems occupied by L. lactis. With regard to fermentation, lactococcal strains 

usually occur there only at the beginning of this process, to be later replaced by 

microorganisms more resistant to low pH values (Kelly & Ward, 2002; Kelly et al., 1998). 

The majority of plant-associated strains belong to L. lactis subsp. lactis, whereas L. lactis 
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subsp. cremoris is typical for dairy fermentations (Kelly & Ward, 2002; Kelly et al., 1998). In 

comparison to the dairy environment, fermenting plant material differs highly with respect 

to chemical composition, exhibiting, for instance, much lower protein concentration and 

wider availability of carbohydrates other than lactose. The ability of plant-associated L. lactis 

subsp. lactis strains to utilize such a large variety of plant carbohydrates is reflected in their 

genomes and sugar fermentation capabilities. Comparison between milk- and plant-

associated lactococcal strains clearly shows that the latter possess a larger number of genes 

involved in transport and metabolism of carbohydrates, resulting in their increased sugar 

fermentation capabilities (Siezen et al., 2008). 

Besides lactose, the PTS systems can also transport various other carbohydrates, including 

sugars widely distributed in plants, namely β-glucosides, like e.g. amygdalin, arbutin, 

cellobiose, esculin, gentobiose and salicin (Tobisch et al., 1997). Except for amygdalin, these 

sugars are composed of two molecules joined by the β-glucosidic bond, of which at least one 

is glucose. The best known example of this group is cellobiose, the structural unit of one of 

the most abundant renewable polymers on earth – cellulose, and also the main product in its 

enzymatic hydrolysis (Teeri, 1997). Unlike most of other β-glucosides (aryl-β-glucosides e.g., 

arbutin, amygdalin, esculin, and salicin), which are composed of a single glucose molecule 

and respective aglycone, cellobiose consists of two glucose molecules linked via a β(1-4) 

bond. 

It is well known from sugar fermentation characteristics that L. lactis strains of different origin 

can utilize a variety of β-glucosides (e.g., Aleksandrzak-Piekarczyk et al., 2011; Bardowski et 

al., 1995; Fernández et al., 2011; Siezen et al., 2008). The metabolic potential for catabolism of 

these sugars can be chromosomally encoded by more than one genetic system, as was shown 

for L. lactis IL1403. Eight genes, which encode proteins homologous to EII proteins of β-

glucoside-dependent PTS, involved in the uptake and phosphorylation of β-glucosides have 

been found throughout the L. lactis IL1403 chromosome (Bolotin et al., 2001). Three of them 

encode the three-domain EIIABC PTS components (PtbA, YedF and YleE), another three, EIIC 

permeases (CelB, PtcC and YidB), one an EIIA component (PtcA) and one an EIIB component 

(PtcB). CelB, PtcA, PtcB, PtcC and YidB are members of the Lac family (TC No. 4.A.3), which 

includes several lactose porters of Gram-positive bacteria as well as the E. coli and Borrelia 

burgdorferi N,N'-diacetylchitobiose (Chb) porters (according to http://www.tcdb.org/). The 

involvement of CelB and CelB/PtcC permeases in cellobiose transport has been experimentally 

confirmed in L. lactis IL1403 and MG1363, respectively (Aleksandrzak-Piekarczyk et al., 2011; 

Campelo et al., 2011). Although L. lactis IL1403 has such a large number of β-glucosides-

specific PTS systems, CelB is the only permease operative in cellobiose uptake in this strain 

(Aleksandrzak-Piekarczyk et al., 2011) (Fig. 1), whereas in L. lactis MG1363 also another PTS 

permease, namely PtcC, seems to participate in the transport of this sugar, albeit to a much 

lesser extent than CelB (Campelo et al., 2011). It has been proposed that the observed low 

expression of the ptcC gene may be the result of repression by carbon catabolite control protein 

A (CcpA) as mutations in its binding site (catabolite responsive element - cre) in the ptcC 

promoter region led to high upregulation of this gene in strain NZ9000 compared to strain 

MG1363, even under repressive conditions (Linares et al., 2010). 
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On the other hand, the EIIAB components, namely PtcA and PtcB, seem to be more versatile, 

being involved in the metabolism of numerous sugars (arbutin, cellobiose, glucose, lactose, 

salicin) in L. lactis (Aleksandrzak-Piekarczyk et al., 2011; Castro et al., 2009; Pool et al., 2006). 

No other PTS systems dedicated to transport of other β-glucosides have yet been described 

in detail in any L. lactis strain. However, according to unpublished preliminary data, the 

PtbA protein appears to be involved in the transport of arbutin, esculin and salicin, but not 

cellobiose, in L. lactis IL1403 (unpublished personal observation) (Fig. 1). In this strain, 

inactivation of the ptbA gene led to serious defects in growth in medium supplemented with 

each of these sugars (unpublished). 

After translocation by PTS through the bacterial membrane, the P-β-glucoside sugar is 

cleaved by P-β-glucosidase into glucose and glucose-6P or the respective aglycon (Tobisch et 

al., 1997). There are plenty of genes encoding P-β-glucosidases present in L. lactis 

chromosomes sequenced so far. Their large number is probably the result of adaptation of 

these bacteria to life on plants with abundant where β-glucosides. However, the data 

concerning their involvement in β-glucosides assimilation are rather scarce in scientific 

literature. It has only been demonstrated that a P-β-glucosidase, BglS, is responsible for 

hydrolysis of cellobiose, but not of salicin in L. lactis IL1403 (Aleksandrzak-Piekarczyk et al., 

2005) (Fig. 1). On the other hand, no function has been attributed to another P-β-glucosidase 

encoded by the bglA gene, and forming one operon with ptcC. According to unpublished 

results, the disruption of bglA did not alter growth of the IL1403 mutant strain in medium 

supplemented with a wide array of sugars (unpublished personal analysis). 

Expression of β-glucosides’ catabolic genes can be controlled by various regulatory 

mechanisms. Among them, catabolite repression (Aleksandrzak-Piekarczyk et al., 2005, 

2011; Zomer at al., 2007) and transcriptional antitermination through the BglR protein 

(Bardowski et al., 1994) were shown to be operational in L. lactis. The antitermination 

mechanism allows for expression of β-glucoside-specific genes in the absence of a 

metabolically preferred carbon source, such as glucose (Rutberg, 1997). It is believed that 

antiterminator proteins act by binding to a ribonucleic antiterminator (RAT) site at a specific 

mRNA secondary structure to prevent the formation of a hairpin terminator structure that 

would otherwise terminate transcription (Aymerich & Steinmetz, 1992; Rutberg, 1997). The 

binding of the antiterminator protein to the mRNA permits transcription through the 

sequestered terminator sequence into a β-glucoside-specific operon that is not normally 

transcribed. The function of BglR has been studied earlier in L. lactis IL1403, and it was 

shown to be involved in the activation of assimilation of β-glucosides such as arbutin, 

esculin and salicin, except for cellobiose (Bardowski et al., 1994; 1995) (Fig. 1). Inspection of 

the L. lactis IL1403 genome sequence downstream of bglR revealed the presence of two 

genes, ptbA and bglH, encoding proteins homologous to a putative three-domain EIIABC 

PTS component specific for the assimilation of β-glucosides, and P-β-glucosidase, 

respectively. Upstream of bglR, a putative cre-box (differing from the cre consensus by one 

nucleotide), a putative promoter sequence and a RAT sequence were identified. This RAT 

sequence has been reported previously (Bardowski et al., 1994, 1995) to be involved in the 

autoregulation of BglR. This sequence partially overlapped a putative rho-independent 
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terminator, which comprised six nucleotides at the 3’ end of the RAT. The ptbA gene is 

located 141 nt downstream of bglR. In silico sequence analysis revealed that the ptbA gene is 

also preceded by a DNA sequence highly similar to the RAT consensus sequence, 

suggesting that the regulation of ptbA expression may involve the BglR-mediated 

antitermination mechanism (unpublished personal analysis). Moreover, the short intergenic 

DNA region (47 nt) between ptbA and the next gene (bglH), plus the lack of an obvious 

hairpin structure or a promoter sequence strongly suggest that these two genes might be 

cotranscribed, and thus undergo common BglR-mediated regulation (unpublished) (Fig. 1). 

4. Alternative lactose utilization system and its interconnection with 

cellobiose assimilation 

The existence in several lactococcal strains devoid of lac-plasmids of cryptic lactose transport 

and catabolism systems has already been suggested in earlier studies (Anderson & McKay, 

1977; Cords & McKay, 1974; de Vos & Simons, 1988; Simons et al., 1993). The presence in L. 

lactis of chromosomally-encoded lactose permease has been proposed since introduction of 

the E. coli lacZ gene into a lactose-deficient L. lactis strain restored its ability to utilize lactose 

(de Vos & Simons, 1988). Moreover, P-β-galactosidase activities have also been detected in 

strains cured of their lactose plasmids, suggesting the presence of chromosomally-encoded 

cryptic lac-PTS(s) (Anderson & McKay, 1977; Cords & McKay, 1974). However, it was 

suggested that these PTSs are not specific for lactose, but rather for the translocation of other 

sugars (e.g., β-glucosides), and lactose could be transported alternatively. This hypothesis 

was supported by observations suggesting that a putative P-β-glucosidase, involved in 

cellobiose hydrolysis, is probably also involved in lactose-6-P cleavage in L. lactis strain 

ATCC7962 (Simons et al., 1993). This seems reasonable, as according to 

http://www.tcdb.org/, PTS lactose transporters belong to the Lac family (TC No. 4.A.3) and 

porters of this family have broad substrate specificity. Besides lactose, they can also 

transport aromatic β-glucosides and cellobiose. 

Until recently (Aleksandrzak et al., 2000; Aleksandrzak-Piekarczyk et al., 2005, 2011; 

Kowalczyk et al., 2008), little information on the organization in L. lactis strains of 

chromosomal alternative lactose utilization genes has been available. It was shown that in 

lac-plasmid-free, and thus lactose-negative L. lactis IL1403, the ability to assimilate lactose 

can be induced in two ways: (i) by the presence of cellobiose or (ii) by inactivation of CcpA 

(Aleksandrzak et al., 2000; Aleksandrzak-Piekarczyk et al., 2005). The CcpA protein is a 

member of the LacI-GalR family of bacterial repressors and exists only in Gram-positive 

bacteria (Weickert & Adhya, 1992). It exerts its regulatory role in carbon catabolite 

repression (CCR) by binding to DNA sites called cres, which occur in the vicinity of CcpA-

regulated genes (Weickert & Chambliss, 1990). In L. lactis the known targets of CcpA are the 

gal operon for galactose utilization (Luesink et al., 1998), the fru operon for fructose 

utilization (Barrière et al., 2005), the ptcABC operon for cellobiose utilization (Zomer et al., 

2007), and cel-lac genes for cellobiose and lactose utilization (Aleksandrzak-Piekarczyk et al., 

2011). Thus, one could speculate that in L. lactis IL1403 cellobiose-inducible chromosomal 
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alternative lactose utilization genes are under the negative control of CcpA, and, therefore, 

inactivation of the ccpA gene could result in their derepression and ability to assimilate 

lactose by the IL1403 ccpA mutant. 

Further studies of Aleksandrzak-Piekarczyk et al. (2005, 2011) and Kowalczyk et al. (2008) 

provided details on interconnected metabolism of β-glucosides (cellobiose) and β-

galactosides (lactose) and its variable regulation in L. lactis IL1403. Several genes have been 

implicated in coupled cellobiose and lactose assimilation in L. lactis IL1403, such as bglS and 

celB, ptcA and ptcB, encoding proteins homologous to P-β-glucosidase and EII components 

of cellobiose-specific PTS, respectively (Fig. 1). It has been shown that in L. lactis IL1403 the 

cellobiose-specific PTS system, comprising of celB, ptcB and ptcA, is also able to transport 

lactose because cellobiose-specific permease CelB has also an affinity for lactose, and, 

moreover, is the only permease involved in lactose uptake (Aleksandrzak-Piekarczyk et al., 

2011). Furthermore, internalized lactose-P is hydrolyzed exclusively by BglS – an enzyme 

with dual P-β-glucosidase and P-β-galactosidase activity, and high affinity for cellobiose 

(Aleksandrzak-Piekarczyk et al., 2005) (Fig. 1). Thus, BglS activity generates glucose and 

galactose-P molecules. Glucose enters the Embden-Meyerhof-Parnas glycolytic pathway through 

phosphorylation by glucokinase, whereas galactose-P requires dephosphorylation performed 

by an unidentified phosphatase or phosphohexomutase, before entering the Leloir pathway 

(Neves et al., 2010) (Fig. 1). Moreover, this alternative lactose utilization system has been 

shown to be tightly controlled by CcpA-directed negative regulation (Fig. 1), since 

inactivation of the ccpA gene led to derepression of bglS, celB, ptcA and ptcB and L. lactis 

IL1403 ccpA mutant ability to assimilate lactose (Aleksandrzak-Piekarczyk et al., 2011). In 

addition to CcpA-mediated repression, the celB and bglS genes are specifically activated by 

cellobiose, as its presence leads to an increase in their transcription. This phenomenon has 

not been observed when other sugars, such as glucose, galactose or salicin, were used as 

carbon sources (Aleksandrzak-Piekarczyk et al., 2011). Preliminary results suggest that a 

hypothetical transcriptional regulator, namely YebF, could be engaged in this cellobiose-

dependent activation of celB and bglS (Aleksandrzak-Piekarczyk et al., 2011; unpublished 

personal analysis) (Fig. 1). The YebF protein belongs to the RpiR family of phosphosugar 

binding proteins (Sorensen & Hove-Jensen, 1996), and, in addition to its sugar binding 

domain (SIS), it has a putative helix-turn-helix (HTH) DNA-binding domain. In addition to 

yebF mutant ferment lactose inability (Aleksandrzak-Piekarczyk et al., 2005), inactivation of 

the yebF gene in IL1403 resulted in inability to grow on cellobiose (unpublished personal 

analysis), suggesting the gene’s requirement in both cellobiose and lactose assimilation. 

Further studies on this phenomenon in L. lactis are needed to address it in greater detail. 

When cellobiose is available, it activates the cellobiose-specific PTS transport system, 

comprising CelB, PtcB and PtcA proteins, and L. lactis IL1403 is able to grow on cellobiose 

and lactose. This growth is supported by the activity of cellobiose-inducible BglS protein, 

which splits lactose-P into galactose-P and glucose. Then, after the dephosphorylation step, 

galactose is further metabolized through the Leloir pathway, while glucose enters 

glycolysis. Therefore, inactivation of the ccpA gene results in derepression of the cellobiose-

specific PTS transport system and also of the bglS gene, which in turn enable the IL1403 

strain to grow on lactose.  
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Figure 1. Schematic representation of the proposed mechanism of chromosomally-encoded lactose, 

cellobiose-inducible lactose and β-glucosides metabolism and of its regulation in L. lactis IL1403. In this 

model the key elements are the CelB, PtcB, PtcA, BglS and PtbA proteins. In the presence of glucose, 

IL1403 is unable to assimilate either lactose or β-glucosides. Under these conditions, these catabolic 

systems are either repressed by the CcpA protein and/or are not induced by the BglR activator. 

Besides cellobiose, other β-glucosides like arbutin, esculin and salicin are transported by the 

PtbA-mediated PTS system. In the absence of any of these three sugars, ptbA expression is 

not induced by the inactive the phosphorylated BglR antiterminator protein. Once a β-

glucoside is available, BglR becomes dephosphorylated and active, inducing the expression 

of the ptbA gene. The PtbA protein transports, with concomitant phosphorylation, arbutin, 

esculin and salicin, which are then probably hydrolyzed by BglH, a P-β-glucosidase, 

encoded by a gene located downstream of and in the same operon as the ptbA gene.  

It is also proposed in this model that LacS is not engaged in lactose internalization and its 

function is limited to galactose transport. 

5. Conclusions 

Despite the fact that the metabolism of lactose and β-glucosides is very important for  

the biotechnological processes catalysed by L. lactis, thorough studies of the 

chromosomally encoded features enabling use of these carbon sources were so far rather 

scarce. The reason for this could be the fact that L. lactis demonstrates a very large and 

complex metabolic capability towards carbohydrates used as carbon and energy sources, 

and, moreover, that this genetic potential is tightly regulated by various environmental 

and intracellular factors. It seems that the main obstacle in studies on the complicated 
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mechanisms involved in assimilation of β–glycoside sugars was the lack of complex  

data specifying the sequences of genes potentially involved in the metabolism of these 

sugars and its regulation. Indeed, recent access to the genomic sequences of some  

these bacteria greatly advanced the research on the metabolism of various β–glycosides. 

As expected, the results of sequencing of lactococcal genomes and genes annotations 

confirmed that there are numerous genes encoding potential β-glucosides- 

specific transport systems and β-glucosidases, sometimes with dual activities. And, to 

complicate the matter even further, the analysis of the list of genes annotated in L. lactis 

leads to over a hundred transcriptional regulators. A relatively large number of them may 

be related to carbon metabolism control. These regulators, together with signals 

modulating their activity, and the controlled genes form a regulatory network that is 

necessary for sensing the environmental conditions and adjusting the catabolic capacities 

of the cell. 

Detailed knowledge of sugar metabolism and the regulators controlling gene expression in 

Lactococcus lactis may contribute to the improvement of mechanisms controlling significant 

cellular processes in these bacteria. In the case of industrial microorganisms, acting on the 

defined regulatory network may drastically affect the properties of the bacteria and have an 

impact on bioprocesses. 

Lastly, is shown as an example that by the use of a simple microbiological screen, it is 

possible and worthwhile to modify the metabolic potential of lactococcal strains initially 

unable to assimilate lactose. By inactivation of the ccpA gene or induction of particular genes 

by supplementation of the medium with cellobiose and thus activation of YebF, it is possible 

to turn on an alternative lactose assimilation pathway in L. lactis IL1403. In contrast to 

plasmid-located lac-operons, the cel-lac system is within the chromosome, resulting in a 

stable, highly adapted strain, potentially valuable for the dairy industry.  
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